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Abstract
Aims/hypothesis GLIS3 encodes a transcription factor involved in pancreatic beta cell development and function. Rare 
pathogenic, bi-allelic mutations in GLIS3 cause syndromic neonatal diabetes whereas frequent SNPs at this locus associate 
with common type 2 diabetes risk. Because rare, functional variants located in other susceptibility genes for type 2 diabetes 
have already been shown to strongly increase individual risk for common type 2 diabetes, we aimed to investigate the con-
tribution of rare pathogenic GLIS3 variants to type 2 diabetes.
Methods GLIS3 was sequenced in 5471 individuals from the Rare Variants Involved in Diabetes and Obesity (RaDiO) 
study. Variant pathogenicity was assessed following the criteria established by the American College of Medical Genetics 
and Genomics (ACMG). To address the pathogenic strong criterion number 3 (PS3), we conducted functional investigations 
of these variants using luciferase assays, focusing on capacity of GLIS family zinc finger 3 (GLIS3) to bind to and activate 
the INS promoter. The association between rare pathogenic or likely pathogenic (P/LP) variants and type 2 diabetes risk 
(and other metabolic traits) was then evaluated. A meta-analysis combining association results from RaDiO, the 52K study 
(43,125 individuals) and the TOPMed study (44,083 individuals) was finally performed.
Results Through targeted resequencing of GLIS3, we identified 105 rare variants that were carried by 395 participants from 
RaDiO. Among them, 49 variants decreased the activation of the INS promoter. Following ACMG criteria, 18 rare variants 
were classified as P/LP, showing an enrichment in the last two exons compared with the remaining exons (p<5×10−6; OR>3.5). 
The burden of these P/LP variants was strongly higher in individuals with type 2 diabetes (p=3.0×10−3; OR 3.9 [95% CI 
1.4, 12]), whereas adiposity, age at type 2 diabetes diagnosis and cholesterol levels were similar between variant carriers and 
non-carriers with type 2 diabetes. Interestingly, all carriers with type 2 diabetes were sensitive to oral sulfonylureas. A total 
of 7 P/LP variants were identified in both 52K and TOPMed studies. The meta-analysis of association studies obtained from 
RaDiO, 52K and TOPMed showed an enrichment of P/LP GLIS3 variants in individuals with type 2 diabetes (p=5.6×10−5; 
OR 2.1 [95% CI 1.4, 2.9]).
Conclusions/interpretation Rare P/LP GLIS3 variants do contribute to type 2 diabetes risk. The variants located in the distal 
part of the protein could have a direct effect on its functional activity by impacting its transactivation domain, by homol-
ogy with the mouse GLIS3 protein. Furthermore, rare P/LP GLIS3 variants seem to have a direct clinical effect on beta cell 
function, which could be improved by increasing insulin secretion via the use of sulfonylureas.
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Introduction

Type 2 diabetes, like many other multifactorial disorders, 
includes monogenic forms that are rare, more severe, and 
appear earlier in life than common polygenic forms [1]. 
Rare, pathogenic, bi-allelic variants in GLIS3 cause a severe 
syndrome that includes neonatal diabetes [2]. GLIS family 
zinc finger 3 (GLIS3) is a transcription factor playing a 
major role in pancreatic beta cell development and function. 
Notably, it enhances the transcription of INS by binding to 
its promoter and recruiting the transcription factors pancre-
atic and duodenal homeobox 1 (PDX1), MafA and neuronal 
differentiation 1 (NEUROD1) [3]. In addition, genome-
wide association studies (GWAS) identified frequent SNPs 
at the GLIS3 locus associated with common type 2 diabe-
tes risk, and with variation in fasting glucose and beta cell 
function [4]. We and others previously found strong impact 
on common type 2 diabetes risk of rare, functional variants 
located in susceptibility genes identified by GWAS [1], pav-
ing the way for new insights into the underlying pathophysi-
ology and personalised treatment strategies. This approach 
is particularly fruitful as it is challenging to uncover such 
information solely through GWAS, where associated SNPs 
are typically non-coding and exhibit modest effect [5].

We wondered whether rare, deleterious GLIS3 variants 
could be associated with increased risk for common type 
2 diabetes, and whether they might impact drug treatment 
choices. In this respect, a recent study showed an association 
between rare GLIS3 variants and increased disease risk [6], 
but the lack of pathogenicity assessment using in vitro data 
may limit its conclusion.

Methods

Study participants We analysed 5471 blood DNA sam-
ples accurately sequenced from several population stud-
ies included in the Rare Variants Involved in Diabetes and 
Obesity (RaDiO) study [7]. The RaDiO study and criteria 
of inclusion are described in detail in the electronic supple-
mentary material (ESM) Methods.

GLIS3 sequencing and variant annotation GLIS3 DNA 
sequencing (NM_001042413.2) was previously performed 
by next-generation sequencing [7]. Only rare variants with a 
minor allele frequency (MAF) below 1% in any population 
study in the GnomAD browser (v2.1.1) and in the present 
study were kept for further analyses. All rare coding variants 
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detected in GLIS3 had a quality QUAL score higher than 
50. No variant presented more than 5% of missing genotype 
across the participants.

Statistical analyses for association studies The burdens of 
rare coding variants identified in RaDiO were analysed as a 
single cluster using the mixed-effects score test (MiST), as 
previously described [7]. The association studies between 
the burdens of variants and clinical traits were adjusted for 
age, sex, BMI and ancestry (for assessing type 2 diabetes 
risk, age at type 2 diabetes diagnosis and cholesterol levels), 
or for age, sex and ancestry (for assessing BMI). Participant 
ancestry was assessed using the first five genotypic principal 
components as previously described [7]. The meta-analysis 
was performed using the generic inverse variance method 
from the R package meta [8]. The common effect model was 
applied because of low heterogeneity.

Plasmid generation Plasmids encoding wild-type GLIS3 gene 
and rare variants were either purchased from Twist Bioscience 
(San Francisco, CA, USA) or generated from the first one 
using the Quick Change site-directed mutagenesis kit from 
Stratagene (San Diego, CA, USA), and verified by Sanger 
sequencing. Please see ESM Methods for more details.

Culture of HEK293 cells Human embryonic kidney 293 
(HEK293) cells were purchased from American Type Cul-
ture Collection (Manassas, VA, USA). These cells were 
cultured in DMEM containing 10% FBS (vol./vol.) and 50 
units/ml penicillin/streptomycin. These cells were regularly 
tested for mycoplasma contamination.

Luciferase assays HEK293 cells were transfected in sus-
pension using Lipofectamine 2000 Transfection Reagent 
(Thermo Fisher Scientific, Waltham, MA, USA), with wild-
type or mutated GLIS3 plasmid, plasmid including the gene 
encoding firefly luciferase driven by the 5′ flanking region 
of INS containing GLIS binding sites, and plasmid including 
the gene encoding β-galactosidase, with or without MAFA 
plasmid. Please see ESM Methods for further details.

Results

Through targeted resequencing of GLIS3 (NM_001042413.2) 
in 5471 participants from RaDiO [7], we detected 105 rare 
coding GLIS3 variants, including one nonsense variant 
(p.Y627*), among 395 carriers (ESM Table 1). At this stage 
of analysis, the burden of rare variants was not associated with 
type 2 diabetes risk (pπ=0.20 [poverall=0.055], where pπ is the 
p value for the impact of the burden; with an OR of 0.85 [95% 
CI, 0.66, 1.1]; Table 1).

To assess the pathogenicity of the 105 variants, we used 
the criteria from the American College of Medical Genetics 
and Genomics (ACMG) [9]; notably we developed in vitro 
assays to address the pathogenic strong criterion number 3 
(PS3). Plasmids including each GLIS3 variant were over-
expressed along with their gene reporter assay to assess the 
ability of each mutant to bind to the 5′ flanking region of INS 
containing GLIS3 binding sites. Furthermore, these variants 
were evaluated in conjunction with the overexpression of 
MafA to determine their capacity for recruiting this tran-
scription factor to the INS 5′ flanking region, consequently 
enhancing luciferase signalling. When compared with wild-
type GLIS3, 49 variants decreased luciferase activity with 
and/or without the addition of MAFA in the system, and were 
considered loss-of-function (ESM Fig. 1).

In comparison with our functional results, the in silico 
pathogenicity prediction by REVEL had a poor sensitivity 
as only 4% of loss-of-function variants were predicted to be 
deleterious (ESM Table 1), but had a high specificity (ESM 
Table 1).

Following ACMG criteria including the PS3 criterion, 
18 out of 105 variants, carried by 18 unrelated individuals 
of European ancestry, were found to be pathogenic or likely 
pathogenic (P/LP; Fig. 1 and ESM Table 2). Furthermore, P/
LP variants were strongly enriched in the C-terminal part of 
GLIS3, i.e. the last two coding exons after accounting for exon 
length (p<5×10−6 with an OR>3.5; Fig. 1 and ESM Table 3).

We then assessed the effect of the burden of the 18 rare P/
LP GLIS3 variants on type 2 diabetes risk. This burden was four 
times higher among participants with type 2 diabetes compared 

Table 1  Association analyses 
between rare coding GLIS3 
variants and type 2 diabetes risk

Association analyses were performed using the MiST method for the burden of the 105 rare GLIS3 vari-
ants, or for the burden of the 18 P/LP variants only
MiST provides a score statistic S(π) for the mean effect (π) of the cluster, and a score statistic S(τ) for the 
heterogeneous effect (τ) of the cluster. The overall p value combined p values pπ and pτ

pπ, p value indicating the impact of the burden; pτ, p value indicating the heterogeneity of the burden; T2D, 
type 2 diabetes

Variants N % of T2D in 
carriers

% of T2D in 
non-carriers

OR [95% CI] pπ pτ poverall

Rare 5356 49 39 0.85 [0.66, 1.1] 0.20 0.049 0.055
P/LP 5471 67 40 3.9 [1.4, 12] 8.0×10−3 0.041 3.0×10−3
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with controls (pπ=8.0×10−3 [poverall=3.0×10−3]; with an OR of 
3.9 [95% CI 1.4, 12]; Table 1). We found an equal number of 
female and male participants carrying a P/LP GLIS3 variant, 
either with type 2 diabetes or not (data not shown). Interestingly, 
all participants with type 2 diabetes carrying a P/LP GLIS3 vari-
ant were treated with sulfonylureas, a class of medication that 
stimulates the secretion of insulin by activating ATP-dependent 
potassium channels. In contrast, 50% of non-carriers suffering 
from type 2 diabetes were treated with sulfonylureas. The sibling 
of one of the participants with type 2 diabetes (carrying the P/LP 
variant encoding p.A168G) also presented with type 2 diabetes 
and was also treated with sulfonylureas. The age at diagnosis, 
BMI and cholesterol levels were similar among P/LP variant car-
riers vs non-carriers with type 2 diabetes (ESM Table 4).

We then analysed the association between P/LP variants 
in GLIS3 (NM_001042413 [ENST00000381971] transcript) 
and type 2 diabetes risk in the Type 2 Diabetes Knowledge 
Portal (using the genetic association interactive tool) [10]. 
In 43,125 individuals from 52K and in 44,083 individuals 
from TOPMed, we only found eight P/LP variants per study 
(i.e. loss-of-function transcript effect estimator [LofTee] 
variants with a very low MAF in GnomAD; ESM Table 5) 
that had no effect on disease risk due to a low statistical 
power (p=0.13 with an OR of 1.7 and p=0.44 with an OR 
of 3.3, respectively; variable threshold test). No P/LP mis-
sense variants identified in our study were observed in either 
TOPMed or the 52K study. However, through a meta-anal-
ysis of RaDiO, TOPMed and 52K studies, we found an 

enrichment of P/LP GLIS3 variants among individuals with 
type 2 diabetes (p=5.6×10−5 with an OR of 2.1 [1.4, 2.9]).

Discussion

On the basis of functional genetics, we identified 18 P/LP 
heterozygous GLIS3 variants that increase type 2 diabetes 
risk. This corroborates the continuum between monogenic 
and polygenic type 2 diabetes [5], and supports the impor-
tance of functional genomics to identify variants associated 
with metabolic disorders, as previously demonstrated [1].

Importantly, all the participants carrying a P/LP GLIS3 vari-
ant were treated with sulfonylureas, and their BMI was similar 
to non-carriers. This suggests that these variants directly alter 
beta cell function, but that this defect can be compensated for 
effectively by increasing beta cell insulin secretion. In the con-
text of precision medicine, individuals harbouring a rare P/LP 
GLIS3 variant might be deemed suitable candidates for treat-
ment with sulfonylureas, over other medication options.

Furthermore, we observed an enrichment of P/LP vari-
ants in the C-terminal domain of GLIS3. In a prior study, 
two individuals with type 2 diabetes carried two highly rare 
deleterious variants in the last exons [6]. We suggest that 
mutations located at the C-terminal domain of GLIS3 could 
directly affect its activity by impacting its transactivation 
domain. Indeed, the transactivation domain of GLIS3 mouse 
protein, which presents a high homology with human GLIS3, 
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Fig. 1  Location of the 18 P/LP variants in GLIS3, shown using arrows. Ser-rich, regions enriched in serine; Pro-rich, region enriched in proline
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is located in its C-terminal section [11], and the human 
c.2338dupC mutation, which generates a truncated protein 
(missing the last coding exons), strongly decreased GLIS3 
transcriptional activity [2].

Our study has limitations, as our luciferase experiments 
focused on the ability of GLIS3 to bind to the INS promoter 
only, despite its multiple transactivation role in beta cells. It 
is thus possible that some variants impacting other aspects 
of GLIS3 function were not identified as loss-of-function 
in this study.

In conclusion, P/LP monoallelic GLIS3 variants contrib-
ute to increased type 2 diabetes risk, in addition to GLIS3 
involvement in monogenic diabetes. Sulfonylureas might be 
sufficient to manage type 2 diabetes in the carriers.

Supplementary Information The online version contains peer-reviewed 
but unedited supplementary material available at https:// doi. org/ 10. 
1007/ s00125- 023- 06035-x.
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