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Pi+*** +Ps = Nh, 1< h< k.

He has now succeeded in extending its range of validity from

s > 4.14k(k + 1)(k + 2) log k (s . 11)
to

s> k2(4 log k + 2 A/log k2 + log log k + 9) (s . 11). (4)

Concerning Waring's problem Vinogradow2 shows that the Hardy-
Littlewood's asymptotic formula for the number of solutions of

xk+ ...+xk = N, X. 2 0

holds for s > 20 k2 log k. His method is hardly able to go beyond the
order of magnitude k2 log k, but the numerical factor may stil be improved.
Indeed the author has-replaced Vinogradow's inequality by a sharper one

s> 4k2(log k + 1/2 A/iog k2 + 1/ log log k + .1). (5)

Vinogradow's asymptotic formula for Waring-Goldbach's problem also
holds within the range (5).

1 Hua, Additive Prime Number Theory. This booklet was accepted for publication
by the Acad. of USSR in 1940. The appearance was delayed by World War II.

2 Comptes Rendus of USSR, 1942, No..7.
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The streamline pattern for any one steady flow of an ideal gas is the
streamline pattern for a great many different modes of flow of such gas.
Such trivial variants of the given flow as those obtainable by changing
all pressures and densities in the same proportion are but special cases of
wide classes of substitution flows having a common streamline pattern
with the original flow. One such class of substitution flows of particular
interest will be discussed here.
We shall consider steady flows of an ideal gas in which changes in entropy

occur only in infinitely thin shock-front regions. This means that in
regions between shocks the flow is isentropic, but not necessarily homen-
tropic. That is, the entropy in a shock-free region is constant along any
given streamline but is not necessarily constant throughout the flow. Only
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if the flow is homentropic and not merely isentropic will the density be
a unique function of the pressure throughout the shock-free region. The
existence of such a function is the necessary and sufficient condition that

the acceleration field, - -grad p, possess a potential (be irrotational).
p

Since irrotationality of the acceleration field is necessary (but not sufficient)
for irrotationality of the flow field, only such isentropic flows as are also
homentropic may possibly be irrotational. Hence in considering flows
.which are isentropic but not necessarily homentropic we include rotational
as well as irrotational flows.
We shall first limit our attention to regions between shock fronts,and

consider that class of substitution flows for a given steady streamline
pattern for which the pressures remain unchanged. That is for which

p' =p (1)

Now the dynamic equilibrium of the force components normal to the
streamline requires that the norinal component of the pressure gradient
balance the centrifugal reaction of the flow, or

?sf'=p_V/ (2a)
bn R

as RV (2b)

where R represents the local radius of curvature of the streamline,*v the
flow velocity and p the mass density. Since p' = p, the condition

p -2 (3)
follows.
Now, for gases of constant specific heats, C, and Cs,

P ccp exp. (slC.) = C,1/C. (4)
[s a entropy (specific)

For such gases the "velocity of sound" is given by

C__ -i(8p) = I7(5)
6p ~~p

and the Mach number, defined by

* D ,~~~~~~~~
(6)

c
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becomes

M= iP (7)

Since p' = p and p'v'2 - pv2, the additional condition

M' = M (8)

is obtained.
A further condition restricting the possible substitution flows is the

necessity of dynamic equilibrium of the force components along each
streamline. That is to say, Bernoulli's equation must hold along each
individual streamline:

7 p' + 2 pIV 2 = H'p' (9)

where H' is a quantity (the "total enthalpy") which is constant along any
particular streamline. The original flow satisfies a similar equation

* T1P + 2 PV2 = Hp (10)

Hence, from (1) and (3) it follows that
"HH'p' = Hp, or p' = Hjp = mp (11)

where m is a paramete constant along any given streamline but variable
from streamline to streamline. Since there are no further conditions to
be imposed on the substitution flows, we still have at our disposal the
value of the arbitrary parameter, m, for each streamline.

The streamline pattern and all pressures and Mach numbers are left un-
changed if along each streamline the values of density and of velocity are
multiplied respectively by m and 1/V/r, where m may changefrom streamline
to streamline.
This class of substitution flows has thus far in our discussion been

limited to shock-free regions, but this restriction can now be removed.
Consider the flow quantities immediately in front of and immediately
behind a shock front to be designated by the subscripts 1 and 2. Then
the necessary conditions of conservation of mass, momentum and energy
for a streamline passing through a steady shock front can be expressed in
the form of equations (12-14):

plvl = p2v2 (12)

p1vj2 Sin2 al + Pi =p2v22 Sin2. a2 + P2
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P1Vl2 + KpI = P2V22 + Kp2 (14)
where a represents the angle between the streamline and the shock front,
and K is a constant depending on the kind of gas involved. It is clear
that any substitution flow consistent with the requirements of equations
(1), (3) and (11) will satisfy these shock conditions as well as does the origi-
nal flow. Therefore this group of flow substitutions produces no change
in streamline pattern even if shock fronts are present.

In the most general flows of an ideal gas the total enthalpy, H, (=i +

2' where i is the specific enthalpy) is constant along each particular

streamline, whether or not it intersects shock fronts, but it varies from
streamline to streamline. The entropy is constant along each particular
streamline in regions between shock fronts, but varies from streamline to
streamline and increases discontinuously whenever the streamline crosses
a shock front.

In supersonic regimes (v > c) flows of this most general character can
be computed by the use of the general method of characteristics combined
with the shock-front integral relations (equations (12-14)) when suitable
boundary conditions are imposed. However, the computation is con-
siderably simpler if either the total enthalpy, H, or the entropy, s, is
universally constant for a region under consideration. For if H is constant
throughout the flow, a universal relation exists between v and c, as from
(5) and (10):

C2 v2

r-1 + 2 (15)

On the other hand, if s is constant throughout a region of the flow, there
exists a universal relation between p and p. (See equation (4).)
By the use of the class of substitution flows discussed above, a flow of

non-constant H and s can be readily replaced by a substitution flow having
either constant H or (in a shock-free region) constant s if the values of
m are suitably chosen on any surface intersecting each streamline a single
time. The simpler substitute flow would then yieltd directly the pressures,
Mach number and flow pattern of the original flow and, after a simple
inversion of the conversion from original to substitute flow, the densities
and velocities as well.

Similarly, if it is desirable to db so, an original flow problem involving
non-constant H and constant s could be replaced by one having constant
H and non-constant s, and vice versa. It is not possible, however, to
substitute a flow having both H and s constant for one in which either is
non-constant. In other words, this class of substitution flows does not in
general allow the replacing of a rotational flow by an irrotational one.
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The relations discussed may be arrived at more briefly, but less directly,
from dimensional consideiations. Along each stream tube, there exists
for a perfect gas only one independent dimensional reference quantity,
as for instance the "reservoir" pressure. All variables can be expressed
in terms of that reference pressure in conjunction with one non-dimensional
quantity as for instance the local Mach number. Thus the local pressure
is equal to the reference pressure multiplied by a function of the Mach
number, and of non-dimensional quantities representing the geometry
involved. Hence the lateral pressure gradient is determined and invariant
with respect to transformations not involving changes of the geometry or
changes of -the reference pressure and thus changes of any presstre. It
follows that it must be possible to write all pertinent equations in terms of
the local pressure, the local Mach number and the space coordinates,
thus eliminating one dependent variable.
Among possible flows calling for application of these relations, there

are jets from different "'reservoirs" flowing together. Such is the flow
when a propulsion jet issues into the rapidly moving air (relative to a
missile or airplane) of the atmosphere. It may also be instructive to
idealize boundary layer wakes by considering them as. jets of a perfect gas
with a lowered total enthalpy.

TURBULENCE AS AN ENVIRONMENTAL DETERMINANT OF
RELA TIVE GROWTH IN DAPHNIA

BY J6HN L. BROOKS

OSBORN ZOOLOGICAL LABORATORY, YALE UNIVERSITY

Communicated March 24, 1947

Temporal variation or cyclomorphosis is pronounced in many-limnetic
races of Daphnia. The relative length of the head is the most variable
aspect of such races of the north temperate zone. The winter and early
spring generations bear short round heads resembling those characteristic
of pond Daphnia. Individuals of midsummer generations have elongate
heads, called helmets, which are often nearly as long as the rest of the body.
During the period of these striking phenotypic- chaniges reproduction
is entirely a sexual, which means that the genetic constitutions of all genera-
tions are almost identical. These phenotypic differences mnust therefore be
determined by seasonally yariable cytoplasmic or environmental factors,
in all probability the latter.
The aim of the present investigation is precise determination of all of

the environmental factors controlling cyclomorphosis. The efforts of
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