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Pyroptosis: a double‑edged sword in lung 
cancer and other respiratory diseases
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Abstract 

Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), 
Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. 
Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, 
and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, 
there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role 
in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus 
on the multifaceted roles of pyroptosis in respiratory diseases.
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Introduction
The scope of cell death has been greatly expanded in 
recent years. More molecularly oriented definitions of 
terms including necroptosis, mitochondrial permeability 
transition (MPT)-driven necrosis, ferroptosis, parthana-
tos, entotic cell death, NETotic cell death, lysosome-
dependent cell death, autophagy-dependent cell death, 
immunogenic cell death, cellular senescence, and mitotic 
catastrophe [1–5]. Pyroptosis is an active programmed 
cell death process with a strong inflammatory response 
and manifests as cell membrane pore formation, which 
eventually leads to chromatin fragmentation, cell swell-
ing, and plasma membrane lysis [6]. At a molecular level, 

the gasdermin protein family plays an important role 
in cell membrane pore formation and the activation of 
pyroptosis [7]. As a large family, gasdermin has six mem-
bers: Gasdermin A (GSDMA), Gasdermin B (GSDMB), 
Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gas-
dermin E (GSDME, DFNA5), and DFNB59 in the human 
genome [7]. Initially, pyroptosis was discovered to be 
involved in immune defense against infections [8]. How-
ever, the role of pyroptosis soon spread to many other 
diseases including some respiratory diseases. With fur-
ther study, more modes of pyroptosis have been explored 
in pulmonary diseases [9]. In this review, we provide a 
detailed discussion of the double-edged role of pyropto-
sis in the regulation of pulmonary diseases and the chal-
lenges encountered in clinical translation.

Pyroptosis
In 1992, an atypical form of cell death was observed in 
macrophages [10]. A subsequent study revealed that 
caspase-1 activation was involved in this cell death [11]. 
In 2001, caspase-1-dependent cell death was identified 
as a proinflammatory programmed event and named 
pyroptosis by Brad T. Cookson and Molly A. Bren-
nan [12]. Caspase-1 activation prompts the transition 
of pro-interleukin (IL)-1β to mature IL-1β and induces 
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the production of IL-1β and IL-18 [13, 14]. IL-1β and 
IL-18 are finally released outside cells and induce strong 
inflammatory responses [8]. This caspase-1-mediated 
pyroptosis is referred to as canonical pyroptosis (Fig. 1). 
AS a multi-protein complex, the inflammasome plays 
a central role in the inflammatory response. It assem-
bles in response to pathogen-associated molecular 
patterns (PAMPs) and danger-associated molecular pat-
terns (DAMPs). The assembly and activation of inflam-
masomes are an important step in initiating canonical 
pyroptosis by inducing the self-cleavage and activation 
of caspase-1 [6]. The context of pyroptosis is expanded 
when caspase-11 was found to trigger a kind of mouse 
macrophage death that resembled the cell death induced 
by caspase-1 [15]. Caspase-4/5 was also found to have 
a similar function with the caspase-11 which is homol-
ogous to caspase-4/5. Unlike caspase-1 activated by 
ligands of inflammasomes, Caspase-4/5/11 activated by 
cytosolic lipopolysaccharide (LPS) induces pyroptosis in 
a noncanonical pathway. The noncanonical pathway is 
suggested to play an important role in cell immunologi-
cal responses to intracellular Gram-negative bacteria and 
some metabolic diseases associated with mitochondrial 
dysfunction (Fig. 1) [6].

The identification of the gasdermin family yields insight 
into the mechanism of pyroptosis. The activation mech-
anism of GSDMD has been preliminarily unmasked, 
while those of others are largely unknown [7]. GSDMD 
plays an important role in either the canonical path-
way or the non-canonical pathway. Danger signals or 
microbial infection can activate Caspase1/4/5/11. When 
activated, caspase1/4/5/11 can specifically cleave their 
direct substrate GSDMD into two parts: the C-terminal 
domain of GSDMD (GSDMD-CT) and the N-terminal 
domain of GSDMD (GSDMD-NT), a conserved domain 
[16]. GSDMD-NT triggers pyroptosis and GSDMD-CT 
inhibits the activation of GSDMD-NT by folding back 
on it. GSDMD-NT has the ability to connect to phos-
phoinositides and cardiolipin [16]. With oligomerization 
and membrane binding, GSDMD-NT leads to the lysis 
of membranes or the leakage of liposomes and forms 
pores in the membrane [16–18]. Subsequent alteration of 
osmotic pressure eventually causes cell swelling and lysis. 
The distribution of phosphoinositides is not symmetric 
on the plasma membrane. Therefore, GSDMD causes 
only lysis and leakage from within cells. IL-1β, as an 
important response of inflammasome activation, has also 
been demonstrated to be affected by GSDMD in some 

Fig. 1  Activation mechanism of pyroptosis in the respiratory system in the canonical pathway and the non-canonical pathway. In canonical 
pathway, the NLRP3 inflammasome is taken as a representative example. The NLRP3 inflammasome consists of NLRP3, an important member 
of NLRs (NOD-like receptors), ASC, and pro-caspase-1. In addition to NLRs and pyrin, absent in melanoma 2 (AIM2) can also form inflammasomes 
to activate pyroptosis
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studies. GSDMD impacts the release of mature IL-1β, but 
not its maturation [16].

Other gasdermins have a similar architecture of two 
domains with GSDMD, except for DFNB59. The N-ter-
minal domain of these GSDMD-like members can induce 
pyroptosis [7]. However, they lack caspase1/4/5/11 
cleavage sites and their activation mechanisms are still 
unknown [16, 19]. Gasdermins function in the respira-
tory system, even with high epithelial expression specific 
to the skin and gastrointestinal tract [20]. Polymorphisms 
of GSDMB have been linked to some chronic inflamma-
tory diseases in the respiratory tract, such as asthma [21]. 
GSDMC has also been implicated in lung cancer progres-
sion [22]. A new biological function of GSDMC was also 
revealed. Under hypoxia and TNFα treatment, GSDMC 
can be cleaved by caspase-8 mediated by nuclear pro-
grammed cell death 1 (PD1), which enhances GSDMC 
expression and switches apoptosis to pyroptosis [23]. 
GSDME was originally identified as DFNA5, a deafness 
gene and now seems to have many penetrated aspects of 
lung cancer. GSDME works as a mediator of p53 and has 
a potential role as a tumor suppression gene [24]. Meth-
ylation modification of GSDME is common in cancers 
that silence its expression [25]. Recently, some studies 

have reported that GSDME can be cleaved by caspase-3 
specifically and switch caspase-3-mediated apoptosis to 
pyroptosis in many cases [26, 27]. Caspase-3 and GSDME 
work as a “switch” to shift cell death from apoptosis to 
pyroptosis (Fig. 2).

Association between pyroptosis and pulmonary diseases
Respiratory diseases are one of the most important 
causes of global population death and mainly include 
inflammatory diseases, neoplastic diseases, and some 
autoimmune diseases [28–30]. Emerging evidence shows 
that pyroptosis contributes to these respiratory diseases 
[6]. However, it often plays a dual role in these diseases. 
Here, we provided some evidence and views of contro-
versial pyroptosis in different pulmonary diseases.

Lung cancer
The relationship between proinflammatory pyropto-
sis and lung cancer appears remarkably complicated [9]. 
Inflammation has been associated with the development 
and progression of various types of cancer. However, there 
are complex interactions between inflammatory processes 
and tumor development or progression [31, 32]. Recently, 
numerous studies have also found that promoting 

Fig. 2  Pyroptotic pathway. GSDM superfamily members have six members: Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), 
Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Gasdermins except for DFNB59 have similar architecture of two domains: 
an N-terminal and a C-terminal. N-terminal domains have pore-forming activities and activate pyroptosis. Pyroptosis has been reported to be 
involved in many pulmonary diseases. (Solid line: promoting effect, dotted line: inhibiting effect)
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pyroptosis can inhibit tumor growth and reverse drug 
resistance [33]. In the adverse reactions related to tumor 
treatment, pyroptosis plays a role in promoting adverse 
reactions. Accumulated evidence indicates that pyropto-
sis exhibits a dual nature in lung cancer and its treatment.

Inflammation is the established factor in carcinogen-
esis of lung cancer [34]. Inflammasome proteins, including 
NLRP3 and AIM2, contribute to tumorigenesis by modu-
lating immunity and cross-talk between the microenvi-
ronment and lung epithelial cells [35]. Additionally, some 
pyroptosis can occur in the tumor immune microenvi-
ronment through the caspase-1/GSDMD pathway, which 
will promote numerous malignant phenotypes in tumors 
including migration, invasion, and metastasis [36]. On 
the other hand, activated NLRP3 inflammasome aggrega-
tion of Ca2+ and the generation of reactive oxygen species 
(ROS) can promote pyroptosis and inhibit the proliferation 
of non-small cell lung cancer (NSCLC) [37]. Non-canoni-
cal pathway activated by caspase-4 has also been reported 
to eliminate NSCLC cells in vivo and in vitro [38].

Defects in apoptosis are known to be the overarching 
reason for the failure of anti-tumor treatment [39, 40]. 
With deeper research, we have found that pyroptosis is 
also involved in many anti-tumor treatments and plays a 
role in enhancing treatment efficacy [41]. Many chemo-
therapy drugs were reported to induce GSDME-medi-
ated pyroptosis. After receiving chemotherapy, caspase-3 
cleaves GSDME to generate a GSDME-N fragment and 
switches apoptosis to pyroptosis. Apoptotic appearance 
is overridden by pyroptosis in the case of high GSDME 
expression [27]. This phenomenon is observed in lung 
cancer treated with paclitaxel and cisplatin [41]. Pyrop-
tosis induced by cisplatin seems to be higher than that 
induced by paclitaxel. It has also been reported that 
lower GSDME expression has an appreciable correlation 
with worse outcomes for NSCLC patients treated with 
platinum. GSDME-mediated pyroptosis may increase 
the sensitivity of platinum by promoting T cell infiltra-
tion [42]. The efficacy of platinum could also be enhanced 
by combination with BI2536, a PLK1 kinase inhibitor, by 
inducing pyroptosis and affecting DNA damage repair 
[43]. Some noncoding RNAs can also sensitize chemore-
sistant cancer cells to cisplatin by activating pyroptosis 
[44]. Additionally, GSDME executes caspase-3-meditated 
pyroptosis in EGFR-altered, ALK-rearranged, and KRAS-
mutant tumors with genotype-matched regimens. The 
co-occurrence of pyroptosis and apoptosis contributes 
to the response to TKIs [45]. However, this pyroptosis 
appeared to marginally affect the treatment efficacy. In 
addition to the uncertain therapeutic effects of pyropto-
sis, it still has other concerning dual aspects. GSDME-
mediated pyroptosis can act on normal tissues and 
exacerbate chemotherapy-induced toxicity. GSDME 

knockout can attenuate cisplatin-induced acute kidney 
injury and weight loss [27, 46]. Inhibiting pyroptosis can 
also reduce drug-induced nausea and vomiting caused 
by cisplatin and can decrease GSDME-mediated intesti-
nal epithelial cell death through the regulation of ROS/
JNK/Bax signaling pathway [47]. Additionally, in therapy-
induced liver damage and myocardial injury, reducing 
pyroptosis was observed to alleviate these treatment-
related toxicities [48].

Pyroptosis, as a highly inflammatory cell death, is also 
involved in radiation-induced tissue damage. Increas-
ing caspase-1 activation is observed in marginal zone 
cells of radiotherapy [49]. GSDMD and inflammasomes 
such as AIM2 and NLRP3 are involved in this pyropto-
sis [49, 50]. Sepsis can also be promoted by caspase-11 
mediated pyroptosis [51]. Cyclic GMP-AMP synthase 
(cGAS) influences caspase-11 in a non-canonical path-
way of pyroptosis to aggravate this life-threatening com-
plication in radiotherapy [52]. Other studies have also 
reported that GSDME expression enhances the sensitiv-
ity of cancer cells to radiation treatment by recruiting 
and activating NK cells to enhance antitumor immu-
nity [53]. In addition, this GSDME-mediated pyroptosis 
induces radiation-related toxicity. Knocking GSDME 
protects against tissue damage and weight loss [53].

Pyroptosis makes important contributions to the trans-
formation of cold tumors into hot tumors [54]. Many 
inflammatory cytokines and DAMPs are secreted dur-
ing the processes of pyroptosis such as HMGB1, IL-1β, 
and IL-18. Inflammatory cytokines, including IL-1β and 
IL-18, are secreted through the GSDM-mediated pore. 
IL-1β can activate CD8 + T cells and promote the gen-
eration of Th1 CD4 + T-cells [55, 56]. IL-18 can also play 
immunoregulatory roles in inducing Interferon-γ (IFN-
γ), polarizing Th1 cells and recruiting and activating 
natural killer (NK) cells [57]. Unlike cytokines secreted 
through traversing the GSDM-mediated pore, HMGB1 
is regulated indirectly by GSDMD [58]. It could increase 
related molecules required for CD8 + T-cell priming and 
migrate tumor-infiltrating to draining lymph nodes to 
increase anti-tumor T cell responses [59]. These findings 
explain why pyroptosis elicits alterations in the tumor 
microenvironment which plays a crucial role in can-
cer progression and response to therapy. According to 
a recent study, a new mechanism of GSDMB in immu-
notherapy is revealed. Specifically, IFNγ can upregulate 
GSDMB expression and lymphocyte-derived granzyme A 
(GZMA) can cleave it. This result provides a new insight 
into enhancing antitumor immunity [60]. Notably, 
cytokines including IL-18 and IL-1β, which is recognized 
as effector molecules of pyroptosis, play a various func-
tion in different microenvironments. This introduces a 
lot of uncertainty in the clinical application of pyroptosis.
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Increasing evidence suggests that inhibiting pyroptosis 
can, to some extent, control tumor progression. However, 
it is still premature to determine that pyroptosis can play 
a leading role in certain anti-tumor treatments. Con-
versely, in normal tissues, pyroptosis contributes to treat-
ment-related adverse effects. This further underscores 
the dual nature of pyroptosis.

Pneumonia
As an open organ, the bronchial and alveolar epithe-
lium of lung is exposed to air pollutants and patho-
genic microbes. To defend against the invasion of 
pathogens, pattern recognition receptors (PRRs), which 
can be activated by PAMPs and DAMPs, are equipped 
with bronchial epithelial cells, dendritic cells, and alve-
olar macrophages [28, 61]. These receptors assemble 
inflammasomes with apoptosis-associated speck-like 
protein and procaspase-1. Inflammasomes occupy a 
key position in maintaining a delicate balance between 
immune responses and tissue injuries and/or infections. 
Once PRRs are activated, inflammasomes can induce 
pyroptosis and produce cytokines [28, 61] (Fig. 2).

Excessive inflammatory responses are always deemed 
to be an important cause of death following severe pneu-
monia. As a form of dysregulated hyperinflammation, 
cytokine release syndrome is the most significant cause 
of mortality in patients with severe pneumonia including 
COVID-19. Lactate dehydrogenase (LDH) and cytokines 
are highly elevated in these patients [62]. Growing evi-
dence favors pyroptosis involvement [63]. Pyroptosis 
confers host protection to lung epithelial cells in some 
patients with infection [64–66]. Besides, pyroptosis, as 
an immune response against infections, plays a protec-
tive role in host defense in the initial period of pneumo-
nia [67]. Nevertheless, excessive pyroptosis leads to tissue 
injury and host lethality [68]. In a mouse IAV infection 
model, persistent NLRP3 inflammasome activation leads 
to lung injury, which is not associated with viral titer [69]. 
Angiotensin-converting enzyme 2 (ACE2) is an impor-
tant receptor of SARS-CoV-2 and a negative regulator 
of the renin-angiotensin-aldosterone system (RAAS) 
which is a hormone system that regulates blood pressure 
and fluid balance in the body. SARS-CoV-2 spike pro-
tein and cells expressing ACE2 form syncytia. Syncytia 
can activate the cascade from caspase-9 to caspase-3/7, 
resulting in GSDME-mediated pyroptosis [70]. Others 
have reported that the fusion activates NLRP3 inflamma-
some, which triggers GSDMD-mediated pyroptosis [71]. 
Non-Structural Protein 6 (NSP6) of SARS-CoV-2, as a 
key determinant of pathogenicity, is also reported to trig-
ger GSDMD-mediated pyroptosis by activating NLRP3 
inflammasome targeting ATP6AP1 [72, 73]. Some sup-
portive evidences have even shown that angiotensin II 

elevated by RAAS can activate NLRP3 inflammasome 
[74–76]. The complement cascade can interact with 
SARS-CoV-2 and then be cleaved into fragments such as 
C3a and C5a anaphylatoxins. These fragments could also 
activate NLRP3 inflammasome. Coagulopathy is another 
life-threatening complication of SARS-CoV-2 and 
some influenza virus infections [77]. Proinflammatory 
cytokines, which can promote various procoagulation 
factors, are insufficient to explain the dramatic coagula-
tion reaction. GSDMD-mediated pyroptosis can trigger 
blood clotting and cause massive thrombosis in both the 
canonical pathway and the non-canonical pathway [78]. 
This systemic fibrin deposition in the model of endotox-
emia is reminiscent of coagulopathy seen in COVID-19.

In pneumonia caused by other pathogens, pyroptosis 
still plays an important role. Streptococcus pneumoniae 
can cause cell death by activating both an apoptotic path-
way and a pyroptotic pathway. In the pyroptotic pathway, 
pneumoniae activates NLRP3 inflammasome to mediate 
IL-1β production and release through hydrogen peroxide 
produced by pneumococci as a product of the pyruvate 
oxidase SpxB [79]. In another study of H7N9 influenza, 
GSDME-mediated pyroptosis was revealed to contribute 
to the pulmonary cytokine storm of virus infection [80].

Asthma
Asthma is a common chronic lung disease, that affects 
more than 300  million people worldwide [81]. Many 
studies indicate some correlation between asthma and 
pyroptosis. GSDMA and GSDMB on chromosome 17q 
are linked to asthma [82, 83]. The chromosome 17q 
region is the most consistently associated and power-
ful region with asthma susceptibility. In recent years, 
many studies have identified that GSDMB seems to play 
an important role in asthma susceptibility and sever-
ity. Single nucleotide polymorphisms in GSDMB display 
a strong correlation with GSDMB expression levels and 
the severity of asthma. Higher expression of GSDMB is 
correlated with antiviral pathways and exacerbations 
of asthma [84]. GSDMB has been demonstrated to be 
highly expressed in human asthmatic lungs, specifically 
in bronchial epithelial cells, but not to be significantly 
expressed in alveolar epithelial cells, fibroblasts, and 
smooth muscle [85, 86]. The overexpression of GSDMB 
can upregulate genes correlated with airway remodeling 
and airway hyperresponsiveness including 5-LO, TGF-
β1, and MMP-9 [87]. A splice variant causing the deletion 
of exon 6, which encodes 13 amino acids in the N-ter-
minal domain, has been reported to decrease the risk of 
asthma, suggesting that abolishing GSDMB-mediated 
pyroptotic activity may play a role in asthma [88]. How-
ever, at the present stage, direct proof of how pyroptosis 
affects asthma is still lacking.
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Other pulmonary diseases
Pyroptosis is reported to promote lung injury in acute 
respiratory distress syndrome (ARDS) [89]. Pyroptosis is 
also involved in other acute lung injuries (ALIs) such as 
brain injury-induced acute lung injury and pancreatitis-
induced acute lung injury [90, 91]. Some natural products 
from various medicinal plants such as Emodin, Syringa-
resinol (SYR) and Honokiol (HKL), and 5-Androsten-
ediol (5-AED), a natural steroid hormone can suppress 
pyroptosis to resist lung injury [92–95]. The pyroptosis of 
pulmonary artery smooth muscle cells can promote pul-
monary hypertension [96]. Chronic obstructive pulmo-
nary disease (COPD) is also considered to have a certain 
correlation with pyroptosis [97]. Additionally, nicotine 
has been found to influence the progression of COPD by 
GSDMD-induced pyroptosis [98].

Therapeutic implications
Cell death facilitates maintaining physiological homeo-
stasis and healthy development by removing cells suf-
fering from damage or infection. Excessive cell death 

can also contribute to human pathologies [99]. The 
dual nature of pyroptosis has been a long-standing and 
intriguing topic. Pyroptosis is involved in the protection 
of the host, especially in the initial stage of some inflam-
matory respiratory diseases through immune defense. An 
excessive inflammatory response could cause ultimately 
tissue damage [61]. Uncontrolled pyroptosis is respon-
sible for system-wide inflammation in a large number of 
lung inflammatory diseases. For lung cancer, from the 
perspective of inflammation, pyroptosis carries a poten-
tial risk of carcinogenesis. On the other hand, from the 
cell death perspective, pyroptosis can promote tumor cell 
death. At the same time, pyroptosis is also a significant 
factor causing adverse reactions in tumor therapy. Thus, 
how to harness this double-edged sword to yield more 
positive effects is worth our contemplation.

Currently, many basic trials have demonstrated that 
the specific compounds can directly or indirectly target 
pyroptosis. These compounds mainly include some com-
mon chemotherapy drugs, such as cisplatin, doxorubicin, 
and 5-FU [100]. These chemotherapy drugs have been 

Fig. 3  Role of pyroptosis in the lung. This schematic representation shows the important role of pyroptosis in the regulation of pulmonary diseases 
including pneumonia, asthma, lung cancer COPD, and ALI/ARDS
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applied in clinical treatment for decades. The pyroptosis 
recently discovered that the occurring alongside apopto-
sis in these drugs lacks sufficient specificity, but it is still 
meaningful. Knowledge of the pyroptosis pathway acti-
vated by these drugs can help optimize treatment strat-
egies, overcome resistance, and reduce the side effects 
of chemotherapy. Other pyroptosis inducers are largely 
in the experimental stage including some natural prod-
ucts. From the perspective of drug development target-
ing pyroptosis, we are currently at the first step from 
bench to bedside.Precise drug delivery is another viable 
solution. A delivery platform based on macrophage was 
developed to achieve targeted tumor drug delivery and 
controlled release [101]. Some burgeoning nanoplat-
forms can also stably deliver drugs to activate pyroptosis 
[102]. Precisely activating pyroptosis in the tumor site 
can effectively prevent damage to normal tissues caused 
by pyroptosis.

A deep understanding of the pyroptosis pathway is 
also crucial. In specific diseases, only by understand-
ing which mode of pyroptosis can exert a greater effect 
can better utilize pyroptosis for therapeutic benefits. For 
inflammatory diseases, the timing of pyroptosis inhibi-
tion is particularly crucial. Inhibiting pyroptosis too 
early might impact the early activation of the immune 
response. Conversely, inhibiting pyroptosis too late 
might not effectively curb the cytokine storm. For the 
clinical translation and application of pyroptosis, the 
deepening of theoretical knowledge about the pyroptosis 
pathway and the development of targeted drugs are both 
particularly important.

Conclusion
Pyroptosis, as a potential target for the treatment of pul-
monary diseases, has gradually become clear. However, 
what needs to be emphasized is the dual nature of pyrop-
tosis. For lung cancer, on the one hand, pyroptosis can 
promote the death of cancer cells and enhance antitumor 
immunity. On the other hand, pyroptosis also increases 
adverse drug reactions. For other pulmonary inflamma-
tory diseases, pyroptosis can play both protective roles 
and negative roles in different periods of various diseases. 
Besides, pyroptosis has a potential effect on asthma 
(Fig. 3). In conclusion, pyroptosis is involved in a number 
of pulmonary diseases in different pathways. However, 
the understanding of pyroptosis in respiratory diseases 
is still limited. The future challenge lies in defining the 
details of the molecular mechanism of pyroptosis and 
how the details can improve the outcomes of diseases. 
The exploration of a balance point of pyroptosis for treat-
ment should be a long-standing and open research area.
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