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HSF1 Inhibits Antitumor ImmuneActivity inBreast Cancer
by Suppressing CCL5 to Block CD8þ T-cell Recruitment
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ABSTRACT
◥

Heat shock factor 1 (HSF1) is a stress-responsive transcription
factor that promotes cancer cell malignancy. To provide a better
understanding of the biological processes regulated by HSF1, here
we developed an HSF1 activity signature (HAS) and found that it
was negatively associated with antitumor immune cells in breast
tumors. Knockdown of HSF1 decreased breast tumor size and
caused an influx of several antitumor immune cells, most notably
CD8þ T cells. Depletion of CD8þ T cells rescued the reduction in
growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8þ

T-cell influx to avoid immune-mediated tumor killing. HSF1
suppressed expression of CCL5, a chemokine for CD8þ T cells,
and upregulation of CCL5 uponHSF1 loss significantly contributed
to the recruitment of CD8þ T cells. These findings indicate that
HSF1 suppresses antitumor immune activity by reducing CCL5 to
limit CD8þ T-cell homing to breast tumors and prevent immune-
mediated destruction, which has implications for the lack of success
of immune modulatory therapies in breast cancer.

Significance: The stress-responsive transcription factor HSF1
reduces CD8þ T-cell infiltration in breast tumors to prevent
immune-mediated killing, indicating that cellular stress responses

affect tumor-immune interactions and that targeting HSF1 could
improve immunotherapies.

Introduction
Breast cancer is the second leading cause of cancer-related

deaths in women with 1 in 8 developing invasive breast cancer
over the course of their lifetime (1). Immune checkpoint therapy
in patients with breast cancer has had mixed results with patients
with triple-negative breast cancer (TNBC) primarily being the
beneficiary of this therapeutic approach (2). Breast cancer has
historically thought to be a low immunogenic tumor (3). TNBC
has largely benefitted from immune checkpoint therapy due to it

being the small subset of breast cancer that has shown to have PD-
L1 expression and higher lymphocytic infiltration relative to other
breast cancer subtypes (4, 5). While PD-L1-targeting checkpoint
therapy was approved for high-risk TNBC, only a small percentage
of these patients respond to immune checkpoint inhibition
prompting the approval for anti–PD-L1 therapy to be removed
for this patient population in 2021. Previous studies have iden-
tified that higher lymphocyte infiltration in breast cancers is
associated with improved survival and improved response to
treatments (6–9). Infiltration of CD8þ T cells, the primary cyto-
toxic lymphocyte, is an independent predictor of patient outcome
and these immune cells are trafficked to tumors through chemo-
tactic cytokines (10). While low tumor mutational burden (TMB)
is a significant factor in the low lymphocyte infiltration in breast
cancer, TMB does not fully explain low lymphocyte infiltration,
indicating that additional mechanisms suppress lymphocyte
attraction to breast tumors.

Heat shock factor 1 (HSF1) is amaster transcription factor regulator
of the heat shock response. The classical function ofHSF1 is to regulate
expression of chaperone genes in response to cellular stressors (11).
HSF1 can be hyperactivated due to increased proteotoxic stress and
upregulation of activating kinases includingAKT1,mTORC1, and p38
among others (11–14). However, the seminal finding of a unique
transcriptional programofHSF1 in cancer cells that is distinct from the
heat stress response transcriptional program indicated that HSF1 has
additional functions in cancer (15). It is now recognized that HSF1
plays key roles in cancer cells by promoting several protumor processes
including epithelial-to-mesenchymal transition, promotion of the
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cancer stem-like state, promotion of cancer-associated metabolic
changes, and several others that all support the malignancy of cancer
cells (11–13, 15, 16). Furthermore, HSF1 levels and activity have been
associated with worsened patient outcomes in many cancer types,
including breast cancer (13, 15, 17). However, the role of HSF1 in
tumor–immune interactions and avoiding immune destruction
remains unclear.

Gene signatures, or sets of genes that represent biologic functions or
features, have gained popularity since the introduction of gene set
enrichment analysis (GSEA) and the molecular signatures database
(mSigDB; ref. 18). Here we report a new gene signature termed “HSF1
Activity Signature,” or HAS, a 19-gene signature that reports HSF1
transcriptional activity generated using a novel approach. By using the
HAS, we uncovered a novel mechanism underlying breast tumor
evasion of immune destruction based on inhibition of CD8þ T-cell
recruitment to tumors by HSF1-mediated suppression of CCL5, a key
chemokine regulating CD8þ T cells.

Materials and Methods
Cell culture

MDA-MB-231 (DMEM, Gibco #10–013-CV) and 4T1 (RPMI,
Gibco #10–040-CV) cells were obtained from ATCC (231: CRM-
HTB-26, RRID: CVCL_0062; 4T1: CRL-2539, RRID: CVCL_0125)
and were maintained at 37�C in 5% CO2 and culture media
was supplemented with 10% FBS (Corning #35–011-CV) and 1%
penicillin/streptomycin (Gibco #15140–122). Cells were tested
monthly for Mycoplasma contamination using MycoAlert kit (Lonza
#LT07–218). Lentiviral plasmids carrying control (50-CCTAAGGT-
TAAGTCGCCCTCG-30) or HSF1 (50-GGAACAGCTTCCACGT-
GTTTG-30) shRNA were synthesized by VectorBuilder using U6-
driven promoter.

RNA sequencing and datasets used
Total RNA from MDA-MB-231 and 4T1 cells were collected

(PureLink RNA Mini Kit, Thermo Fisher Scientific #12183018A)
and subjected to mRNA-sequencing using an Illumina HiSeq 4000
and data were deposited in Gene Expression Omnibus at
GSE236972. The sequencing data were first assessed using FastQC
(Babraham Bioinfomatics) and then mapped to the mouse genome
(mm10) using STAR RNA-seq aligner. Uniquely mapped sequenc-
ing reads were assigned to mm10 ref Gene genes using feature
Counts (from subread). Genes with read count per million (CPM)
>0.5 in more than 3 of the samples were kept. The data were further
normalized using Reads Per Kilobase Million (RPKM). Differential
gene expression analysis was conducted by using DESeq2 method
with an FDR less than 0.05 as the significant cutoff. Microarray
datasets from the public domain were accessed from NCBI GEO
(Supplementary Table S1). The GEO datasets were all from the same
platform, that is, Affymetrix Human Genome U133 Plus 2.0 Array.
Renormalization was performed for each datasets from .CEL files
using MAS5 method in R 4.1.2. The Cancer Genome Atlas (TCGA)-
BRCA dataset was accessed through the TCGA data portal. The
METABRIC dataset was accessed through the European Genome-
Phenome Archive (EGA) under study ID EGAS00000000083.

HSF1 gene module detection analysis
To identify potential genes that can act as reliable markers of HSF1

activity, we conducted an integrated coexpression analysis on a set of
genes that have been demonstrated to be direct targets of HSF1 and are
strongly linked to its activity. Our underlying premise is that HSF1

target genes are closely associated with the activation status of HSF1,
making them indicative of its activity. By focusing on the core group of
genes that exhibit simultaneous regulation byHSF1 and display robust
coexpression patterns, we aim to pinpoint the most promising candi-
dates for signifying HSF1 activity. First, we selected genes that were
direct targets of HSF1 based on 49 chromatin immunoprecipitation
sequencing (ChIP-seq) samples, including replicates, collected from
three large ChIP-seq studies (15, 19, 20) on various cell types including
colon cancer cell lines, breast cancer cell lines, lung cancer cell lines,
normal epithelial cells with orwithout heat shock, among others. These
direct targets were derived from the original analysis of these studies by
the primary authors and we included all unique genes from any of the
ChIP-seq samples (i.e., any gene identified as a target in these samples
was included regardless of how many of the samples these genes were
identified as targets) giving a total number of 3,415 genes. Eventual
genes utilized in this study were analyzed to validate them as direct
targets in multiple ChIP-seq datasets. Second, the genes were further
filtered based on differential expression analysis on our bulk RNA-seq
data, where only genes showing significantly decreased expression
with HSF1 knockdown were retained. A total of 497 genes were
significantly downregulated after HSF1 knockdown (fold change >
1.5, adjusted P < 0.05). There were a total of 60 genes common to the
3,415 genes detected as HSF1 direct targets and the 497 total genes
downregulated after HSF1 knockdown. Finally, we performed our
gene module detection analysis based on the retained 60 genes on 11
public breast cancer datasets (Supplementary Table S2), to identify a
core set of genes consistently showing strong coexpression patterns
across all 11 datasets. After doing MAS5 normalization on the raw .
CEL files of the datasets, calculated the Spearman correlation matrix
for the filtered genes. A binary matrix was constructed for each dataset
where 1 indicated significant correlation and 0 indicated nonsignif-
icant correlation. Note that here, a Bonferroni correction was con-
ducted on the rawP value of correlation. An average ratiomatrix,A, for
the 11 binary matrices was further calculated, wherein each value
denotes the total number of times for the pair of gene being significant
divided by 11. Then we applied a greedy algorithm to identify themost
interconnected modules. Basically, for a given a and b, we iteratively
remove genes whose average significance ratio, shown in the average
ratiomatrixA, did not surpassa in at least 100�b percentage among all
the genes. Here, a varies in a sequence of 0.01 to 0.9 with a step size of
0.09 andb varies from0.1 to 0.9 with a step size of 0.01. For fixeda, and
a given b, we run multiple iterations, and within each iteration, only a
very small number of genes will be removed. This is because, in the
beginning, we have a large number of genes, and if we use the given b, a
large number of genes, which equates to the number of genes mul-
tiplied by b, will be removed, while the removed genes may contribute
to a small but strongly coexpressed module. The iteration stops when
all genes satisfy the constraint that their average significance ratio
surpassesa in at least 100�b percentage among all the remaining genes.
The gradual increase in b allows fine tuning of the coexpression
module to ensure that only the most interconnected gene modules
will be obtained. Note, we conducted robustness analysis for different
a and b values, with smaller a, b resulting in relatively large co-
expression modules, while large a, b resulting in small coexpression
modules, but overall the resulting gene modules are highly over-
lapping. Here, considering that the HSF1 targets obtained from
different ChIP-seq datasets collected by us are different, we performed
the analysis described above for different combinations of the HSF1
target lists from different ChIP-seq datasets. In total, we identified nine
different modules for different lists of HSF1 targets, and chose the
modules obtained for only a > 0.36 and b > 0.3.
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Heat map generation, principal component, and gene ontology
analysis

Z-scores were used to generate heat maps using Morpheus. Gene
expression values for the respective genes within each signature were
subjected to PCA using GraphPad Prism 9. PC1 scores for samples
from respective groups were used to rank order samples for survival
analysis or used to compare signature scores between groups. Gene
ontology for theHAS or genes associated with theHASwas performed
using ShinyGO version 0.76. Genes associated with the HAS were
selected through Pearson correlation of HAS score with all genes
within the BRCA TCGA cohort.

Survival assessment
Patient survival was assessed using Kaplan–Meier plots within

Prism 9. Log-rank tests were used for determination of statistical
differences between groups. Age-adjusted Cox proportional hazard
ratios were computed using PC1 scores from gene signatures
with survival using SPSS 28.0 and calculated 95% confidence
interval and computed P values. HRs were plotted in a forest plot
using Prism 9. Forest plots have a dotted line at a HR of 1 with a box
indicating the HR with red bars indicating the 95% confidence
intervals.

GSEA
GSEA was done using GSEA software vs. 4.3.2 for Windows.

Gene Cluster Text file (.gct) was generated from the TCGA BRCA,
METABRIC, or GSE47561 breast cancer cohorts. Categorical class
file (.cls) was generated by separating patients in these datasets
based on high and low HAS score. The Gene Matrix file (.gmx) was
generated using published gene signatures for immune cell types
from the mSigDB and from TIMER2.0 portal (21–26). The number
of permutations was set to 1,000 and the chip platform for TCGA
gene lists was used. Heat maps were generated on Morpheus
(https://software.broadinstitute.org/morpheus) using normalized
enrichment scores.

Immune profile estimations
Immune proportion estimates were completed using deconvolution

algorithms fromTIMER, CIBERSORT, QuantiSeq,MCPCounter, and
XCell for the TCGA-BRCA, METABRIC, and GSE47561 datasets
using the TIMER2.0 portal (http://timer.cistrome.org; refs. 21–26).
CD8þ T-cell proportions were compared between high and low HAS
groups using Student t test.

IHC
IHC was performed on a breast cancer tumor microarray

(BR1141A; tissuearray.com). Antibodies used for IHC include pHSF1
(S326; Abcam #76076; RRID: AB_1310328), CD3 (Santa Cruz Bio-
technology #sc-20047; RRID: AB_627014), CD8A (CST #85336;
RRID: AB_2800052), and CCL5 (Invitrogen #710001; RRID:
AB_2532515). IHC was performed by deparaffinization using xylenes
followed by rehydration with decreasing alcohol solutions. Slides were
then incubated in Bloxall (Vector Laboratories #SP-6000–100) and
subjected to antigen retrieval with 10 mmol/L citrate solution in a
heated pressure cooker (2,100 Antigen Retriever; Aptum Biologics).
Tissues were blocked in animal-free blocker (Vector Laboratories #SP-
5035) and incubated in primary antibodies overnight in a humidified
chamber. Primary antibodies were detected using Vectastain ABC-
HRP kits (Rabbit: PK-4001; Mouse: PK-4010) and developed with
DAB Immpact kit (Vector Laboratories #SK-4105) followed by dehy-
dration with increasing alcohol solutions and mounted. Slides were

imaged with Motic EasyScan scanner and analyzed with QuPath
software (27).

Animal studies
All animal studies were performed under an approved institu-

tional animal care and use committee protocol on the Indiana
University-Bloomington campus (Bloomington, IN). Control or
HSF1 knockdown 4T1 cells (3e5) were injected into the mammary
gland of 4-week-old female Balb/c mice and allowed to grow for 3–
5 weeks. Tumor volume was measured with calipers. CD8þ T-cell
depletion was accomplished by administration of 200 ug of CD8A
(bioXcell #BE0061; RRID: AB_1125541) antibodies for 3 days and
depletion was maintained throughout the study with 200 mg anti-
body injections (twice per week). After initial CD8þ T-cell deple-
tion, mice were randomized to receive either 4T1 shCTL or 4T1
shHSF1 cells for injection. CD8þ T-cell depletion was confirmed
at the end of the study by collecting the spleens and analyzing by
flow cytometry.

Single-cell RNA sequencing
Tumors from 4T1 shCTL or shHSF1 were excised then dissoci-

ated using a tumor dissociation kit (Miltenyi Biotec #130–096–730).
Approximately 10,000 cells per sample with greater than 70%
viability were used as input to the 10X Genomics Chromium system
using the Chromium Next GEM Single Cell 30 Kit v3.1. Libraries
were sequenced using a NovaSeq 6000 with a NovaSeq S2 reagent
kit v1.0 (100 cycles) and raw data were deposited in Gene Expres-
sion Omnibus (GEO) at GSE236972. Count matrices were gener-
ated with 10X Genomics Cell Ranger (v4.0.0) with default settings
and genome assembly with mm10 was used. Resulting matrices
were processed and analyzed in Seurat (v.4.2.0). Quality control and
filtering removed low-quality cells. Specifically, we kept only cells
who has mitochondria percentage lower than 5%, expresses more
than 100 but less than 5,000 genes, and has total counts less than
30,000. In addition, we noticed the presence of doublets, and
removed them using the scDblFinder method (28). This left us
with 25,039 (from 34,956) and 23,569 (from 38,134) cells for 4T1
shCTL or shHSF1 samples respectively. The two samples were
integrated using function “IntegrateData” with 40 dimensions in
the anchor weighting procedure in Seurat. We then selected variable
genes and performed dimensionality reduction using principal
component analysis and cell clustering on the integrated data with
top 20 principal components using the “FindClusters” function in
Seurat. Cluster-specific markers were identified by doing differential
gene expression usingWilcoxin test with a log fold change threshold
set up 0.25. The cluster markers were then overlapped to canonical
cell type–defining signature genes. Ultimately, we recovered and
annotated eight unique cell types from the two samples.

Flow cytometry
Single-cell suspensions were subjected to incubation with

mouse-specific CD3-FITC (Miltenyi Biotec, #130–119–798; RRID:
AB_2751851) and CD8A-APC (Miltenyi Biotec, #130–117–664;
RRID: AB_2728016) antibodies in series followed by incubation
with Zombie viability dye (Invitrogen #771847). After labelling,
flow cytometry was performed using a MACS Quant (Miltenyi)
system and data were analyzed with FlowJo 10.8.

Cytokine array
Control and HSF1 knockdown 4T1 cells were incubated in fresh

media over 72 hours. Culture media was collected, centrifuged, and
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subjected to the Mouse XL Cytokine Array (R&D Systems #ARY028)
according to manufacturer’s instructions in triplicate.

RT-qPCR
Total RNA fromwas extracted using an RNA Extraction Kit (Zymo

#R1050) and subjected to reverse transcription using RT Master Mix
(Applied Biosystems #4368814). qPCR was performed with SYBR
Green Master Mix (Applied Biosystems #4309155). qPCR primers
used are listed in Supplementary Table S3.

Transwell migration of T cells
The assay was performed using a chemotaxis chamber

(NeuroProbe) with 5-mm pore size filters. Briefly, the spleens
were extracted from healthy Balb/c mice, dissociated using a
gentleMACS and Spleen Isolation Kit (Miltenyi Biotec, #130–095–
926), and T cells isolated using a pan-T Cell Isolation Kit (Miltenyi
Biotec, #130–095–130). T cells (1 � 106) were placed in the top
chamber in serum-free medium while the bottom chamber con-
tained serum-free medium with or without exogenous CCL5 or
conditioned medium from 4T1 cells with predesigned control
siRNA (Bioneer #SN-1003), Hsf1 siRNA (Bioneer #15499), or Ccl5
siRNA (Bioneer #20304). Empty vector (pCMV-SPORT6) was
obtained from Invitrogen and pCMV-SPORT6-CCL5 was obtained
from Transomic Technologies (TCM1004). T-cells were incubated
for 24 hours and subjected to flow cytometry with CD3/CD8A
antibodies with five biological replicates.

Statistical analysis
All statistical tests were performed as two-tailed tests. For two-

group comparisons, Student t test was used. For multiple group
comparisons, ANOVA with Tukey post hoc test was used. All labo-
ratory experiments were completed with a minimum of three biolog-
ical replicates (e.g., qPCR, cytokine array) with flow cytometry experi-
ments using a minimum of four biological replicates. Animal studies
were completed with a minimum of five mice per group.

Data availability statement
Next-generation sequencing data generated in this study was

deposited atGene ExpressionOmnibus (GEO) atGSE236972. Publicly
available datasets used to analyze and validate the HSF1 activity
signature (HAS) included GSE38232 (MCF7/BPLER cells), GSE3697
(Hela cells), GSE83844 (A549 cells), GSE115973 (U2OS cells),
GSE155248 (C4–2 cells; Supplementary Table S1). Publicly available
expression datasets from patient samples used to analyze the intragene
correlation for HSF1 gene module detection included GSE11121,
GSE12093, GSE14020, GSE1456, GSE17705, GSE2034, GSE2603,
GSE45255, GSE4922, GSE5327, GSE7390 (Supplementary Table S2).
All other raw data generated in this study are available upon request
from the corresponding author.

Results
Identification of an HAS that detects changes in HSF1
transcriptional activity

HSF1 was originally discovered for its role as the master regu-
lator of the heat shock response (11, 13). The discovery of new
functions of HSF1 has particularly been fruitful in the context of
cancer where it has been found to regulate a target gene set distinct
from the genes targeted by HSF1 in response to heat shock and,
consequently, play a role in many processes that promote malig-
nancy (11, 13, 15). In this study, we utilized a new computational

approach to associate HSF1 transcriptional activity with cancer-
related processes and patient outcomes. HSF1 has a complex
posttranslational activation process whereby it must localize to the
nucleus to undergo trimerization and DNA binding, in addition to
phosphorylation prior to recruiting general transcription factors to
initiate transcription at target genes. Because of this complex
activation process at the protein level, RNA levels of the HSF1
gene are not highly predictive for HSF1 transcriptional activity and
HSF1 RNA does not significantly increase expression in response to
heat shock (Supplementary Fig. S1A–S1C). We reasoned that the
most predictive gene set for HSF1 transcriptional activity will be
RNA expression levels of genes that (i) are direct HSF1 target genes,
(ii) have high intra-gene correlation within the gene set across
multiple datasets, (iii) decrease expression when HSF1 is knocked
down or inhibited, (iv) increase expression in response to heat
shock, and (v) show increased expression in cancer samples com-
pared with normal. Therefore, we attempted to identify a set of
genes that meet these criteria utilizing the gene selection procedures
outlined in Fig. 1A.

We first identified genes that are direct transcriptional targets of
HSF1 utilizing 49 ChIP-seq samples in the public domain (15, 19, 20).
All unique genes were included in the initial gene list as potential HSF1
target genes. We then removed genes whose expression was not
decreased with the knockdown of HSF1 based on differential expres-
sion analysis. We then conducted an integrated coexpression analysis
for the remaining genes using 11 different cancer expression datasets
(Supplementary Table S2). This coexpression analysis resulted in
identification of nine unique gene sets for consideration (Supplemen-
tary Table S4). One gene set, hereafter referred to as the HAS, was
found to have the highest intra-gene correlation (Fig. 1B) compared
with the other gene sets (Supplementary Fig. S2A-S2H) and out-
performed all other gene sets in detecting changes in HSF1 activity
after HSF1 knockdown or in response to heat stress (Fig. 1C; Sup-
plementary Fig. S2I–S2P). The HAS gene set was consistently
decreased whenHSF1 was knocked down or whenHSF1was inhibited
withDTHIB (Fig. 1C andD; Supplementary Fig. S3A–S3C). Inversely,
the HAS increased after heat stress (Fig. 1C–E; Supplementary
Fig. S3D and S3E). PCA showed that PC1 of the HAS accounted for
73%–92% of the variance across these experiments (Supplementary
Fig. S4A–S4G). To statistically compare HAS across these groups, PC1
scores for each sample were compared and seen to have a significant
decrease in HAS with HSF1 knockdown while a significant increase
was observed in samples with heat shock (Supplementary Fig. S4A–
S4G). Genes associated with the HAS were analyzed with gene
ontology, which revealed several ontologies involved with protein
folding, protein stabilization, heat shock proteins, unfolded proteins,
chaperones, chaperonins, and chaperone complexes that were
enriched (Supplementary Fig. S5A–S5C) that is indicative of the
known function of HSF1 in proteostasis. There were also categories
enriched indicative of the role of HSF1 in cancer cells such as
metabolism-related categories and cell division. The HSF1 binding
motif, heat shock elements (HSE), were also the most enriched motif
among the genes within the HAS (Supplementary Fig. S5D). These
data indicate the 19 gene set HAS can reliably detect changes in HSF1
transcriptional activity.

HSF1 activity is associated with breast cancer patient outcomes
and molecular characteristics

HSF1has previously been associatedwith several cancer phenotypes
and increased expression and transcriptional activity in cancer
cells (11, 13). The HAS genes showed a clear increase in expression
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in tumor samples compared with matched normal adjacent tissue
(Fig. 2A), indicating the HAS was able to detect an increase in HSF1
activity in tumors. We next assessed whether the HAS could serve as a
biomarker for outcomes of patients with breast cancer as previous
studies show active HSF1 was associated with worse outcomes
(15, 17, 19). As shown in Fig. 2B and C, high HAS was associated
with worse overall survival (OS) in the TCGAbreast cancer cohort and
the METABRIC breast cancer cohort whereas expression of the HSF1

gene alone was not as consistent in reproducing this association
(Supplementary Fig. S6A and S6B). In addition to Kaplan–Meier and
log-rank tests, age-adjusted HR for HAS was also significantly asso-
ciated with worse OS in the TCGA (HR¼ 2.42; 95% CI, 1.62–3.62; P <
0.001) and theMETABRIC (HR¼ 1.58; 95% CI, 1.33–1.88; P < 0.001)
cohorts. HAS was also associated with worse metastasis–free survival
of patients with breast cancer (Fig. 2D) whereas expression of the
HSF1 gene was weakly associated with metastasis-free survival

Figure 1.

Identification of theHAS.A, The schema for identifying anHSF1 activity signature, which included input data fromChIP-seqdata to identify direct targets, followedby
removing genes not dependent onHSF1 for their expression andfinally generating gene sets that have high intragene correlation.B,Correlationmatrix of the 19-gene
HAS across 11 cancer datasets. C–E, Heat maps were generated from publicly available expression data from HeLa cells with HSF1 knockdown and/or heat stress
(C), MDA-MB-231 cells with or without HSF1 knockdown (D), and A549 cells with or without heat stress (E).
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Figure 2.

HAS is associatedwith breast cancer outcomes andmolecular subtypes.A,Heatmapwas generated usingmatched adjacent normal and tumor expression data from
the TCGA-BRCA cohort (n¼ 100).B–D,Patients in the TCGA-BRCA (B), METABRIC (C), andGSE47561 (D) cohortswere sorted by their HAS scores andKaplan–Meier
plots were generated for overall survival (B and C) or metastasis-free survival (D). Patients in these analyseswere separated into equal tertiles based on HAS scores.
E and F, Heat map (E) was generated for the HAS of the METABRIC cohort delineated by PAM50 subtype and HAS PC1 scores (F) for each subtype were compared
across subtypes via one-way ANOVA with Tukey post hoc test. �, significance compared with normal-like. G and H, Heat map (G) was generated for the HAS of the
METABRIC cohort delineated by IntegratedMETABRICClusters andPC1 scores (H) were plotted across IntegratedMETABRIC Clusters. � , significance comparedwith
the lowest cluster (#3). NL, normal-Like; LumA, luminal A; LumB, luminal B; HER2-E, HER2-enriched.
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(Supplementary Fig. S6C). These results further support previous
studies suggesting a potential role for HSF1 in metastasis (15, 16, 29).
Taken together, these results indicate that HAS can function as a
marker of HSF1 activity and HAS predicted breast cancer patient
outcomes consistent with previous assessments for HSF1 activity that
include measurement of nuclear HSF1 levels or S326 phosphorylated
HSF1 (15–17).

We next assessed the relationship of the HAS with molecular
subtypes of breast cancer. HAS was increased within the luminal B
(LumB), HER2-enriched (HER2-E), and basal subtypes in both the
METABRIC and TCGA cohorts compared with the normal-like (NL)
and luminal A (LumA) subtypes (Fig. 2E and F; Supplementary
Fig. S6D and S6E). The HAS was also assessed in the METABRIC
Integrated Clusters (IntClust) where the HAS was upregulated in
several integrated clusters that appear to mirror HAS activation from
PAM50 molecular subtypes. HAS was increased in IntClust 10, which
is mostly associated with the basal molecular subtype, and IntClust 5,
which is closely associated with the HER2-enrichedmolecular subtype
(Fig. 2G and H). Interestingly, HAS was also elevated in clusters 1, 6,
and 9 that are primarily ER-positive cancers but includes overlap with
the LumB molecular subtype. Upregulation of the HAS in these
clusters likely points toward a recently-identified interaction of
HSF1 with ERa in breast cancer (30) and an interaction between
HSF1 and HER2 signaling, which has been established (12, 29, 31).
Furthermore, HAS was associated with both disease-free survival
and overall survival across many of the TCGA cancer types (Fig. 3A
and B). HSF1 has previously been associated with outcomes for
many cancer types and the HAS reflected many of these known
associations including liver (32), lung (33), and head/neck (34)
cancers among others.

HSF1 activity has a negative association with the presence of
CD8þ T cells in breast tumors

Previous reports indicated a possible association between HSF1 and
tumor–immune interactions as well as immune function but a clear

role for HSF1 in these interactions has not been fully investigat-
ed (15, 35). To investigate the relationship between HSF1 activity and
tumor–immune interactions, the HAS was used to sort tumors from
breast cancer patient cohorts in the TCGA-BRCA (n ¼ 1100),
METABRIC (n ¼ 1996), and GSE47561 (n ¼ 1570) into high and
low HSF1 activity groups. These groups were then subjected to GSEA
to determine association of HSF1 activity with immune cell popula-
tionsusingmultiple immunecell estimation algorithms (21–23, 36, 37).
Interestingly, HSF1 activity was negatively associated with the pres-
ence of several immune cell types including CD8þ T cells, CD4þ T
cells, and B cells across several different signatures for these cell types
(Fig. 4A). Utilizing the immune cell estimation algorithms, it was
consistently observed that patients with highHAS scores showed lower
CD8þT-cell proportions compared with patients with lowHAS scores
(Fig. 4B). To determine whether this relationship between HSF1 and
CD8þT-cell proportions is unique to any breast cancer subtype, GSEA
was performed on subpopulations of patients with different receptor
statuses. The relationship between the HAS score and CD8þ T cells
appeared to be stronger in triple-negative breast cancer (TNBC)
compared with tumors with other receptor statuses (Fig. 4C and D;
Supplementary Fig. S7A–S7D). Patients with Breast cancer who had
high HAS scores and low CD8þ T-cell proportions showed signifi-
cantly worse overall survival ormetastasis-free survival comparedwith
patients with lower HAS and higher CD8þ T-cell proportions, which
was consistent in the TNBC population (Fig. 4E and F; Supplementary
Fig. S7E–S7H).While the relationship of theHAS to immune cell types
were similar between TNBC and patients with ER�HER2þ (Fig. 4C;
Supplementary Fig. S7D), the proportion of CD8þ T cells were more
consistently significantly lower in patients with high HAS with TNBC
compared with patients with ER�HER2þ (Fig. 4D; Supplementary
Fig. S7D).

These data suggest that tumors with high HSF1 activity have
lower CD8þ T cells. To confirm these observations, tumor tissues
from a cohort of 114 patients with breast cancer spanning all
subtypes were subjected to IHC for the active mark of HSF1

Figure 3.

Association of HAS with outcomes
across TCGA cancer types. A and
B, Cox proportional HRs were calcu-
lated for HAS across the TCGA cancer
types for disease-free survival (A) and
overall survival (B) and were con-
trolled for age, sex, race, andhistologic
subtype. Forest plots were generat-
ed with HRs (black square) with
95% confidence intervals (red bars).
Black dotted line indicates a HR
of 1. HRs >1 indicate HAS is asso-
ciated worse survival. �, significant
(P < 0.05) HRs.
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Figure 4.

HAS is negatively associated with presence of CD8þ T cells.A,GSEAwas performed in TCGA-BRCA, METABRIC, and GSE47561 cohorts with patients separated into
high or low HAS scores. Signatures for immune cell types were assessed for enrichment with high or low HAS patients. Normalized enrichment scores (NES) are
plotted on a heat map. B, CD8þ T-cell proportions were estimated in the TCGA-BRCA cohort using the indicated deconvolution algorithms and plotted for high and
lowHASpatients.C,GSEAwasperformed as inAusing only patientswith TNBC in theTCGA-BRCAcohort.D,CD8þT-cell proportionswere estimated inpatientswith
TNBC in the TCGA-BRCA cohort using the indicated deconvolution algorithms and plotted for patients with high and low HAS. E and F, Patients in the TCGA-BRCA
cohort were separated by HAS scores and CD8þ T-cell proportions estimated by CIBERSORT and Kaplan–Meier graphs were plotted for patient outcomes using
patients fromall subtypes (E) or only patientswith TNBC (F). Sample size for each group is indicated in the graph legend. Log-rank testwas used to computeP values.
NK, natural killer cells; Tregs, T regulatory cells.
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(phosho-S326) that allowed us to separate tumors into high or low
HSF1–active tumors based on nuclear presence of p-HSF1 (Fig. 5A
and B). These same specimens were stained with CD8A antibodies
to identify the CD8þ T cells. Similar to the computational analyses,
these patient specimens had significantly less CD8þ cells in tumors
with high levels of active HSF1 (Fig. 5C and D). This relationship
was maintained in patients with TNBC tumors but was not signif-
icant in ERþ or HER2þ patient tumors (Fig. 5E and F; Supple-
mentary Fig. S8A–S8D). Pearson correlation further support these
conclusions as nuclear p-HSF1 was negatively correlated with CD8þ

cells (r ¼ �0.22, P ¼ 0.038; Supplementary Fig. S8E) that was also
consistent in a subanalysis of only patients with TNBC (r ¼ �0.35,
P ¼ 0.048; Supplementary Fig. S8F). These data indicate a consis-
tent relationship wherein tumors with high HSF1 activity have
lower levels of CD8þ T cells that was strongest in patients with
TNBC relative to other subgroups of patients.

HSF1 functionally affects the level of CD8þ T cells in breast
tumors

Having demonstrated a significant negative association between
HSF1 activity and the presence of CD8þ T cells using computational
approaches and assessment of patient specimens, it was important to
examine whether a functional relationship also exists. First, to test for a

functional effect of HSF1 on CD8þ T cells, mouse 4T1 breast cancer
cells were engineered to express control or HSF1-directed shRNA
(Supplementary Fig. S9A). These cells were orthotopically grown in
the mammary glands of Balb/c mice for 3 weeks, after which, it was
confirmed thatHSF1 expression was lost and resulted in a significantly
smaller tumor volume (Fig. 6A; Supplementary Fig. S9B). The number
of CD8þ T cells in these tumors were assessed by IHC, which showed
HSF1 knockdown tumors had significantly more CD8þ T cells com-
pared with control tumors (Fig. 6B and C). To assess more fully the
changes in immune cell types after HSF1 knockdown, a control and
HSF1 knockdown tumor was digested and subjected to single-cell
RNA sequencing (scRNA-seq). While shCTL 4T1 tumors were pri-
marily comprised of tumor cells (71%) and macrophages (23%), the
tumors expressing shHSF1 showed a more diverse population of cell
types (Fig. 6D–F; Supplementary Fig. S9C). Specifically,HSF1 knock-
down tumors showed increased proportions of several populations
including CD8þ T cells (3.5 fold increase), B cells (14 fold increase),
and neutrophils/granulocytes (13 fold increase; Fig. 6F; Supplemen-
tary Fig. S8C). Clustering of cell types did not specifically annotate any
further subpopulations of CD8þ T cells. However, expression of
markers for specific CD8þ T-cell subpopulations indicate various
populations existed including exhausted CD8þ T cells (Cd274, Pdcd1,
Tigit), active cytotoxic CD8þ T cells (Prf1, Gzmb), and na€�ve CD8þ T

Figure 5.

Active HSF1 in breast cancer tumor specimens coincideswith lowCD8þ T cells.A andB,A cohort of 114 breast tumorswere subjected to IHCwith antibodies for CD8A
and pHSF1 (S326). C and D, All patients (n¼ 114) were separated into high (n ¼ 46) or low (n ¼ 68) HSF1-active tumors based on nuclear positivity percentage for
pHSF1 (C) and CD8þ (D) cells were compared between these two groups based on active HSF1 levels using a Student t test. E and F,Only patientswith TNBC; n¼ 38)
were separated into high (n¼ 21) or low (n¼ 17) HSF1-active tumors based on nuclear positivity percentage for pHSF1 (E) andCD8þ (F) cellswere compared between
these two groups based on active HSF1 levels using a Student t test.
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Figure 6.

HSF1 Functionally regulates the amount of CD8þ T cells in breast tumors. A, 4T1 cells (5 � 104 cells) with (n ¼ 5) or without (n ¼ 5) HSF1 knockdown were grown
orthotopically in Balb/c mice for 3 weeks. Tumor volume at the conclusion of the study is graphed. B, IHC was performed on tumors from A detecting CD8A to
identify CD8þ T cells.C,CD8þ T cells fromBwere quantified for control and HSF1 knockdown tumors bymanual counting positive cells in >5 fields of the tumor tissue
area. D–F, shCTL and shHSF1 tumors from Awere subjected to scRNA-seq. Processed reads were used to map cell clusters for both samples using Seurat 4.2.0. The
UniformManifold Approximation and Projection (UMAP) integrating both samples is shown inD. These cell typeswere annotated using expression of specificmarker
genes for each population, for which a sample of these marker genes is shown in E. The proportion of each cell population was also calculated and graphed in F.
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cells (Ccr7, Sell, Il7r; Supplementary Fig. S9D). These data confirm a
role for HSF1 in regulating changes in proportions of CD8þ T cells
within tumors but also points toward a potentially larger immunologic
switch in breast tumors catalyzed by a loss of HSF1 in cancer cells that
appears to promote a robust immunogenic response.

While these data suggest the loss of HSF1 affects the proportions
of CD8þ T cells in breast tumors, loss of HSF1 can also intrinsically
impact cancer cells. HSF1 has been shown to be important to several
aspects of cancer cell function, including maintaining proteostasis,
regulating cancer cell metabolism, cell cycle, and many others
(11, 15, 20). As such, to determine the importance of CD8þ T cells
to the loss of tumor volume after HSF1 knockdown, both control and
HSF1 knockdown 4T1 cells were grown orthotopically in Balb/c mice
with or without CD8þ T-cell depletion. If the loss in tumor volume
with HSF1 knockdown is due to the direct intrinsic effects on the
cancer cells, depletion of CD8þ T cells should have no effect on tumor
volume. Splenic T-cell counts confirmed that CD8þ T cells were
indeed depleted at the end of the 3-week tumor growth period
(Fig. 7A). Depletion of CD8þ T cells led to an expected increased
volume of control tumors as CD8þ T cell depletion removes a tumor
suppressor (Fig. 7B). In addition, the depletion of CD8þ T cells
rescued tumor growth with HSF1 knockdown, indicated by a greater
increase in tumor growth after CD8þ T-cell depletion (�50 fold
increase) compared with the increase in control tumors (�9 fold
increase). The decrease in tumor volume with HSF1 knockdown was
accompanied by an increase in CD8þ T cells while mice with CD8þ T-
cell depletion were largely void of these cells within the tumors
(Fig. 7C). These results suggest that CD8þ T cells were a significant

contributor to the decreased tumor volume with HSF1 knockdown
and that HSF1 can protect breast tumors from immune-mediated
killing through suppression of CD8þ T cells.

HSF1 suppresses expression and secretion of CCL5, which is
necessary to attract CD8þ T cells after HSF1 knockdown

To understand howHSF1 activity could affect proportions of CD8þ

T cells in breast tumors, we tested whether HSF1 regulates expression
or secretion of cytokines that attract CD8þ T cells. We compared
expression of cytokines from RNA-seq of 4T1 control and HSF1
knockdown cells with a cytokine array detecting over 100 cytokines
that was performed on conditionedmedia from 4T1 control andHSF1
knockdown cells. The only cytokine that showed a significant increase
with HSF1 knockdown at the RNA level and secreted protein was
CCL5/RANTES (Fig. 8A; Supplementary Fig. S10A and S10B), which
is also a canonical chemoattractant cytokine for CD8þT cells (38). The
effect of HSF1 knockdown on CCL5 expression was confirmed with
qPCR in both mouse and human breast cancer cells (Fig. 8B and C)
while overexpression of HSF1 decreased CCL5 transcript levels (Sup-
plementary Fig. S10C). HSF1 knockdown 4T1 tumors also showed an
increase in CCL5 protein by IHC compared with control tumors
(Fig. 8D). In addition, assessingCCL5 levels by IHC in the same cohort
of breast cancer specimens from Fig. 5, CCL5 levels were significantly
lower in tumors with high active HSF1, which remained significant
when analyzing only patients with TNBC (Fig. 8E–G).

To test the importance of increased expression and secretion of
CCL5 afterHSF1 knockdown, transwellmigration of T cells was tested.
In this assay, CD3þ T cells were isolated from Balb/c mice spleens and

Figure 7.

Depletion of CD8þ T cells rescues tumor growth after HSF1 knockdown. A, Balb/c mice were given either PBS control or CD8A antibodies to deplete CD8þ T cells
in vivo. Control and HSF1 knockdown cells were then grown orthotopically for 3 weeks. Spleens were collected at the conclusion of the study, dissociated, and cells
were subjected to flow cytometry to confirm the depletion of CD8þ T cells. B, Tumor volume at the conclusion of the study from A is plotted. C, Tumor tissue from
B was subjected to IHC for CD8A to assess the CD8þ T cells.
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Figure 8.

HSF1 suppresses CCL5 toprevent attraction of CD8þT cells.A,Conditionedmediawas grown for 72 hours on control orHSF1 knockdown4T1 cells. Conditionedmedia
was then subjected to a cytokine array detecting over 100 cytokines. Cytokines are ordered by P value and fold change (FC) is calculated as HSF1 knockdown (KD)
divided by control (CTL) cells. B and C, CCL5mRNA levels in control andHSF1 knockdown 4T1 (B) andMDA-MB-231 (C) cells assessed by RT-qPCR.D, IHC of CCL5 in
4T1 control and HSF1 knockdown tumors from Fig. 6A. E, Tumor specimens from Fig. 5 were subjected to IHC for CCL5. CCL5 levels were quantified by QuPath.
F,CCL5 levels are plotted in high (n¼46) or low (n¼68) active HSF1 tumors fromall patients (n¼ 114).G,CCL5 levels are plotted in high (n¼ 21) or low (n¼ 17) active
HSF1 tumors from patients with TNBC (n¼ 38).H, Conditionedmedia from 4T1 cells expressing either control,HSF1, or HSF1þCCL5 siRNAwere placed in the bottom
chamber for the T-cell transwell migration assay. CD8þ T-cell proportions are plotted for each group (n¼ 5) and statistically compared using one-way ANOVAwith
Tukey post hoc test. I, Conditionedmedia from 4T1 cells expressing either empty vector or CCL5-expressing construct were placed in the bottom chamber for the T-
cell transwellmigration assay. CD8þT-cell proportions are plotted for each group (n¼ 3) and statistically compared using one-wayANOVAwith Tukey post hoc test.
J, Model indicating HSF1 suppresses CCL5 expression and secretion, leading to decreased attraction of CD8þ T cells toward breast cancer cells.
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T cells were placed in the top chamber while the bottom chamber
contained chemokines or conditioned media and were incubated for
24 hours followed with assessment of the bottom chamber by flow
cytometry forCD3þ/CD8þT cells (Supplementary Fig. S10D). Adding
exogenousCCL5 resulted in a directedmigration ofCD8þTcells to the
bottom chamber, indicating the assay is responding to a positive
control (Supplementary Fig. S10E). To test the effect of HSF1 knock-
down, conditioned media from 4T1 cells with control orHSF1 siRNA
were added the bottom chamber of the T-cell migration assay, which
resulted in a significant increase in CD8þ T-cell migration with HSF1
knockdown (Fig. 8H). Knockdown of both HSF1 and CCL5 signif-
icantly reduced the CD8þ T-cell migration observed with only HSF1
knockdown (Fig. 8H), suggesting the increased expression and secre-
tion of CCL5 after HSF1 knockdown is necessary to attract CD8þ

T-cells. In addition, conditioned media used in this assay from 4T1
cells with forced expression ofCCL5 also led to a significant increase in
CD8þ T-cell migration (Fig. 8I) without any alteration in HSF1,
indicating CCL5 is both necessary and sufficient in this system to
attract CD8þ T cells. Taken together, these data suggest a model
whereby tumors with high activity of HSF1 leads to suppression of
CCL5 transcript and secreted protein that ultimately prevents attrac-
tion of CD8þ T cells toward breast tumors allowing the tumors to
evade immune-mediated destruction (Fig. 8J).

Discussion
Themajorfinding from these studies is activity of the stress response

transcription factor HSF1 in breast cancer cells, known to support
malignancy, prevents CD8þ T cells from attacking breast tumors.
Furthermore, depletion of HSF1 resulted in a recruitment of CD8þ T
cells that was found to be critical to reducing tumor volume after HSF1
depletion, thereby directly connecting HSF1 function to CD8þ T cells
within breast tumors. The recruitment of CD8þ T cells appears
to be part of an entire reprogramming of the tumor microenvi-
ronment after loss of HSF1 in cancer cells that was accompanied by
increases in several immune populations such as neutrophils/gra-
nulocytes, B cells, and CD4þ T cells. While a direct connection
between HSF1 function within tumors and immune cell presence or
infiltration has not yet been established, a negative association
between CD8þ T-cell proportion estimates and HSF1 gene expres-
sion has been observed in breast cancer (35). This study clearly
indicates loss of HSF1 decreases tumor volume in an immune-
competent system, consistent with previous results (29) and point
to HSF1 functioning as an immune-suppressive factor in the
context of cancer. These data indicate for the first time that CD8þ

T cells, specifically, are critical to the tumor-suppressive effect of
HSF1 depletion. We suggest that therapeutic targeting of HSF1
in breast tumors could lead to a reprogramming of the tumor
microenvironment to be more immunogenic, which would enhance
therapeutic response to several standard-of-care breast cancer
therapies including taxanes and anthracyclines (7, 39).

HSF1 has been known as the master regulator of the heat shock
response since the mid 1980s. It was first observed to be altered in
metastatic prostate cancer and has since been found to play a
pleiotropic role in cancer regulating many functions in cancer cells
from metabolism to proliferation. Because of the complex activation
of HSF1 protein activity, the transcript levels have poor utility in
predicting or assessing HSF1 activity. We identified a gene signa-
ture, named HAS, comprised of 19 genes that are direct HSF1 gene
targets and depend on HSF1 for their expression. Increased HSF1
activity largely results in increased expression of the majority of the

19 genes, indicated by the high intra-gene correlation among these
19 genes providing for the first time an accurate and sensitive
readout of HSF1 activity using transcript data. Studies wherein
HSF1 gene was knocked down or exposed to heat shock, both of
which have predictable effects on HSF1 activity, confirmed this
observation. There is one previously reported HSF1 gene signature,
the CaSig, developed from elegant studies identifying the many
roles for HSF1 in cancer cells (15). The performance of the HAS in
our studies is possibly due to the intra-gene correlation as the CaSig
(456 genes) had a lower intra-gene correlation. Including intra-gene
correlation as a criterion is an additional novel aspect to the HAS
and the development of gene signatures. Finally, while we have
applied the use of the HAS in this study primarily in breast cancers,
we did utilize direct target genes from multiple cell types. As such,
the HAS likely has utility that extends further than just breast
cancer, which can be evidenced by the use of the HAS to calculate
HRs across the TCGA cancer study spectrum (Fig. 3). The appli-
cation of the HAS will allow for future analysis of HSF1 transcrip-
tional activity with many cancer-related studies that cannot be done
based on HSF1 expression alone.

Our results indicate the influx of CD8þ T cells after HSF1
depletion is because of an increase in CCL5 expression and secre-
tion, suggesting CCL5 would serve a tumor-suppressive function.
However, the role of CCL5 in breast cancer is controversial. A
recent report indicates CCL5 is associated with breast cancer
metastasis (40), while another study indicated therapeutic response
to HDAC inhibitors in lung cancer is accompanied by a decrease in
MYC function and an increase in CCL5 that supported therapeutic
efficacy (41), suggesting tumor-suppressive effects of CCL5. The
disparity in results for the function of CCL5 in cancer is puzzling
but is possibly related to expression of the CCL5 receptor, CCR5, on
cancer cells. There is also precedent for an increase in cytokine-
related signaling with HSF1 inhibition in other contexts, such as
LPS exposure (42, 43). Because these results saw a partial loss of
CD8þ T-cell attraction by silencing CCL5, it is likely that attraction
of T cells after HSF1 depletion is regulated by additional mechan-
isms, including antigen presentation (44). Future studies will
address other possible mechanisms by which HSF1 regulates the
composition of the tumor microenvironment and the regulation of
the CCL5 gene as it was not identified as a direct HSF1 target when
generating the HAS.

Further investigation is needed to understand if immune sup-
pression is a general feature of HSF1 biology. Inversely to cancer
cells, neurodegenerative diseases share etiologies with an imbalance
of proteostasis leading to protein aggregate formation in neurons.
Opposite to cancer cells, these neurons lose HSF1 expression and
activity with aging that ultimately escalates these diseases (45).
Furthermore, several neurodegenerative diseases have been linked
to immune-mediated mechanisms for neuronal death in recent
years (46). Consequently, it is possible HSF1 serves to protect
over-stressed cells from immune-mediated destruction and our
findings point to how cancer cells have coopted this function for
their benefit and survival.

These studies indicate a novel mechanism regulating CD8þ T-cell
presence in breast tumorswherein hyperactiveHSF1 suppressesCCL5,
leading to decreased attraction of CD8þ T cells. Breast cancer is a low
immunogenic tumor, which could partially be because of high basal
activity of HSF1. Further studies will need to identify other mechan-
isms contributing to the effect of HSF1 on CD8þ T cells and other
immune cells in the tumormicroenvironment. Studies are underway to
test whether inhibition ofHSF1, with compounds such as DTHIB (47),
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can result in an influx of CD8þ T cells that would support targeting
HSF1 as a therapeutic approach to making breast tumors more
immune cell-rich. The role of HSF1 in CD8þ T-cell activity or
exhaustion warrants further investigation considering HSF1 has been
reported to upregulate PD-L1 expression on cancer cells (48). These
results generate several new lines of investigation for the role of HSF1
in new aspects of tumor biology and tumor–immune interactions.
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