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Abstract

Introduction: As machine learning (ML) and artificial intelligence (AI) expand to many 

segments of our society, they are increasingly being used for drug discovery. Recent deep learning 

models offer an efficient way to explore high-dimensional data and design compounds with 

desired properties, including those with antibacterial activity.

Areas covered: This review covers key frameworks in antibiotic discovery, highlighting 

physicochemical features and addressing dataset limitations. The deep learning approaches here 

described include discriminative models such as convolutional neural networks, recurrent neural 

networks, graph neural networks, and generative models like neural language models, variational 

autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the 

integration of these approaches in drug discovery continues to evolve, this review aims to provide 

insights into promising prospects and challenges that lie ahead in harnessing such technologies for 

the development of antibiotics.

Expert opinion: Accurate antimicrobial prediction using deep learning faces challenges such 

as imbalanced data, limited datasets, experimental validation, target strains, and structure. 

The integration of deep generative models with bioinformatics, molecular dynamics, and data 

augmentation holds the potential to overcome these challenges, enhance model performance, and 

utlimately accelerate antimicrobial discovery.
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1. Introduction

The introduction of antibiotics significantly improved the quality of health in modern 

society by extending human lifespan by as much as one to two decades [1]. Although 

antibiotics have provided countless benefits in healthcare, agriculture, zootechnics, and other 

areas, their unlimited and improper use has led to the development of pan-drug resistant 

microbes, which were responsible for more than 4 million deaths globally in 2019 alone 

[2,3]. The number of deaths caused by SARS-CoV-2 prior to vaccination campaigns in 

2020, approximately 3 million, is comparable to the current number of deaths caused 

by drug-resistant infections [4]. The World Health Organization (WHO) has elaborated a 

global action plan that aims to improve the surveillance and understanding of antimicrobial 

resistance, optimize the use of antimicrobial drugs, and, particularly, ensure sustained 

funding in countering antibiotic resistance by supporting the Member States to develop 

national action strategies [5]. Besides the rapid evolution of resistance, traditional methods 

for the discovery and development of new antibiotics are no longer cost- or time-effective. 

In fact, it takes an average of 15 years to bring a new drug to the market, a timeline 

that includes drug discovery and development, preclinical and clinical trials, drug review, 

and post-market safety monitoring by the U.S. Food and Drug Administration (FDA) [6]. 

Shortening this timeline represents an orthogonal challenge that laboratories, companies, 

and political institutions need to address. Investments in both research and development, 

along with innovation and a viable marketplace, are key to tackling the antibiotic crisis.

Historically, new antibiotics were identified by screening microbes from the soil and looking 

for secondary metabolites. Starting from these molecules, many derivatives have been 

synthesized; these derivatives have improved bioactivities and are more likely than the 

original molecules to meet clinical standards [7]. More recent discovery approaches involve 

screening large libraries by using high-throughput methods. However, the unexplored 

chemical space for finding drug-like molecules is immense, and screening innumerable 

probable combinations is costly and time-consuming [8]. Ultimately, the discovery of a new 

antibiotic has always involved a large degree of chance and serendipity.

In this context, artificial intelligence (AI) and machine learning (ML) represent an 

innovative, emerging approach for speeding up the identification of new antimicrobial drugs 

[9–13]. AI is defined as the capability of computers to perform tasks that usually require 

human intelligence, while ML is a subcategory of AI that uses models to learn from 

datasets. Thus, the combination of computer science and large data sets is used to train ML 

algorithms, generating a system applicable to several functions, such as the design of new 

drugs, the prediction of their activity, the optimization of previously known molecules, and 

the identification of antimicrobial resistance (AMR) markers. Machine-learning algorithms 

could eventually be used for the diagnosis of diseases and the prescription of antibiotics 

[9,14].

Computer-aided drug discovery techniques are becoming essential in the preliminary stages 

of drug development. Recently, over 2,603 encrypted peptide antibiotics were discovered 

through a computational method able to search the human proteome for antimicrobial 

sequences [15–19]. Fifty-six of these sequences showed potent anti-infective activity in 
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two different mouse models. Several of these encrypted peptides also synergized with 

each other at nanomolar concentrations to target pathogens. Other studies based on 

genetic algorithms demonstrated the ability of machines to design effective antibiotics 

[20]. Moreover, quantitative structure-activity relationship (QSAR) methods have been 

extensively used to predict the activity of new antimicrobial molecules by correlating 

biological properties and molecular descriptors [21–23]. Such methods present multiple 

advantages over non-quantitative methods, such as the wide or random exploration of 

sequence space, because quantitative explorations yields results that can be tracked and 

learnt heuristically and computationally, serving as the basis for guided design [24–26]. The 

predictions rely on the computational representation of antibiotic candidates, which can be 

used as input for the ML drug discovery pipeline. Topological properties and descriptors 

derived from quantum mechanics are usually employed. Hundreds of measurements have 

been extracted and combined in online platforms to describe amino acid residues and other 

small molecules (Table 1) [23].

Based on the adopted methodologies, the computational tools developed so far for antibiotic 

discovery can be grouped into two main categories. The first category includes traditional 

ML-based predictors, while the second category comprises deep-learning based methods, 

which draw upon larger sets of data and longer training compared to the former and can 

automatically learn high-level features from raw data. Here, we provide an overview of 

the main features applied as descriptors for peptides and small molecules, describe the 

primary deep-learning (DL) approaches used to develop new antibiotics and conclude with 

a section highlighting the main limitations encountered so far in this emerging field. This 

review offers valuable insights into how AI’s transformative role in antibiotic discovery 

by expediting new drug development, optimizing molecule design, and combating drug-

resistant infections.

2. Deep learning models for antimicrobial drug discovery

2.1 Input representation

Before selecting which DL model to employ, it is important, even more than the 

algorithm itself, to choose the right representation for the input data [27]. Indeed, the 

input representation drives how the model learns about the molecules, thus playing an 

important role in the algorithm coding. Translating a molecule into vectors of numbers 

is called “molecular featurization” [27]. There are three main categories that describe the 

representation of the input data: one-dimensional [(1D), e.g., string-based], two-dimensional 

[(2D), e.g., graphical-based], and three-dimensional [(3D), e.g., coordinate-based]. The most 

common string-based representation is SMILES (Simplified Molecular Input LineEntry 

System), a sequence of characters based on symbols of atoms or, more specifically, amino 

acids, which are easily represented by computers [28–31]. Other 1D-like annotations such 

as Hierarchical Editing Language for macromolecules (HELM) have been also introduced 

to describe a broad range of macromolecules (e.g., peptides, antibodies, chemical modifiers)

[32]. Although string-based sequences such as SMILES annotation are the easiest way to 

represent molecules, they cannot directly describe the molecular structures of compounds. 

Alternatively, it is possible to represent molecules in 2D by using neural network-based 
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graphs where each node of the network describes an atom and the neural edges correspond 

to the bonds. Lastly, it is possible to represent molecules in 3D using point clouds, which 

capture not only atomic bonds, but also details about conformational preferences. More 

complex biophysical information is contained in 2D and 3D representations than in 1D 

representations. Although in the past few years, 2D and 3D representations have been 

applied to generative models, there are disadvantages associated with these types of input 

representations. For example, they cannot easily be applied to large molecules because 

they are computationally expensive. Also, graphs and point clouds used in autoregressive 

generative models, which impose a canonical ordering among atoms, can introduce bias 

into the algorithm, potentially limiting the model’s performance. This bias arises from the 

discrepancy between constitutional isomers. As a result, accurately representing diverse 

molecular structures becomes challenging, impacting the overall effectiveness of the model 

[28]. In several prediction tasks, peptides are extensively represented by their amino acid 

composition and physicochemical properties [33] (Table 1). Another common way to 

represent peptide molecules is through their primary structure, which refers to their amino 

acid sequence. A peptide with length L can be naturally encoded by using a string of 

characters or integers that is L units long. In this scenario, a peptide can be represented 

by a matrix with dimensions of L x n, where each amino acid corresponds to a unique 

n-dimensional vector able to capture peptide properties. Alternatively, studies based on 

model architectures such as variational autoencoders, generative adversarial networks, or 

attention networks, used the latent representation learned from deep neural networks as 

peptide representation [33].

2.2 Deep-learning approaches

Computers can use different algorithmic approaches to learn subjects from data and to 

provide outputs. We can distinguish two main types of models: discriminative and generative 

models. Whereas the first literally separates data points into two different classes that it 

then uses for classification or regression, the latter generates a probability based on the 

distribution of a dataset [34]. In the following sections, we describe the structure underlying 

DL-based discriminative and generative frameworks, and list examples of their application 

for antibiotic design.

2.2.1 Discriminative DL-models

2.2.1.1 Architecture and applications of NNs in predicting antibiotic 
activity: Historically, the architecture of NNs is composed of a fully-connected input layer, 

several hidden layers, and an output layer (Figure 2A). For antibiotic discovery, these layers 

are used to capture complex relationships between the structure and activity of antibiotics 

using nonlinear transformations [33,35,36]. The hidden layers are constructed from a set 

of nodes that serve to process input data (e.g., usually vectors) and combine and transmit 

the signals to the output layer. The model predictions are evaluated by the comparison of 

predicted and expected values and the iterative backpropagation of errors from the output 

to hidden layers to minimize the loss, i.e., the difference between predicted and expected 

values, through the optimization of network parameters, such as weight and bias values. 

Despite computational costs, the capacity (modeling power) of NNs usually grows with their 

sizes (i.e., number of hidden layers and hidden nodes) when the amount of data is large. The 
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so-called deep-neural network (DNN) is trained on big datasets and used for predictions over 

the vast chemical spaces of small molecules and macromolecules, such as peptides [35].

Currently implemented deep learning (DL) models to predict antimicrobial peptides (AMPs) 

and small molecules mainly rely on the convolution, recurrent, and graphical NN approaches 

[37,38]. Depending on their algorithms, DL models learn appropriate feature encoding 

methods to most accurately predict which peptides and small molecules have antimicrobial 

activity [33,36].

2.2.1.2 Convolutional neural networks (CNNs): For convolutional neural networks 

(CNNs) [39], the raw input dataset is encoded in the form of multidimensional arrays 

and passed through convolutional layers composed of multiple 2D-, 3D- and N-dimensional 

kernel matrices of tunable width and height (Figure 2C). Convolution operations between 

kernels and inputs in each layer are applied to extract features sequentially; thus, the hidden 

features learned from the last few CNN layers can expressively represent the given input 

with respect to the modeling task of interest [17,18]. Additionally, the CNNs may contain 

optional pooling layers used to merge and reduce the size or resolution of feature maps. 

Finally, the feature representations of the last convolutional layer may be flattened and 

taken as input to fully connected layers to yield predicted values [33,36]. By adopting small 

kernels instead of fully-connected networks, CNNs exploit the local structures of inputs and 

are suitable for structural data whose local elements are highly correlated with each other, 

including images, sequences, and languages.

In the case of AMPs, each amino acid residue is represented by a single character or 

one-hot encoding feature in the context of 20-bit binary vectors to encode amino acid 

compositional information. To train the CNN models, the width and height of the matrices 

can represent amino acids and their physico-chemical properties as numerical values that 

are tunable hyper-parameters. In this respect, Deep-AmPEP30, a two-layered CNN model 

with additional pooling layers, was developed based on PseKRAAC reduced amino acid 

composition: experimentally validated by screening the genome of Candida glabrata, short-

length peptides were predicted to have antimicrobial activity with an accuracy of 77% [40]. 

Another proposed CNN model, constructed from an embedding layer for encoding peptide 

sequences and 64 multi-scale convolutional layers followed by maximum pooling layers, 

resulted in an accuracy of 92% on the APD3 benchmark dataset [41]. In this approach, 

the embedding layer vector dimension was 128 and the peptide sequences were encoded 

as numerical vectors of real numbers (0–20) with a length of 200 amino acid residues. 

Also, the multiple kernel layers had various filter lengths to ensure that all latent features 

were learned. Moreover, introducing attention layers in the architecture of NN models has 

resulted in the identification of antimicrobial peptides from the human gut microbiome with 

significant efficacy in a mouse model of bacterial lung infection [42]. Moreover, a combined 

model of CNNs, regression, and decision tree was employed to optimize small molecules 

for inhibiting RNA translation in Mycobacterium tuberculosis, revealing important features 

for molecule-RNA binding and demonstrating the reliability of CNN as a predictor. Two 

representations, simplified molecular-input line-entry system (SMILES) and low-resolution 

images, were used showing that CNNs can reliably predict small molecule inhibitors for 
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RNA translation in M. tuberculosis using either input type, with accurate results obtained 

from low-resolution images [43].

2.2.1.2 Recurrent neural networks (RNNs): Recurrent neural networks (RNNs) have 

been developed to process inputs having sequential structures (e.g., time-series or biological 

sequences), [44]. In RNNs, sequential information is captured by enabling the nodes in a 

hidden layer to receive the information from both the current inputs and their previous nodes 

(Figure 2B) [44]. RNN models have resulted in excellent performance in sequence data 

analysis of AMPs of various sizes. In the RNN algorithms, each amino acid is considered 

as a word in a sentence and demonstrated by one-dimensional vectors. In addition, one-hot 

encoding may be used to construct numerical information. For instance, in 2D-convolution 

modules of AMP sequences with binary 2-D matrices, all variables are filled up with zeros, 

except the position of the corresponding amino acid [33,36]. Also, an RNN model with a 

stack-augmented GRU was used to discover new metronidazole drugs by generating precise 

SMILES strings [45]. The model was trained on ~ 1.6 million small molecules, utilized 

transfer learning to generate structurally similar molecules and finally generated generated 

20 metronidazole-like compounds, with 19 potentially novel ones, that demonstrated activity 

in vitro against E. coli, P. aeruginosa, B. subtilis, and S. aureus strains [45].

2.2.1.3 Graph neural networks (GNNs): Compared with these architectures, graph 

neural networks (GNNs) have been frequently used to extract complex feature vectors 

and predict the biochemical functions of antimicrobial peptides and small molecules from 

their 2D or structures [8,46]. In the GNNs, biomolecule can be interpreted as consisting 

of nodes (e.g., atoms and amino acids) and edges, (corresponding to their connectivities, 

e.g., bonds and geometric distances) (Figure 2D). Nodes and edges are associated with 

feature descriptors summarizing the types of atoms, amino acids, or bond types, as well 

as physicochemical and geometric information. For each node and edge, NNs are used to 

gather information from their neighbor edges and nodes and update the feature descriptors 

(Figure 2D). This procedure is known as message passing and enables the nodes and 

edges to capture their 2D/3D structural information in the graph. By combining all feature 

descriptors updated via several rounds of message passing, the structural fingerprint of the 

biomolecules is extracted and mapped to their properties using an end-to-end classification/

regression neural network. Stokes et al. trained a GNN with 2,335 antimicrobial molecules 

selected from natural compounds and a library of FDA-approved drugs [8]. The algorithm 

was applied to predict antibiotic compounds from the Drug Repurposing Hub. Among the 

highly ranked molecules, halicin was experimentally identified and validated to demonstrate 

potent bactericidal activity.

2.2.1.4 Attention function: When predicting a certain property given an input x (e.g., 

an antibiotic), only a fraction of that input (e.g., important amino acid sites in an AMP or 

substructures in a small molecule antibiotic) contributes to the property formation, while 

the rest is irrelevant and can even confuse prediction models. The attention mechanism 

is employed to automatically identify important parts of the data, addressing the issue of 

irrelevant information in predictions [47].
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To compare deep learning models with and without an attention mechanism we use an 

example, which involves an antibiotic, denoted as x, consisting of N elements such as amino 

acids or atoms. The deep learning model without attention is characterized by M layers 

of nonlinear transformations, which process the antibiotic x to generate a corresponding 

prediction y. The model is represented as follows:

Hidden_output1=G1(x),
Hidden_output2=G2 Hildden_output1 ,
…
Hidden_outputM=GM Hidden_outputM‐1 ,
y = Out Hidden_outputM .

Here, G1(), G2(), …, and GM() correspond to the M nonlinear transformations (i.e., each 

layer itself can be fully-connected, CNN and RNN), and Out() is a linear function to map the 

extracted hidden features to final output prediction y.

To introduce attention mechanism into above deep learning model, we can rewrite the above 

process as:

Hidden_output1=G1 Att1(x), x ,
Hidden_output2=G2 Att2 Hidden_output1 , Hidden output 1 ,
…
Hidden_outputM = GM AttM Hidden_outputM‐1 , Hidden_outputM‐1 ,
y = Out Hidden_outputM .

Out() is defined the same as mentioned above. Att1(), Att2(),..., and AttM() are neural 

networks that accept the antibiotic or extracted features from the antibiotic as inputs. The 

output comprises an N-dimensional vector, which signifies the importance of each element 

in the antibiotic, considering that the antibiotic contains N elements in our specific example. 

Functions G1(), G2(), …, and GM() (implemented as neural networks) will take not only 

the antibiotic or its extracted features, but also the N-dimensional vectors highlighting the 

significant region of the antibiotic as input to make predictions. Altogether, utilizing the 

“attention” function in NNs, a large dataset of sequences is readily memorized by ignoring 

less important parts of the input data; thus, more focus is devoted to small but important part 

of the data [47].

The deep NNs for the prediction of antimicrobial compounds differ from other ML 

predictors in that, for the deep NNs, the high-level description vectors can automatically 

be generated and learned while less prior understanding of biology is required [33,48–50]. 

In fact, the model performance of the ML algorithms depends on how exactly the feature 

vectors are selected and extracted. In comparison, extracting the feature vectors is a less 

hand-coded and complicated part in DL techniques compared to other ML algorithms, 

which is less time-consuming in developing feature extractors. Nonetheless, the model 

performance and benchmarking in the DL tools to predict antibacterial molecules may be 

affected by the choice of datasets used for training [51]. Therefore, providing researchers 
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with explicit information about the performance of the predictor, including code sharing, is 

suggested for fair model benchmarking [51].

2.2.2 Generative DL-models and their applications in antibiotic design

2.2.2.1 Neural language models (NLMs): Given sequences of words, language models 

estimate their probability distribution. In the context of computational biology, primary 

sequences of DNAs, RNAs, proteins and peptides, as well as small molecules in SMILES 

representations, can all be represented in sequence forms. In these cases, the corresponding 

nucleic acids, amino acids, and SMILES characters are considered as words. Neural 

language models, equipped with deep neural networks, are widely used to take partial 

sequence inputs and estimate the likelihood of the missing input parts (Figure 3A). Data 

generation is achieved by completing the missing parts with the most likely words predicted 

by the DNN (Figure 3A). RNNs, graph neural networks, and attention models are commonly 

applied to build NLMs for biomolecules. NLMs have been extensively used to generate 

potentially antimicrobial compounds. Indeed, several studies have employed RNNs and 

public datasets of antimicrobial compounds to predict drug candidates. Moreover, additional 

filters (e.g., classifiers or prediction servers) have been applied to adapt the model to 

antibiotic discovery and remove undesired molecules.

Capecchi et al. identified eight short non-hemolytic AMPs by training a RNN with data 

from the DBAASP (Database of Antimicrobial Activity and Structure of Peptides) [52]. 

Besides an AMP activity classifier, these authors also applied a hemolysis classifier to 

select peptide sequences predicted to be non-hemolytic. As a result, they obtained peptide 

antibiotics with low cytotoxicity profiles that were active against drug-resistant bacterial 

strains. Additionally, Nagarajan et al. designed new AMPs by using an RNN language 

model [53]. The RNN was based on the correlation of frequencies and distribution of amino 

acid residues with antimicrobial sequences, as an underlying grammar of antimicrobial 

function. In their study, ten AMPs, identified and tested for activity against bacterial 

pathogens, targeted the bacterial membranes of methicillin-resistant Staphylococcus aureus 
and β-lactamase-resistant and carbapenem-resistant strains.

2.2.2.2. Variational autoencoders: Variational autoencoders (VAEs) present a model 

architecture similar to that of the classic autoencoders typically trained to compress and 

decompress inputs through an encoder and a decoder neural network. Unlike classic 

autoencoders, however, a VAE is a probabilistic modeling framework that interprets the 

latent representations (i.e., the compressed inputs) as random variables following some 

distribution (e.g., Gaussian distribution) (Figure 2B). Data generation is achieved by 

sampling latent representations followed by decoding and/or decompression.

Dean et al. demonstrated the potential utility of a VAE in designing de novo AMP sequences 

[54]. The latent space (i.e., the low-dimensional space that the latent representations lie in) 

extrapolated by the VAE learned from thousands of known and scrambled AMP sequences 

from APD3 highlighted the amphipathicity (mainly represented by hydrophobic moment) 

as the main difference between the active sequences generated and the scrambled random 

sequences. The obtained computational tool allowed the authors to generate new peptide 

Cesaro et al. Page 8

Expert Opin Drug Discov. Author manuscript; available in PMC 2024 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences, whose antimicrobial activity has been experimentally confirmed in vitro. Indeed, 

in 2021 Dean et al. published a new study in which the improved model, named PepVAE, 

was demonstrated to generate new peptide sequences with low antimicrobial activity against 

Escherichia coli, S. aureus, and Pseudomonas aeruginosa strains [54,55].

Another interesting application of VAE has been shown by Das et al. [50,56] . The authors 

demonstrated that a VAE trained on a large number of peptide sequences, combined with 

ML-based predictions for properties such as antimicrobial activity or toxicity and molecular 

dynamics simulations, could be used to quickly design novel antimicrobial therapeutic 

molecules: 20 peptide candidates were identified and experimentally validated in 48 days. 

Among the tested compounds, two AMPs highly were active against both Gram-positive 

and Gram-negative bacterial species and had little likelihood of selecting for drug-resistant 

phenotypes [50].

Recently, Szymczak et al. proposed HydrAMP, a generative model based on a multitasking 

conditional VAE framework. HydrAMP generated not only effective analogues of existing 

peptide antibiotics but also de novo antimicrobial structures. To train the model, the authors 

used a curated data set from UniProt of non-redundant peptide sequences known to be 

antimicrobial. Besides standard encoder and decoder network-based models, HydrAMP also 

uses a Classifier, which is an extra pre-trained neural network used to determine whether a 

given sequence is or is not an AMP [57].

2.2.2.3. Generative adversarial networks (GANs): GANs, which are built of two 

generative and discriminative neural networks, are trained in an adversarial way to predict 

antibacterial peptides [33,36,58,59]. Specifically, the generative module captures the input 

data but is trained to generate fake instances to fool the discriminative network, whereas 

the discriminator module obtains both real training data and the fake instances from 

the generator, which then determines whether the input data is real or not (Figure 2C). 

In training GANs for the AMPs prediction, the generator and discriminator accomplish 

adversarial functions against each other, resulting in the network modules [33,36,58,59]. 

PepGAN uses active and non-active datasets from various sources and controls the 

probability distribution of generated sequences to distinguish real antibacterial sequences 

from non-active ones. In this regard, a peptide activity-aware generative model, PepGAN, 

was designed to produce a sequence with antibacterial activity higher than that of ampicillin 

in vitro [60].. Also, AMPGAN models were utilized as bidirectional conditional networks 

for the design of AMPs with improved activity profiles [61]. These encoder networks can be 

used to structurally diversify and manipulate the generated peptide sequences for selective 

bacterial cell targeting [36,58]. The utilization of GANs accelerated the discovery of A-222, 

an a-helical peptide with low homology to well-established AMPs, that was strongly 

effective against the emerging global opportunistic strains Stenotrophomonas maltophilia 
WH 006 and P. aeruginosa PAO1 [59].

2.2.2.4. Normalizing flow and diffusion models: In addition to the three types of 

generative models described above, normalizing flow (NF) and diffusion models are also 

gaining increasing attention [28]. While resembling VAE in terms of framework (Figure 

3D), NF utilizes invertible transformation functions (implemented as some neural networks) 
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to convert complex data to random variables drawn from a simple distribution (i.e., encoding 

process) and vice versa (i.e., decoding process). While VAEs are trained by optimizing 

the lower bound of data likelihood, the use of invertible transformations enables NF 

to be optimized by directly maximizing the likelihood of data. For instance, in 2019 

Madhawa et al. proposed GraphNVP, the first invertible NF-based model able to efficiently 

generate molecular graphs [62]. Interestingly, these authors empirically demonstrated that 

the learned latent space can be used to search for molecules with maximized chemical 

properties with respect to the parent compounds. In addition, Shi et al. proposed and 

experimentally validated GraphAF, a flow-based model for generating molecular graphs, 

which was found to generate chemical-valid and optimized molecules both with and without 

chemical knowledge rules [63].

Diffusion-based models have also been explored and applied to address molecular design 

tasks. Diffusion models describe a sequence of possible events, whose probability only 

depends on the previous events, by adding random noise to data (Figure 3E) until the inputs 

become a random noise (from some random distribution). Those models built the desired 

samples by learning how to reverse the diffusion process from the noise. Unlike the VAE and 

NF, the latent variable (the random noise) will have the same dimensionality as the original 

input. Corso et al. recently developed DiffDock, a diffusion generative model able to address 

molecular docking tasks [64]. After training the model with a variety of ligand and protein 

structures, DiffDock identifies new binding sites within the protein pocket, highlighting new 

3D coordinates for the ligands. Molecular docking, a critical task in drug design, focuses on 

predicting the binding structure between a small molecule ligand and a protein. Although 

recent deep learning approaches have successfully reduced runtime when compared to 

traditional search-based methods, they have not yielded notable improvements in accuracy 

when treating docking as a regression problem. In contrast, DiffDock stands out from 

previous methods by showcasing significantly higher precision, offering fast inference times, 

and providing confidence estimates with a high level of selective accuracy [64]. This tool 

demonstrated to accelerate drug discovery compared to traditional methods. Also, Watson et 

al. introduced RoseTTAFold (RF) Diffusion, a new diffusion model able to generate proteins 

with minimal knowledge using simple molecular specifications [65]. They simulated the 

noise (for instance data - images or text - corrupted with Gaussian noise) on structure of 

protein from Protein Data Bank (PDB) to generate training inputs. To reverse the noising 

process, RF Diffusion was then trained by approximating the loss between the predicted 

shape and the true protein structure. According to Watson et al., the proteins generated by 

RF Diffusion can potentially treat infection, fight cancer, reprogram autoimmune disorders, 

or serve as building blocks for a new generation of materials [65].

5. Expert opinion

5.1 Physicochemical features associated with deep learning (DL) models

The use of physicochemical properties as quantitative descriptors for the guided design of 

antimicrobial agents has been significantly improved by the application of computational 

methods. The usual types of features used for drug design are classified by their 

dimensionality. 1D descriptors are scalar properties, such as molecular weight, net charge, 
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hydrophobicity, number of hydrogen bond donors and acceptors, and aromaticity, which 

are by far the most frequently used physicochemical descriptors because they can be 

easily assessed computationally or empirically. 2D descriptors are related to properties that 

describe molecular topology, for example, topological polar surface area, rotatable bonds, 

molecular connectivity indices, and autocorrelation functions. Similarly to 1D descriptors, 

the 2D descriptors are easy to obtain computationally and can represent various molecules 

ranging from small molecules to polymeric or complex supramolecular structures. 3D 

descriptors, on the other hand, are much more difficult to obtain and are not usually 

related to small molecules or planar medium-sized molecules. The calculation of thse 

physicochemical descriptors requires a considerable computational cost. These descriptors 

represent most structural and electronic features of the molecules, such as molecular surface 

area, dipole moment, electrostatic potential, and solvent-accessible surface area.

DL and other computational methods have allowed the calculation of more complex 

and accurate features like 3D descriptors and other properties that are combinations 

of them, which are not related to structure or empirical characterization of molecules 

or their parts. The main disadvantage is that it is also costly and time demanding to 

include such complex features [66]. Some of the existing DL-based methods do not 

consider physicochemical features directly for the learning process and generation of 

bioactive molecules. Alternatively, deep learning models can be integrated with encoding 

techniques that utilize sequence-based characteristics to generate feature vectors based on 

the molecule’s composition. Among the most widely used feature-encoding methods, we 

highlight one-hot encoding [67], general and pseudo amino acid composition [68], and 

reduced amino acid composition [69].

AI4AMP, for instance, is a feature-encoding method based on general amino acid 

composition. The model was trained on sequences encoded with PC6 [70], a deep learning 

model for predicting AMP sequence based on a combined physicochemical property matrix. 

The features were selected from a hierarchical clustering and included, volume of side 

chains, polarity, hydrophobicity, pH at the isoelectric point, pKa, and the net charge index 

of the side chains, i.e., properties that play a role in the interaction of the compound with 

the target microbe. The PC6 encoding method combined with a DL architecture consists of 

three layers (convolutional, LSTM, and dense layers) and performed similarly to the word 

embedding-based model [71].

Other examples are Deep-ABPpred [72] and sAMP-PFPDeep [73]. Deep-ABPpred uses 

bidirectional long short-term memory [72] and the word embedding-based model coupled 

with amino acid level features and support vector machine and random forest models with 

peptide-level features, including physicochemical properties, to identify AMPs (accuracy of 

97%). sAMP-PFPDeep consists of a DL method with three feature-encoding aspects: (1) 

position, (2) frequency, and (3) one or more of the following 12 physicochemical features: 

hydropathy index, volume, polarity, pKa side chain, percentage of exposed residues, 

hydrophilicity, refractivity, local flexibility, accessible surface area folded, mass, solvent 

exposed area, and accessible surface area. sAMP-PFPDeep was able to identify AMPs up to 

30 residues in length with an accuracy of 84%.

Cesaro et al. Page 11

Expert Opin Drug Discov. Author manuscript; available in PMC 2024 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the future, we envision that the accurate embedding of multiple physicochemical features 

will lead to models that can generate highly active compounds. Some success in identifying 

anticancer peptides has been achieved with DNN models such as ENNAACT [74] which 

has eight dense layers with physicochemical features [75] as input. ENNAACT presented 

a 98.3% accuracy at 10-fold cross-validation and performed better than random forest and 

support vector machines with linear and radial basis function (RBF) kernels in the same 

dataset. Another DNN model that considers physicochemical properties for predicting the 

activity of antiviral peptides is ENNAVIA [76] (accuracy of 95.7%), which uses three dense 

layers with augmentative and alternative communication, data predictive control, AAindex 

[77], and physicochemical properties as input features. Deep-AntiFP [78] is a DL model 

with three dense layers: composite physicochemical properties [79], quasi-sequence order 

[80], and reduced amino acid alphabet [81], combined with physicochemical features. 

Recently, Deep-AntiFP predicted antifungal peptides with an accuracy of 94.23%. These 

models show that it is possible to combine physicochemical features with DL architecture 

for the accurate prediction and generation of active anticancer or antimicrobial agents.

5.2. Limitations related to datasets and experimental validation of deep learning models

There have been several major achievements in DL-based recognition and the prediction 

of antibacterial peptides and other small molecules; nevertheless, this field still requires 

development [37]. Indeed, the performance of DL models is significantly influenced by the 

quality rather than the size of the training dataset, which should consist of both active and 

inactive compounds [82,83]. In fact, the sources of the antibacterial datasets often suffer 

from inconsistency and heterogeneity in the activity evaluation of collected data, and lack of 

sufficient information on their mechanismsof action.

Besides data curation, public access to the negative datasets (i.e., peptides lacking activity 

against pathogens) is limited, as this information is rarely released [84]. Nevertheless, the 

negative data for the training of DL models to predict antibacterial peptides are often 

extracted as random sequences from available collections of proteins (e.g., Uniprot), which 

can be larger in data size than a few thousand true positive data. Most DL models have 

difficulty handling highly imbalanced antibacterial peptidesor small molecule datasets to 

prevent biased predictions [33]. Furthermore, the activities of AMPs are very sensitive 

to changes in peptide composition and length, and their activity varies greatly depending 

on the target bacterial strain [85,86]. These limitations pose problems especially for 

the prediction and recognition of antibacterial sequences. Additionally, depending on the 

selected DL algorithms, appropriate feature-encoding methods need to be selected over the 

training course of classifiers [36,37]. It is still a challenging task to consider expensive 

feature vectors relevant to the 3D-structure of peptides and small molecules to improve 

the prediction of new sequences or chemical scaffolds. Owing to the distinct selectivity 

of various antibiotic and antibacterial sequences for Gram-negative and Gram-positive 

bacteria, as well as the diversity of the activity determination protocols used under various 

laboratory conditions, sorting, and prioritization of predicted compounds for wet-lab activity 

determination and validation are still unsatisfactory, even though they are often used by 

binary classifiers [87]. Moreover, it is still unclear how to design classifiers that predict 

peptides that are resistant to protease degradation or that can model enzymatic cleavage 
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sites in the peptide, to design more stable peptides [88]. Alternatively, there are models that 

leverage D-amino acid substitution, non-canonical amino acid residues, and cyclization to 

increase peptide stability [89]. Thus, the bioavailability of antimicrobial sequences remains 

an open area of research. Finally, the undesired concentration-dependent side-effects of 

antibacterial peptides need to be considered when designing DL predictors [37,87].

5.3. Data availability for DL models

The biggest hurdle to developing DL models that are accurate in generating peptides with 

biological activity is to have enough data for training the models. Whereas small organic 

compounds have databases such as ZINC [90], SciFinder, Reaxys, and PubChem, which 

count with millions to hundreds of millions of molecules but mostly with no information on 

bioactive activities, bioactive peptides databases, such as APD3 [91], DBAASP [92], CAMP 

[93], Hemolytik [94], CPPsite [95], DRAMP [96], and dbAMP [97], count no more than 

a couple of tens of thousands of data points. It is worth mentioning that databases such as 

UniProt or GenBank house extensive collections of peptides and proteins, yet it should be 

noted that these repositories do not exhibit antimicrobial activities and are still untapped 

sources for antimicrobially active molecules.

Overcoming the data availability issue relies on combining deep generative models 

with bioinformatic tools [98] or molecular dynamics simulations [50], or doing data 

augmentation [99] to increase the performance of the models. Bioinformatic tools and 

molecular dynamics simulations provide an enhanced sampling of sought-after properties 

for the biological activity desired. Among the most important features retrieved to enrich 

the datasets are the physicochemical features that can be extracted from high throughput 

simulations with a high level of detail. On the other hand, data augmentation will not 

generate new information on the dataset, but it will increase the number of examples in 

the training set while also introducing more variety in what the model sees and learns 

from. Both bioinformatic tools and molecular dynamics simulations are valid strategies for 

different biological purposes. We envision that coupling these strategies to high performing 

computing will improve quality sampling with less experimental input needed and may 

accelerate the discovery of potent antimicrobial agents.

5.4. Summary

In spite of advances in drug design and pharmacology [100] (Table 2), the development of 

new antibiotics is still time-consuming and costly, while the need for them is becoming ever 

more urgent. DL approaches have revealed promising results in accelerating antimicrobial 

discovery, thus attracting the attention of many researchers and companies in the field. In 

fact, the combination of generative models and DNNs demonstrates the ability to generate 

and predict molecules with desired bioactivities. Furthermore, these models can potentially 

reduce the time and expense of antibiotic discovery and increase the chance of success. 

Although there is no unique and standardized DL framework that yields the best results in 

terms of antibiotic prediction, all the machine architectures described here set the stage for 

the development of efficient platforms for discovering small molecules and peptides with 

antimicrobial properties. Particularly, well-trained DL models have been demonstrated to 

generate outputs with properties similar to those of training data, assign a probability of new 
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data points within data distribution, and define important features. We envision that DL tools 

combined with larger datasets and more refined molecular descriptors will change the way 

that synthetic antibiotics will be designed in the near future.
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Article highlights box

• AI and ML provide innovative ways to expedite antibiotic discovery by 

optimizing molecular design.

• The successful use of discriminative and generative deep learning models 

is directly impacted by the algorithm and influences the modeĺs ability to 

represent diverse molecular structures.

• Discriminative deep learning models are computational frameworks for 

predicting antibiotic activity, leveraging their specific architectures and 

approaches.

• Generative deep learning models are applied in antibiotic design utilizing the 

composition of molecules to generate potent drug candidates.

• Deep learning models yet face challenges due to data quality and availability 

limitations.
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Figure 1. Application of AI methods in antibiotic discovery.
(1) Datasets containing experimental information are selected for model training. (2) The 

data are translated into machine-readable representations. (3) Subsequently, the algorithms 

are trained and then used to predict new active molecules. (4) Wet-lab experiments are 

performed to validate the antimicrobial activity of computationally predicted candidate 

drugs. All elements present within the figure have been created in BioRender.com and 

assembled using Adobe Illustrator version 27.7. The peptide molecule shown in the figure 

was rendered using the PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, 

LLC.
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Figure 2. Overview of neural network models.
(A) Fully-connected, (B) recurrent, (C) convolutional, and (D) graph neural networks. 

Models are frequently used for the prediction and design of antimicrobial peptides (AMPs) 

and small molecules. This figure was created in BioRender.com.
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Figure 3. Schematic of the main deep-learning architectures applied in antibiotic discovery.
(A) Neural language models (NLMs) use neural networks (NNs) to model the probability 

distribution of molecules predicted to have antimicrobial activity based on previously 

generated outputs. (B) Variational autoencoders (VAEs) encode and decode information 

to create a latent space, whose variables are used to generate new drug candidates. (C) 
In generative adversarial networks (GANs), a generator creates synthetic samples while a 

discriminator distinguishes real generated samples from fake. (D) Normalizing flows (NF) 

transform simple probability distribution into complex tractable distributions (i.e., input 

data) through a series of invertible mappings and vice versa. (E) Diffusion probabilistic 

models (DPMs) gradually add noise to the input data (x0) through a series of T steps, and 
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then a trained neural network recovers the data by reversing the process. The model can 

generate new data through the denoising course. All elements present within the figure have 

been created in Biorender.com and assembled using Adobe Illustrator version 27.7.
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Table 1.

Online tools for the extraction of molecular descriptors.

Antibiotic compounds Molecular descriptor tools References

Peptides/proteins Z-scales [83,84]

VHSE [83,85]

T-scales [83,86]

ST-scales [83,87]

MS-WHIM [83,88]

FASGAI [83,89]

BLOSUM [83,90]

ProtFP [83,91]

Aaaindex [92,93]

Small molecules alvaDesc [94]

ChemAxon [95]

ISIDA/QSPR [96]

MOLD2 [97]

QuBiLS-MIDAS [98]

Rdkit [99,100]
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Table 2.

Models and their application in antimicrobial peptides discovery.

Model Application References

ABP-Finder Screen peptidomes and identify antibacterial peptides [111]

rAMPage To mine amphibian and insect transciptomes for antimicrobial peptides [111,112]

AI4AMP To predict antimicrobial potential of a given seqeunce and perform proteome screening [62]

Deep-ABPpred Identify antibacterial peptides within protein seqeunces [65]

sAMP-PFPDeep To predict short (<30 residues long) antimicrobial peptide sequences [113]

Deep-AntiFP To identify antifungal peptide seqeunces [70]
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