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Abstract

Brain–machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating 

artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships 

between sensory input and motor output, which the brain must learn to gain dexterous control. 

This review highlights the role of learning in BMIs to restore movement and sensation,and 

discusses how BMI design may influence neural plasticity and performance. The close integration 

of plasticity in sensory and motor function influences the design of both artificial pathways and 

will be an essential consideration for bidirectional devices that restore both sensory and motor 

function.
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1. INTRODUCTION

Our goal as humans is to interact with the world: We react to elements in our environment 

and act upon them via our sensory and motor systems. Injury and disease can interrupt 

sensorimotor function, fundamentally limiting our ability to engage. In cases where people 

have permanent paralysis, brain–machine interfaces (BMIs) aim to restore independence by 

providing artificial sensorimotor function. BMIs have restored the ability to communicate 

by controlling typing (1,2) or basic tasks of daily living via control of a prosthetic limb 

(3,4). BMIs hold tremendous promise, but improvements in performance (level of functional 

restoration) and robustness (consistency in performance over time and across users) are 

central challenges for widespread translation.
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A typical BMI involves recording neural activity from a patient’s brain, transforming neural 

signals into motor commands, and providing sensory feedback to enable goal-directed 

movement and error correction. Building a BMI defines a series of computations that could 

be individually optimized but are interconnected as part of a closed-loop system. The tight 

link between sensory inputs and motor outputs in closed-loop BMIs engages innate neural 

mechanisms for learning, thereby changing the nature of engineering problems that must be 

solved to optimize BMI performance.

In this review, we describe the role of learning in closed-loop BMIs for artificial motor 

output or artificial sensory input. In both contexts, we restrict our focus to invasive 

approaches to neural measurement and modulation where significant research has explored 

the biological circuits involved. We also focus on topics related to the closed-loop, adaptive 

nature of BMIs. Insights into how neurons respond and adapt to artificial sensorimotor tasks 

will inform critical developments in new recording and neuromodulation technologies and 

noninvasive systems.

2. NATURAL AND ARTIFICIAL SENSORIMOTOR FUNCTION

Even a simple task like grabbing an object has many steps. We use visual information to 

estimate an object’s location, size, and texture. We use visual and proprioceptive information 

to estimate the position and movement of our arm. Finally, motor plans are made, executed, 

and continuously updated using incoming sensory information (5).Thus, movement, often 

considered a pure motor activity, is really an integrated sensorimotor computation.

Natural sensorimotor function requires that sensory and motor circuits develop through 

paired experience. Animals exposed to sensory information in the absence of motor 

commands do not learn to make precise, sensory-guided movements, as removing the 

link between sensory input and motor output disrupts sensorimotor function (6, 7). Paired 

sensorimotor experience is also needed to predict the sensory consequences of one’s own 

movement (8)—a computation thought to be central to motor control (9).

Relationships between sensory input and motor output are initially learned, and continually 

adapt. Sensorimotor flexibility allows us to navigate new environments, adapt after injuries, 

and even learn new skills. For instance, we can readily adapt to changes in movement 

kinematics imposed by a force field and shifts in the relationship between visual feedback 

and movement (10). This sort of adaptation requires not only plasticity in motor control 

but also plasticity in sensory perception (11), emphasizing that movement and sensation 

are intertwined functions. Given the closed-loop function of sensation and motor control 

in natural systems, optimizing BMIs to restore sensorimotor function requires considering 

the close interactions between both systems. The flexibility of closed-loop sensorimotor 

function also highlights the need to consider learning in BMIs.

BMIs introduce artificial elements into sensorimotor pathways (Figure 1). Depending on the 

application, artificial elements may be used for motor output only (motor BMIs), sensory 

input only (sensory BMIs), or both (bidirectional BMIs). Importantly, all of these systems 
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are closedloop; information flows between sensory and motor systems. All BMIs require 

integration of motor and sensory systems.

The artificial pathways for a BMI involve multiple components. For artificial motor output, 

sensors measure neural activity from portions of the brain. Measured signals are processed 

to generate neural features, which are inputted into an algorithm called a decoder. The 

decoder translates neural features into a movement command for a device. Sensory feedback 

of device movement ultimately closes the information loop. For artificial sensory input, a 

sensory stimulus from the environment is translated into a pattern of neural activation that 

is delivered via a stimulation device. Sensory inputs are used to guide movements, which in 

turn influence sensory stimuli received from the environment.

3. MOTOR BRAIN–MACHINE INTERFACES

Motor BMIs provide an artificial means to control movements through newly created 

pathways. They record neural activity from portions of natural motor circuits, translate 

recorded neural activity into movement commands, and send those commands to a device. 

Sensory feedback of movement closes the control loop. In this section, we focus on motor 

BMIs in which sensory feedback is provided through native pathways, which represent the 

majority of existing research. An example is BMI control of a computer cursor using visual 

feedback.

Historically, motor BMI design focused solely on maximizing the ability to predict a 

subject’s intended movements. For example, algorithms to map neural activity into motor 

commands (the decoder) are commonly chosen on the basis of predictive accuracy in 

data sets where subjects performed or imagined moving as neural activity was recorded. 

This prediction is termed open-loop because the user does not have real-time feedback of 

decoded movements. Improvements in open-loop predictive performance do not necessarily 

translate into improved performance in closed-loop BMIs (12, 13).

The difference between open-loop prediction accuracy and closed-loop BMI performance 

stems from the inherent integration of sensory and motor function. Creating artificial motor 

pathways also alters available sensory information, such as proprioception (the sense of the 

body’s position and movement through space), and the link between sensory and motor 

information. That this does not catastrophically disrupt motor performance is likely due 

to mechanisms that continually update our sensorimotor systems to new environments and 

tasks. As a result, algorithms that optimally decode neural activity offline can have minimal 

benefits in closed-loop systems (12).

The differences between open- and closed-loop systems change the nature of engineering 

problems for motor BMIs. BMI design cannot only consider prediction of motor intent—we 

must also consider how the full BMI sensorimotor system will be controlled and learned. 

Optimizing closed-loop motor BMIs will therefore require insight into the principles of 

sensorimotor control and learning in BMIs. In the following subsections, we summarize key 

observations about learning in motor BMIs and review how each element within a BMI may 

influence these processes.
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3.1. Learning in Closed-Loop Motor Brain–Machine Interfaces

BMIs present the brain with two interrelated problems (Figure 2). The brain must first 

generate consistent neural activity in the features chosen for BMI control (readout) and 

then learn how a given pattern of neural activity relates to movement. To generate patterns 

of neural activity specific to the readout population, the brain may have to perform some 

form of credit assignment (9), where movement errors are attributed to particular neurons 

or connections. A growing body of research has explored learning in motor BMIs. These 

studies highlight a rich set of phenomena related to mapping and credit assignment problems 

with strong similarities to those of natural sensorimotor learning (14).

Perturbing BMI decoders has shed light on how the brain adapts to altered sensorimotor 

maps. Much like force-field and visuomotor perturbations (9, 10), these experiments change 

how the activity of readout neurons relates to movement variables. Perturbations that rotate 

neuron– behavior relationships produce deviations in movement trajectories (15–18) or goals 

(19, 20) that the brain can counteract in tens to hundreds of trials. Perturbations have been 

applied to both single neurons (changing the direction in which a neuron moves the cursor) 

(15–17, 19, 20) and neural populations (changing how neural firing patterns move the 

cursor) (18). Behavioral adaptation to decoder perturbations resembles natural visuomotor 

adaptation, including the learning timescale and the presence of aftereffects following the 

removal of perturbations.

Neural plasticity during adaptation is distributed. Neural changes are consistent with 

subjects changing their aim (15, 19–21), which involves learning a new association 

between the target location and the action chosen but does not require altering movements 

themselves. Reaiming produces changes in all neurons in a population (19) but does 

not change the patterns of neural activity generated—only how they are associated with 

movement targets (21). While these global learning mechanisms dominate, if only a subset 

of neuron–movement relationships are perturbed, learning leads to a mixture of global and 

targeted changes (15–17).The presence of multiple learning mechanisms is consistent with 

the current understanding of computations driving visuomotor adaptation (22).

The form of decoder perturbation also influences learning. A series of experiments used 

decoder perturbations structured so that the experimenters could control whether the 

perturbation required neural populations to change their correlation structure. Mappings 

where neuron correlation structures do not have to change are learned within a day (18; 

discussed above). In contrast, perturbations where correlation structure must change require 

multiple days of training and lead to new neural activity patterns (23). Learning mechanisms 

in natural sensorimotor control are also influenced by the type of visuomotor perturbation. 

For instance,rotations in movement–vision relationships appear to lead to updates to 

an existing internal model of sensorimotor relationships, while mirror reversals lead to 

the creation of new models (24). Potential correspondence between natural sensorimotor 

learning mechanisms and observations in BMI remain to be established, but existing 

research clearly demonstrates the presence of multiple learning mechanisms that are flexibly 

deployed (14).
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Another line of research explores how the brain learns initial control of a BMI. These 

experiments define some fixed neuron–movement relationship in a task structure that 

resembles de novo skill learning in natural sensorimotor systems (9, 24). These studies have 

found that the activities of single neurons (25, 26), neural populations (27), and local field 

potentials (LFPs) (28) can all be operantly conditioned. When using neuron populations for 

control (most comparable to the decoder perturbation studies discussed above), learning to 

control a new decoder mapping takes multiple days (27), and performance improves both 

with practice and after breaks in training (29, 30). Once learned, these mappings can be 

recalled and resist interference (27), paralleling natural motor skills (31).

Distributed neural plasticity underlies the acquisition of control of a new decoder. 

Improvements in performance coincide with the formation of stable relationships between 

the activity of readout neurons and movement (27). Neural patterns are variable initially, 

but the variance gradually decreases with learning (32, 33). Both patterns are similar to 

observations in natural skill acquisition (34, 35). Experiments measuring activity across 

multiple brain areas but using only one for the BMI readout demonstrate that neural changes 

are distributed across cortical and subcortical regions (28, 36–38). Blocking plasticity in the 

striatum can also extinguish the ability to learn a BMI decoder controlled by primary motor 

cortex (M1) activity (36).

BMI learning may involve credit assignment computations on long (multiday) timescales. 

Plasticity when learning a novel decoder leads to differential activation of readout neurons 

in comparison to nonreadouts, even when they are immediately next to one another (30, 

39–41). Similarly, while brain areas not used for readout, such as the striatum, are needed 

for learning, changes in striatal neurons are targeted to those that project to readout neurons 

(37), consistent with plasticity targeted to a readout-specific neural circuit. Perturbing the 

decoder for only a subset of readout neurons produces changes specific to perturbed units 

that emerge over days (17). These credit assignment–related computations may be sleep 

dependent (30), consistent with their emergence over multiday training.

While many questions remain, these studies highlight that closed-loop BMIs engage a 

diverse range of learning mechanisms that parallel innate functions of natural sensorimotor 

systems. Learning is directly related to the sensorimotor transformations defined by the 

BMI system,which include all aspects of the artificial control loop from neural recording 

to sensory feedback. Optimizing BMI performance, then, will require considering how each 

element of a BMI system influences this transformation and learning computations.

3.2. Brain Areas

A key choice in a motor BMI is which part of the brain to record from. Differences in 

the computations performed by each area influence the ability to predict motor intention 

from neural activity. They also play different functional roles in sensorimotor learning 

computations (9), which may influence closed-loop performance (42).

3.2.1. Motor areas.—Motor BMI research originated in M1 (25). Anatomically,M1 is 

positioned to contribute to motor output: It is the cortical area with the largest proportion of 

cells that directly project to the spinal cord (43). Its diverse inputs also include peripheral 
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sensory afferents, highlighting contributions to sensorimotor computations (43). How M1 

represents movement variables is an area of active debate (44). However, M1 activity 

accurately predicts a variety of kinematic (45, 46) and dynamic variables, including muscle 

activity (47), in open-loop systems. In consequence, M1 is often used for continuous BMIs 

such as controlling moment-by-moment cursor velocity.

Premotor cortical areas have also been explored for BMI control. These areas are 

anatomically defined as frontal regions that send projections primarily to M1; many 

also send projections to the spinal cord (43). Therefore, they are positioned to support 

preparation and execution of movements. Premotor area computations are not fully 

understood, but they are distinct from those of M1. For instance, dorsal premotor cortex 

(PMd) activity precedes that of M1, suggesting contributions to planning (48). This 

observation has motivated the use of premotor areas to control discrete BMI tasks, such 

as selecting sequential target pairs (49). However, PMd activity is also often combined with 

M1 for continuous control tasks (50–52).

The parietal cortex, particularly the posterior parietal cortex (PPC), is another motor area 

used for BMI control (53). Anatomical connections position the PPC to transform sensory 

inputs to motor outputs: It predominantly receives input from sensory areas and sends dense 

projections to frontal motor areas (43,54). Motor-related activity in the PPC plans movement 

goals (55) in visual coordinates (56) rather than muscle activity; as a consequence, the PPC 

has been used primarily for discrete BMI tasks.

3.2.2. Nonmotor areas, noncortical areas, and multiple areas.—Building upon 

research showing that neural activity in many cortical regions can be operantly conditioned 

(see Section 3.1), select studies have used brain areas outside the motor system for BMI 

readout. For example, rodents can control an auditory pitch cursor using activity in the 

primary visual cortex (V1) (57), learning with the same timeline and accuracy as using M1 

activity (36); this observation suggests common principles across brain areas. Interestingly, 

animals could learn to control a V1 BMI with the lights on or off, but could not generalize 

across conditions (57). Innate functions and connections between brain areas, then, likely 

influence learning processes and functionality. The distributed nature of motor-related 

signals in the brain (58), combined with the anatomical flexibility provided by learning, 

opens opportunities for clinical applications where people have damage to motor areas (e.g., 

cortical stroke) (59).

Subcortical areas have not been used for direct BMI device control. However, motivated by 

subcortical contributions to learning, researchers have used striatal signals to adapt cortical 

decoding algorithms (60). Such multiarea decoding strategies may be particularly valuable 

given that cortical–subcortical interactions are necessary for BMI learning (36, 57).

Leveraging multiarea activity may require additional insights into learning. Early BMI 

studies combined activity from many cortical areas (45). Open-loop decoding suggested 

that M1 was most predictive, but after closed-loop training all areas contributed to BMI 

movement. Alternatively, extended training with electrocorticography (ECoG) BMIs across 

multiple areas resulted in the consolidation of control to a small region (61). The dynamic 
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nature of closed-loop BMIs presents challenges in a priori selection of brain regions for 

motor output.

3.2.3. Learning differences across areas.—Few studies have quantitatively 

compared closed-loop BMI performance between areas. Synthesis across the literature, 

however, highlights important qualitative differences when BMIs are controlled with 

different brain areas.

Learning dynamics differ in BMIs controlled with frontal versus parietal motor areas. 

Studies in M1 and PMd show that the brain can learn a wide range of mappings (23, 25–27). 

This learning can occur within a session (18, 19) or across multiple days (17, 23, 27; see 

Section 3.1). Rapid learning is dominated by global strategies like reaiming (21). Longer 

timescales involve changes targeted to neurons used for BMI control (readouts) (17, 36, 39, 

41). In contrast, learning in BMIs using the PPC for control appears to be dominated by 

rapid learning mechanisms. Both humans and animals struggle to learn PPC BMI mappings 

that cannot be solved by reaiming strategies, and neural changes are only global (19, 20). 

Differences in observed learning dynamics may stem from differences in computations 

performed by each area. The PPC is thought to represent primarily movement goals, which 

may constrain the types of learning computations it can perform to manipulations of goals. 

However, differences in BMI control used in each area (discrete control in PPC; continuous 

in M1) also influence the timing and forms of feedback available, which in turn may also 

influence learning (see Section 3.6).

Brain areas make distinct contributions to natural sensorimotor learning and control. 

Differences in how learning occurs across the motor system may influence closed-loop 

BMIs.

3.3. Neural Features

From the brain region(s) chosen to record from, BMIs compute neural features used for 

device control. These features are influenced by the sensors used and the signal processing 

applied to measurements. Recent reviews summarized differences between types of neural 

measurements and implications for decoding (62). In the following subsections, we highlight 

commonly used neural features and discuss how they may influence closed-loop BMI 

control and learning.

3.3.1. Types of features and key differences.—Many BMIs use 

electrophysiologically measured action potentials. While early studies focused on well-

isolated single neurons (25, 27), signals that combine action potentials from different 

neurons are now common,such as unsorted spiking activity (multiunit) data, threshold 

crossings (e.g., 1), and spike-band power (63). These features blend action potentials at the 

sensor level, grouping neurons that are physically nearby. An alternative is neural features 

that group neurons based on structure within neural populations. For example, correlations 

among action potentials have been used to define “latent factors”(18). These features blend 

action potentials based on statistical relationships independent of physical proximity. Latent 

factor decoding may be done with multiunit data, leading to spatial and statistical blending 
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(64). Action potentials measured with calcium imaging have also been used for BMIs 

(39,65–68),which can provide cell type–specific (66) and subcellular (65) neural features.

The other main category of features is electrophysiological field potentials, which capture 

neural activity across a larger spatial area and on slower timescales than action potentials 

(69). The spatiotemporal properties of field potentials are influenced by sensor size, sensor 

placement (62), and signal frequency (low-frequency signals capture more global signals 

relative to higher frequencies). A wide variety of field potential measurements have been 

used in BMIs, including intracortical electrodes (LFPs) (52, 70–72) and electrodes on the 

cortical surface (ECoG) (28, 61, 73). Field potential features are most commonly defined 

in the spectral domain (e.g., power in a range of frequencies). BMIs often use features 

across a wide spectral range (e.g., 70), potentially blending neural activity across a variety of 

spatiotemporal scales.

Most closed-loop BMIs use a single feature type, but combinations of features have also 

been explored. A common combination is action potentials and LFPs, which can be recorded 

simultaneously from intracortical electrodes (52, 74).

3.3.2. Engineering considerations.—Neural features differ in their temporal stability, 

affecting BMI usability and learning. Single-neuron signals are prone to drift with current 

electrophysiology technologies. Population-level features (46, 75) and field potentials (61, 

71) are more stable, potentially through different mechanisms. Population-level features 

appear to capture computations performed by the population that remain stable even if the 

contributing neurons change (46). Field potentials are thought to capture similar neural 

activity over time as a result of physical properties of the measurements. Nonstationary 

neural features reduce decoding accuracy and require methods to adapt decoders (e.g., 75); 

however, frequent changes in neural features and decoders can reduce or eliminate learning 

(27, 51). Long-term ECoG BMI use leads to high performance and user learning (61, 73); 

population feature BMI studies have reported primarily maintenance of performance (75). 

Instability in features, or in the measured neural activity contributing to them, could affect 

learning processes such as credit assignment, reducing long-term learning. More research is 

needed to understand what forms of feature variability influence learning.

Neural features have different temporal resolutions, which affect closed-loop control and 

learning. The temporal resolution of a feature is tied to estimation methods. For instance, 

while action potentials are fast (millisecond resolution), most BMIs use the action potential 

rate, which is estimated by taking averages over time bins, constraining temporal resolution 

(76). This limitation can be overcome by using methods that directly estimate the underlying 

rate at millisecond resolution (76). The temporal resolution of features influences the rate 

of movement control and delay between neural activity and movement. In closed-loop 

systems, maximizing control rates (76) and minimizing delays (77) improve performance. 

Given the importance of sensorimotor timing for learning-related computations (78), timing 

differences in neural features may also affect learning, though this hypothesis remains to be 

explored.
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The number of neural features used will influence both decoding performance and learning 

in BMIs. Open-loop decoding always benefits from adding information, but the relationship 

between the number of features and closed-loop performance is less well characterized and 

will depend on the features used. For instance, features that incorporate population dynamics 

can retain performance after losing many neurons due to redundancy (79). Learning is also 

influenced by the number of neurons used, though this effect has been explored only with 

small numbers (tens) of neurons (39, 80). How these findings extend to features often used 

in clinical BMIs is unclear. Using a large number of neural features may make it easier for 

the brain to find effective BMI solutions by increasing control redundancy (80), but how the 

number of features might influence learning processes like credit assignment is unknown.

3.3.3. Biological considerations.—How neural features relate to the underlying 

functional neural circuitry must be considered. These considerations include the physical 

locations of neurons, cell types, and circuit connectivity—properties that are not completely 

independent. For instance, connectivity patterns differ across classes of inhibitory neurons 

(81).

Neural features differ in how they blend activity across neurons. Studies in which subjects 

control arbitrary BMI decoders suggest that increasing the physical distance between 

readout neurons negatively influences learning (80).How features that combine activity 

across large distances, such as population-based features, affect processes like credit 

assignment learning is unknown. A potentially related question concerns the impact of 

feature spatial resolution. BMI performance typically improves when features are spatially 

localized. For instance, action potentials provided better closed-loop performance than did 

locomotor potentials from LFPs, despite comparable offline predictive power (52).Whether 

these differences stem from the relative temporal or spatial resolution of these features has 

not been determined. Insights into the relevant scales of plasticity during motor learning will 

likely inform BMI feature design.

The relationship between features and anatomy may also influence learning. For instance, 

while cortical layers play distinct roles in natural motor learning (82), neural features used in 

BMIs often ignore layer boundaries, and layer-specific differences have been explored only 

in open-loop decoding (83). Interestingly, several studies have demonstrated distinct roles 

for cell types in BMIs. For example, bursting neurons adapt differently from nonbursting 

neurons during BMI learning (84).The cell types used for online BMI control also influence 

neural activity changes (66) and learning rates (85). Differences in both the anatomical and 

firing-rate properties between cell types contribute to these effects (85). How anatomical 

information can be leveraged to improve closed-loop BMIs remains an open question.

Neurons ultimately control movements through the activity of neuronal populations 

coordinated via anatomical and functional connections. Many neural features used in 

BMIs combine neural activity independent of anatomical connectivity. Features based on 

correlations in population activity, such as latent population dynamics, may provide one 

way to create features that reflect functional relationships.Decoder perturbations that do not 

require changes in population correlation structures are more rapidly learned than those 

that do not (18, 23).This finding highlights the potential importance of designing BMI 
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features that capture functionally relevant circuit properties. Answering this question will 

require additional insight into how neural populations perform motor control and learning 

computations.

3.4. Decoders

The decoder defines how neural features map to movement. Properties of the decoder and 

how it is trained will influence closed-loop performance. We first review types of decoders 

and training methods used in closed-loop BMIs that will be relevant for this and subsequent 

sections. We then discuss how decoder training may influence learning.

3.4.1. Decoder types and training methods.—Decoders can predict discrete or 

continuous movement variables. Discrete decoders perform classification to match a pattern 

of neural features to one of a finite list of possible movements. Discrete decoders often 

use neural features across a time interval longer than the time needed to estimate features, 

causing delays between neural activity and movement outcome. Continuous decoders map 

neural features to a continuously valued movement variable such as position or velocity. 

These decoders generally update movement at the same rate at which neural features are 

estimated.

The most common algorithms used in closed-loop BMIs linearly map neural features to 

movement. Directly mapping features to position is common in studies exploring learning of 

BMIs (25, 33, 36, 39, 68, 80). Algorithms like the Wiener filter (45) or the population vector 

algorithm and closely related variants (12) also directly map neural activity to movement 

variables. Alternately, decoders may map neural activity to a modeled state variable. The 

Kalman filter, for instance, predicts movements by combining a linear model of how the 

decoder state (e.g., velocity) relates to neural features with a model describing how the state 

evolves in time (86). Incorporating state models captures temporal dynamics, which play a 

role in closed-loop control (see Section 3.5). Nonlinear algorithms such as recurrent neural 

networks have also been used for both continuous (87, 88) and discrete (2) control.

Fully specifying a decoder requires setting its parameters. Parameters are often fitted to 

maximize the prediction of movement parameters from neural features on a training data set. 

Because predictive power on open-loop data is not predictive of closed-loop performance 

(12, 13), it is increasingly common for decoders to be trained on data collected as a 

user controls a closed-loop BMI. Methods to fully train or update decoder parameters in 

closed-loop BMIs can significantly improve performance (50, 89–91).

3.4.2. Influence on performance and learning.—The timescales of decoder training 

influence closed-loop performance and user learning. A typical protocol involves the use of 

a finite period of training data to set parameters daily. This can be done without maintaining 

continuity in parameters across days (45, 50) or while accounting for measurement drift 

to maintain consistent feature–movement relationships (75). Alternatively, closed-loop 

decoder adaptation can update decoder parameters at some rate or frequency (51, 61, 92). 

Importantly,neural plasticity may occur alongside decoder changes, creating a coadaptive 

system (51, 89). Consequently, fully retraining decoders daily (including changes in neural 

features) disrupts learning (27, 51). In contrast, occasional decoder adaptation yields 
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signatures of skill similar to those of fixed decoders, even with gradual drift in features 

(51, 61). Models have shown that coadaptive systems can become unstable if the algorithm 

and user learning rates are not appropriately matched (93). Understanding how decoder 

adaptation timescales influence performance and learning will be critical to optimize BMIs.

Adaptive decoders may also influence learning mechanisms, which have been studied 

primarily with fixed decoders. For example, learning a novel fixed decoder leads to 

significant changes in neural feature–movement relationships that gradually consolidate into 

a stable map (27). Periodic adaptive decoding also leads to a stable map, but reduces the 

amount of change in feature– movement relationships (51). In coadaptive BMIs, some of 

the largest learning-related changes are which neural features contribute to movement, rather 

than how they drive movement (51, 61). In light of the learning problems required for 

BMIs (see Section 3.1), this result demonstrates that adaptive decoding directly addresses 

only how neural features relate to movement. Whether and how adaptive decoding methods 

influence other key learning computations such as credit assignment remain to be fully 

explored.

3.5. Device and Control-Loop Properties

BMIs have controlled many devices, including virtual cursors (1, 45, 50, 51, 61) and 

robotic limbs (3, 4, 45). How the device moves in response to a given input—its dynamics—

influences closed-loop BMI control. Changing the device being controlled from a cursor to a 

robot without changing the decoder leads to changes in performance (45). Device dynamics 

can also alter the timing of control (e.g., rates, delays), which affects performance (76, 77).

A BMI’s dynamics are governed not only by the physical properties of a device but also 

by the decoding algorithm. For instance, the Kalman filter models how movement states 

(e.g., position, velocity) evolve in time, thus describing system dynamics. The choice of 

movement states controlled by neural activity affects closed-loop performance. Simulators 

of closed-loop BMIs have shown that velocity-based control is more robust to input noise 

(94) because integration of velocity commands effectively denoises inputs. Importantly, the 

control variable defines the computations the brain must perform for learning and control.

The optimal device dynamics for BMI will be influenced by learning. In online control, 

brain learning can overcome performance differences due to changes in device dynamics 

(45). Such learning may employ similar mechanisms as natural motor adaptation to 

changing environmental dynamics, which is thought to rely on updates to an internal model 

of how the limb moves in response to inputs (5, 9, 24). Such predictive models are needed 

for feedforward control of movements. Evidence suggests that the brain builds internal 

models of a BMI device (95) and uses feedforward control strategies (76). Consistent with 

these findings, BMIs that constrain system dynamics to better match those of physical 

objects we regularly interact with significantly improve closed-loop performance, even when 

these constraints sacrifice open-loop prediction accuracy (50, 96, 97). This observation 

may shed light on why nonlinear algorithms have, to date, produced relatively modest 

performance improvements in closed-loop settings in comparison to their clear superiority 

to linear methods in open-loop prediction (88). Together, these results suggest the need for 

techniques to simultaneously optimize decoding accuracy and closed-loop device dynamics. 
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Doing so will require new insights into how device parameters influence the ability to 

control and learn closed-loop BMI systems.

3.6. Forms of Feedback

Feedback closes the sensorimotor loop. This feedback can take many forms, including 

visual, tactile, auditory, and artificial (see Section 4). In BMIs, some form of feedback is 

necessary for goal-directed movement, real-time feedback control, and learning (25, 36, 

76). The importance of feedback motivates research to provide artificial sensation, which is 

covered in the next section. Here, we briefly discuss how feedback influences motor control 

and learning.

The timing of feedback relative to actions is critical for sensorimotor control and learning. 

In the natural motor system, learned internal models are thought to allow the brain to 

anticipate the sensory consequences of motor commands and attenuate them to amplify 

errors. Disrupting the timing between movement and sensory consequences reduces this 

attenuation (98), thus influencing learning computations. While temporal delays occur in 

all BMIs, discrete BMIs typically introduce significant delays between neural activity and 

motor outcomes, which may contribute to differences in forms of learning observed in 

discrete versus continuous BMIs (e.g., compare 19 versus 41). The relative timing between 

movements and sensory feedback must be considered when optimizing BMIs.

The form of feedback must also be considered. Natural motor learning is driven by multiple 

types of error feedback, including sensory prediction errors (expected versus actual sensory 

consequences), reward prediction errors (expected versus actual outcomes), and task error 

(actual movement versus the goal). Each error signal contributes to different aspects of 

learning (9). Discrete feedback of movement outcomes, the only feedback available in 

discrete BMIs, largely eliminates sensory prediction error signals, while continuous BMIs 

provide all forms of feedback. The richer feedback signals available in continuous BMIs 

may contribute to differences in learning between the two. Indeed, BMI tasks that can be 

learned with continuous feedback cannot be learned with discrete task error feedback alone 

(success or failure) (36). Artificial stimulation of brain areas associated with reward can 

facilitate learning (33, 99), highlighting the contributions of reward prediction errors. Deeper 

insights into how sensory feedback signals contribute to control and learning in BMIs will 

place important constraints on the design of both motor and sensory devices.

4. ARTIFICIAL SENSATION FOR NEURAL PROSTHESES

4.1. Artificial Sensation

The goal of artificial sensation is to replace natural sensory information when sensory 

feedback circuits are interrupted by injury or disease. In a bidirectional BMI, artificial 

sensation would take the form of somatosensation: providing touch and proprioception that 

improve BMI control (100). People lacking one or the other sense are unable to manipulate 

small objects, maintain grip, or complete precise multijoint movements (101–103). BMI 

subjects using an artificial sense of touch have already gained agility in handling delicate 
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objects (104); however, an artificial sense of proprioception remains elusive, despite its 

essential role during movement.

Artificial somatosensation can be provided to patients by modulating neural activity within 

sensorimotor circuits. To accomplish this goal, the scientific community must decide (a) 

how to modulate neural activity; (b) where to target neural modulation (anatomically); (c) 

how to encode touch and proprioception; and (d) what, if any, learning is required. Answers 

will depend on individual patients, the extent of their injuries, the physical demands of 

important behavioral tasks, and the type of neural prostheses they control. First, we restrict 

the problem space under discussion by considering only forms of neural modulation that 

can be directly translated into human patients (i.e., excluding optical techniques). Second, 

we focus on patients who have massive, widespread paralysis, which shifts the anatomical 

locus of the problem to the central nervous system. Finally, because we wish to describe 

the basic biological circuits involved in a sensory BMI, we consider only invasive neural 

modulation and its interaction with neural circuits.To satisfy these conditions, we discuss the 

use of electrical stimulation for artificial sensation.

An enduring technique for neural modulation is electrical stimulation, which consists of 

passing small electrical currents through an electrode. First implemented in the search for 

functional specialization across the nervous system in the nineteenth century, electrical 

stimulation facilitated the discovery of the sensory and motor homunculus—the idea that 

neurons within the sensory and motor areas of the brain are functionally organized according 

to the part of the body to which they respond (105). Since then, electrical stimulation 

has formed the basis of experiments causally linking neural activity within specific brain 

regions to complex behavior and cognition (106, 107). In our modern era, electrical 

stimulation is additionally employed in the pursuit of artificial sensation, finding clinical 

success in cochlear implants (108) and enabling progress in the development of artificial 

somatosensation.

4.2. Brain Regions to Target for Artificial Feedback

The pathway traveled by touch and proprioceptive information during natural sensation has 

been well described (102), but we summarize it here briefly in order to gain insight into 

which brain areas should be targeted for artificial somatosensation. Sensory processing is 

organized hierarchically: Signals from sensory receptors on the periphery are sent to the 

spinal cord and onward into the brainstem, thalamus, and primary somatosensory cortex. 

Touch and proprioceptive information split in the thalamus, from which information about 

touch is sent primarily to areas 3b and 1 within the somatosensory cortex, while information 

about proprioception is sent primarily to areas 3a and 2. From the somatosensory cortex, 

information flow splits into two parallel streams whose functions diverge:

1. Higher-level feature extraction occurs along the ventral stream, including the 

secondary somatosensory cortex and parietal ventral area.

2. Motor planning occurs along the dorsal stream, which includes areas 5 and 7.

Neural responses within each brain area can be characterized by their stimulus tuning 

(responses to different parameters of a stimulus) and receptive fields (areas of the body to 
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which a neuron is responsive). Receptive field sizes grow along the sensory processing 

hierarchy, as information originating from multiple sensors is integrated to implement 

higher-level functions such as object recognition or movement planning. The activity of 

a neuron within the somatosensory stream can be thought of as a “vote” for the type of 

sensory information to which it is tuned. Therefore, activation of a neuron via electrical 

stimulation can be used to tell the brain that a particular type of sensory information is 

present.

The location of stimulation, including the type of neurons that are stimulated and their 

relation to the behavioral task of interest, seems to be critical for effective stimulation, yet 

there are only minor differences in animals’ ability to detect stimulation across different 

brain regions (109, 110). Despite this apparent flexibility, there are several reasons that 

most studies have focused on the early somatosensory cortex (111–115). First, its superficial 

position upon the cortical surface makes the somatosensory cortex more accessible than 

the thalamus or spinal cord. Second, neurons within the somatosensory cortex tend to have 

smaller receptive fields than higher-level areas, which means that smaller portions of the 

body can be targeted for selective stimulation. Third, more neurons are devoted to each body 

part in the somatosensory cortex than in earlier parts of the nervous system, making it easy 

to target many locations to encode complex information. A motivating example is the hand, 

for which high-dimensional feedback will be needed to control grasp and detect touch in the 

fingers.

An argument can still be made for targeting higher cortical areas. For instance, the 

receptive fields of neurons within area 5 are larger than in the somatosensory cortex, 

often spanning multiple joints, and are mostly proprioceptive in nature. Therefore, it is 

possible that stimulation at a single site in area 5 would encode a set of joint angles 

for the entire upper limb—something that would require multichannel stimulation within 

the somatosensory cortex. However, if electrical stimulation evokes unusual neural activity 

patterns within the brain, stimulation of higher cortical areas may be more likely to disrupt 

sensorimotor function than would stimulation of early somatosensory regions. Therefore, 

although multiple brain regions could serve as viable targets for artificial sensation, there are 

many reasons to assert that the primary somatosensory cortex is an ideal choice.

4.3. Neural Activity Patterns Evoked by Electrical Stimulation

The brain represents natural sensory information in the number and timing of neural 

action potentials. Therefore, to design effective artificial sensation, we must understand 

how the spatial and temporal pattern of stimulation-evoked neural responses depend on the 

parameters of electrical stimulation. The smallest unit of electrical stimulation is a constant-

current biphasic pulse, which minimizes damage to both brain and electrode. Stimulation 

often consists of a train of pulses, which can vary in timing (stimulation frequency and pulse 

timing), stimulation amplitude, and the shape of the biphasic waveform (Figure 3). Each of 

these parameters affects stimulation-evoked neural activity patterns.

Traditionally, a single pulse of electrical stimulation was thought to activate neurons within 

a sphere surrounding the electrode tip (116). An increase in the stimulation amplitude 

increased the number of activated neurons and extended their physical spread (117). 
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However, more recent research found that low-amplitude electrical stimulation activated 

only a sparse, distributed set of neurons whose axons were proximal to the electrode tip 

(118), and an increase in stimulation amplitude seemed to fill in the space by recruiting 

more neurons within the same space. A possible resolution has been proposed, asserting 

that while stimulation does activate axons that pass by the electrode tip, the likelihood of 

directly activating a cell body depends on the distance between the neuron and the electrode 

tip (119).

Stimulation frequency, pulse timing, and pulse shape can also control stimulation-evoked 

neural activity patterns (Figure 3). Stimulation frequency affects the spatial extent of 

stimulation-evoked activity (120), the population of neurons that are recruited, and the type 

of responses that are elicited (inhibitory versus excitatory) (121). The specific temporal 

pattern of pulse delivery also matters, such that small differences in timing change the 

population of recruited neurons (122). Finally, the application of asymmetric waveforms 

reduces the spatial extent of neural activation by electrical stimulation (123). Ongoing 

animal behavior at the time of stimulation also affects evoked neural activity; stimulation 

delivered during movement is less effective at activating neural responses (124) and 

can actively suppress neural activity (125). However, the interaction between behavior 

and stimulation-evoked neural activity has yet to be explored in depth, despite its clear 

importance.

Stimulation-evoked neural activity patterns can be made to resemble neural activity during 

natural sensory processing by careful manipulation of stimulation parameters. In one study, 

for example, controlling the timing and amplitude of a train of stimulation pulses in a 

pattern designed using a recurrent neural network can make stimulation-evoked spiking 

patterns look more natural (126). The only limitation of this study is that the algorithm 

was optimized to manipulate the activity a single neuron without considering the effects on 

surrounding neurons, thus ignoring spatial activation patterns. However, the study presents 

a compelling proof of concept in combination with published literature demonstrating 

spatial control over neural activity patterns via manipulation of natural stimuli (127). Future 

research will need to focus on higher-dimensional control over stimulation-evoked neural 

activity.

4.4. Learning to Use Artificial Sensation

The goal of artificial somatosensation is to enable naturalistic control of an external device 

in a bidirectional BMI. However, stimulation-evoked neural activity generally does not look 

natural in the spatial patterns of activation (118). Therefore, we have a critical open question 

to address: Does artificial sensation have to be learned?

4.4.1. Direct transfer of performance.—Animal behavioral experiments show that 

electrical stimulation can directly replace natural sensation, particularly the sense of touch. 

Monkeys trained to compare the frequencies of mechanical vibrations were equally able to 

compare the frequencies of mechanical and electrical stimuli without any further training 

(128) if certain stimulation parameters were used. Similarly, monkeys trained to detect 

and discriminate mechanical touch to different fingers on the hand can, without training, 
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complete the task when electrical stimulation of area 3b or area 1 replaces one or both 

natural stimuli (112). Rodents, too, can substitute electrical stimulation with natural touch, 

but only if stimulation is targeted to the barrel cortex rather than the trunk or hindlimb areas 

(129).

Examples of direct transfer extend beyond the somatosensory cortex. Rats trained to 

perform a tone discrimination task could immediately transfer performance when the sounds 

were replaced by electrical stimulation (130), and could generalize task performance to 

new stimulation sites without further training (131). Therefore, although direct transfer 

between natural sensation and electrical stimulation is possible, the location and stimulation 

parameters must be carefully chosen.

4.4.2. Learning-based artificial sensation.—In contrast to the examples of direct 

transfer discussed in the preceding section, most behavioral studies involving artificial 

sensation require some training, where an animal gradually learns to detect or discriminate 

patterns of electrical stimulation. Such learning-based approaches can be divided into 

passive and active sensing. During passive sensing, animals receive stimulation as a cue to 

complete some action, such as reaching or gazing toward a target. Researchers then change 

the stimulation patterns in order to query perception and stimulus discriminability (e.g., 

115, 132). Active sensing, on the other hand, more closely resembles natural sensorimotor 

function, where the timing and parameters of stimulation change as a function of the 

animal’s behavior.

Passive sensing has provided a rich body of data on how well animals can distinguish 

between electrical stimulation with different parameters, and how those parameters can 

be mapped back to natural sensation. Animals detect stimuli as weak as a single pulse 

of electrical stimulation (133), even at amplitudes that are close to the threshold for 

evoking neural activity (117), and remain sensitive to stimulation for years (134); however, 

increasing stimulation amplitude makes artificial sensation easier to detect (133). Animals 

can distinguish the temporal pattern of stimulation within the primary somatosensory 

cortex, the electrode across which stimulation is being delivered (113, 135), the frequency 

of stimulation (132), and even the precise timing of stimulation pulses (136). Although 

amplitude and frequency can be controlled independently during stimulation, these two 

parameters are not always perceptually dissociable (132). Note that these behavioral 

results describing the discriminability of stimulation parameters mirror the differences in 

stimulation-evoked neural activity patterns described above, identifying stimulation pulse 

timing, frequency, amplitude, and location as parameters that can be manipulated to elicit 

distinct sensations.

Active sensing studies serve as a proof of concept that electrical stimulation can provide 

interactive, real-time information to represent internal and external stimuli. For example, 

electrical stimulation can transform inaccessible sensory information in the environment into 

something that we can understand and use. Rats, like most rodents, are normally unable 

to detect infrared (IR) light; however, by translating measurements from a head-mounted 

IR sensor into the frequency of cortical electrical stimulation, they can localize IR-emitting 

targets within their environment (137). Similarly, rats can use stimulation signals to guide 
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their progress through a Morris water maze, where stimulation provides information about 

target location (138). Both of these results are possible only if the animals integrated 

stimulation timing with information about their own position and heading in space.

Another compelling example of active integration is a study where animals had to determine 

which of two “virtual textures” had a higher spatial frequency (114). In this task, monkeys 

received an electrical stimulation pulse whenever their fingers passed over a virtual ridge, so 

the timing and frequency of electrical stimulation depended on the movements of the animal 

itself as well as on the spatial frequency of the virtual texture. To properly discriminate 

between the two, the animal needed to integrate stimulus timing with the location and 

speed of its hand moving across the workspace. Therefore, for animals to complete this and 

prior behavioral tasks, artificial sensation had to be integrated into the normal sensorimotor 

processing loop in order to help the animals plan their movements.

In addition to sensorimotor integration, a critical aspect of natural sensation is integration 

with other forms of sensory information. For example, during natural reaching, humans 

make use of both proprioceptive and visual information to plan and guide their movements 

(139) in a manner that depends on the relative reliability of the inputs (140). Experiments 

have found that electrical stimulation can indeed be integrated with both other sensory cues 

and motor plans. Monkeys trained to use visual flow fields or multichannel stimulation to 

reach to invisible targets ultimately integrate the two signals “optimally” on the basis of their 

relative reliability (111, 141). Human patients also integrate artificial sensation optimally 

with natural vision in order to estimate the size of a handheld object (142). Thus, artificial 

sensory information can be integrated with natural sensory streams reporting information 

about both the external environment and the internal state of the user.

In the active sensing experiments described above, animals learned to integrate natural 

sensorimotor information with the timing and location of stimulation, even though patterns 

of electrical stimulation did not imitate local neural activity patterns and instead had to 

be learned. These results suggest that learning-based stimulation is sufficient for artificial 

sensation; however, the behavioral tasks described were relatively simple, so the information 

needed was relatively low dimensional. In contrast, control over a prosthetic arm will require 

higher-dimensional information, including the position and rotational speed of each joint as 

well as touch across the surface of the limb. Therefore, as the complexity of the problem 

scales, we may have to be more careful about the learning load imposed on the user, but for 

simpler tasks, a learning-based approach is highly effective.

4.5. Cortical Adaptation to Electrical Stimulation

Any act of learning requires neural plasticity, defined as the ability of neurons to change 

the strength and pattern of their connections as a result of experience. Natural sensorimotor 

learning involves plasticity within the basal ganglia and the sensory, motor, and prefrontal 

cortices—brain areas that are responsible for adapting to new sensory information and 

associating sensory inputs with motor commands (143). Learning in a motor BMI also 

involves plasticity in, at a minimum, the basal ganglia and motor cortex (144), while 

learning to detect electrical stimulation requires (at least) plasticity in sensory cortical areas 

(145). However, electrical stimulation drives cortical plasticity even in the absence of any 
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behavioral relevance (146, 147), so learning within the context of a BMI will consist of 

a balance between adapting to stimulation-evoked responses, assigning stimulation-evoked 

responses behavioral relevance, and associating stimulation-evoked responses with motor 

commands.

4.5.1. Stimulation-evoked neuroplasticity in the absence of overt behavior.—
Neurons undergo both homeostatic plasticity, which maintains steady activity levels over 

time, and Hebbian plasticity, a form of activity-dependent plasticity (148). Scientists have 

successfully employed Hebbian plasticity to strengthen specific connections within the 

cortex, by pairing neural activity on a recording electrode with electrical stimulation on 

a second electrode. Neural plasticity can be induced quickly this way, within 48 h of 

stimulation (149–151), and the effects persist for hours. However, timing is important: 

Plasticity is induced only with low-latency stimulation (5–50 ms after an action potential) 

(149, 150).

Increasing the functional connectivity between neurons has significant behavioral 

consequences. Pairing stimulation across two electrodes lowers the threshold for stimulus 

detection on a single electrode (151), making the stimulus more salient. Furthermore, 

spike-triggered stimulation within the motor cortex reorganizes motor output, shifting the 

muscle activated by the recorded neuron toward that of the stimulated one (presumably by 

strengthening the lateral connections between neurons) (149). Paired stimulation has clinical 

applications, such as forging new connections to circumvent brain areas damaged by stroke 

or disease.

Plasticity in neural responses can also be induced by electrical stimulation in the absence of 

specific pairings. For example, cortical electrical stimulation correlates spontaneous spiking 

in a population of neurons (147) and shifts neural receptive fields toward those at the 

stimulation site, expanding the total cortical area dedicated to a single part of the body (146). 

Nearly identical shifts follow prolonged exposure to natural stimuli (152), indicating shared 

mechanisms of plasticity between natural and artificial sensation.

4.5.2. Learning to detect electrical stimulation.—Adding behavioral relevance to 

electrical stimulation is at the heart of artificial sensation; however, surprisingly little is 

known about how neurons adapt their responses to behaviorally significant stimulation. 

Single neurons do seem to change their responses in subtle ways. Neurons typically respond 

to electrical stimulation by a short burst of excitation followed by a longer-lasting inhibition 

(117). After behavioral training, neurons have both a larger active response and a longer 

inhibitory phase compared with baseline (145). These changes show clear adaptation to 

novel experience.

Additional evidence reveals circuit-level adaptation during learning to detect electrical 

stimulation. Nonhuman primates can learn to detect stimulation at amplitudes as low as 

5 μA (153), at which only a sparse set of neurons is activated (118). The lower bound on 

conscious detection of neural activity is thought to be around 14 neurons within the upper 

layers of the mouse somatosensory cortex (154), although further training can lower this 

bound to a single neuron (155). Neural prostheses will ultimately require a large number of 
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stimulating channels to encode high-dimensional sensory information, which will be easier 

to implement if only a small number of neurons are needed for detection on each channel.

Behavioral experiments that involve learning to detect electrical stimulation have provided 

some insight into how neural circuits might adapt during learning. Animals can detect the 

presence of weak natural and electrical stimuli with practice; however, learning to detect 

electrical stimulation seems to compete with detection of natural stimuli (153). Therefore, 

learning to detect electrical stimulation seems to require plasticity to optimize neural circuits 

for a particular stimulation-evoked neural activity pattern. In contrast, training mice to 

control a simple BMI does not interfere with responses to natural stimuli (156). Thus, it 

is possible that different mechanisms of learning and plasticity are employed for sensory 

perception than for de novo motor learning, even within the sensory cortices.

4.6. Sensory Percepts Elicited by Electrical Stimulation

Electrical stimulation can either elicit overt sensations or simply bias the perception of 

natural stimuli (157). Animal models provide only indirect evidence regarding stimulation-

evoked sensations, with mixed results suggesting both naturalistic sensations (112, 128, 130, 

131, 158) and unnatural sensations (111, 114, 135, 136). Humans, on the other hand, can 

simply tell us how electrical stimulation feels.

Electrical stimulation in humans that was used to map cortical function in the course of 

surgery induced sensations such as numbness, tingling, and “as though it was going to sleep” 

(105). Only in recent research with penetrating microelectrodes have stimulation-evoked 

sensations come to have a more “natural” feel, including a mix of natural (mechanical, 

movement, temperature) and unnatural (tingling, vibration) sensations (115, 159). In 

addition to the location and type of electrodes used, the parameters chosen for electrical 

stimulation affect evoked sensations. Humans perceive the intensity of a stimulation-induced 

sensation to increase linearly with stimulation amplitude and duration (115). In contrast, 

increasing stimulation frequency has mixed effects on perception,at some times heightening 

and at others weakening the perceived intensity of the stimulus (159). Note that most of 

the sensations described above have qualities of touch; proprioceptive-like sensations were 

found at higher stimulation amplitudes and frequencies (160). What has yet to be fully 

explored in humans is how precise timing affects evoked sensations (but see 161).

Electrical stimulation seems to elicit mixed sensations: some that feel natural and others that 

do not. However, we argue that sensation need not feel natural to be useful during behavioral 

tasks. Humans were able to use peripheral nerve stimulation as part of a bidirectional 

BMI, even when the sensations elicited by stimulation felt unnatural (162). Furthermore, 

as discussed above, animals learned to integrate electrical stimulation cues into natural 

sensory and motor behavior, even where stimulation patterns did not imitate natural neural 

activity patterns. From these studies, we conclude that stimulation-evoked sensations that 

convey graded information to the nervous system are already accomplishing the ultimate 

goal of artificial sensation in a sensory or bidirectional BMI—enabling accurate, precise 

sensorimotor function. We go so far as to speculate that stimulation will, over time, start to 

feel natural as it acquires higher-level meaning during closed-loop behavior.
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5. CONCLUSIONS AND FUTURE RESEARCH

In this review, we have discussed sensory and motor BMIs separately, because the 

complexities of each pathway have resulted in largely distinct lines of research focused 

on optimizing each component in isolation. However, implementing bidirectional BMI 

experiments will be critical to achieving high levels of performance for both motor readout 

and sensory processing. Even when considering motor or sensory BMIs separately, research 

has revealed the importance of closed-loop sensorimotor interactions and the need for new 

engineering approaches to optimize closed-loop BMIs.

While feedback like vision allows almost all motor BMIs to be closed-loop systems, 

movement precision and real-world interactions will be limited in the absence of 

proprioceptive and tactile feedback (4, 103). Advances in motor BMIs require that we move 

past purely open-loop machine learning approaches to optimize closed-loop performance. 

Doing so will require careful consideration of all aspects of the system, from neural features 

to control dynamics, and how they interact with the brain’s learning computations.

From the sensory side, future experiments must be closed-loop to promote learning and 

plasticity. Although we have learned much about how electrical stimulation is processed 

using passive sensing alone, the most complex behavioral tasks achieved with electrical 

stimulation were closed-loop, where stimulation was delivered as a function of the 

animal’s behavior rather than passively received prior to behavior. In imitation of natural 

sensorimotor processing, we must train BMIs by taking advantage of three levels of neural 

plasticity: adaptation to motor control algorithms, adaptation to electrical stimulation inputs, 

and a learned mapping between the two.

Much as natural sensory and motor functions codevelop, optimizing bidirectional BMIs will 

ultimately require joint design of artificial sensory and motor pathways. Such design will 

require insight into the principles of neural plasticity in sensorimotor BMIs, as well as new 

engineering methods for closed-loop optimization. The future of BMI must be bidirectional.

ACKNOWLEDGMENTS

The authors’ research was supported in part by the National Science Foundation (grant 2117997 to A.L.O. and 
M.C.D.), the Ralph W. and Grace M. Showalter Research Trust (M.C.D.), the Simons Foundation (A.L.O.), and the 
National Center for Advancing Translational Sciences of the National Institutes of Health (award TL1 TR002318 to 
R.A.C.). The content is solely the responsibility of the authors and does not necessarily represent the official views 
of the National Institutes of Health.

LITERATURE CITED

1. Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J, et al. 2017. High performance 
communication by people with paralysis using an intracortical brain-computer interface. eLife 
6:e18554 [PubMed: 28220753] 

2. Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. 2022. High-performance 
brain-to-text communication via handwriting. Nature 593(7858):249–54

3. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, et al. 2013. High-performance 
neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–64 [PubMed: 
23253623] 

Dadarlat et al. Page 20

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, et al. 2021. A brain-computer interface 
that evokes tactile sensations improves robotic arm control. Science 372(6544):831–36 [PubMed: 
34016775] 

5. Wolpert D, Ghahramani Z, Jordan M. 1995. An internal model for sensorimotor integration. Science 
269(5232):14–16 [PubMed: 7604272] 

6. Hein A, Held R. 1967. Dissociation of the visual placing response into elicited and guided 
components. Science 158(3799):390–92 [PubMed: 6061894] 

7. Hein A, Held R, Gower EC. 1970. Development and segmentation of visually controlled movement 
by selective exposure during rearing. J. Comp. Physiol. Psychol 73(2):181–87 [PubMed: 5493257] 

8. Attinger A,Wang B,Keller GB.2017.Visuomotor coupling shapes the functional development of 
mouse visual cortex. Cell 169(7):1291–302.e14 [PubMed: 28602353] 

9. Krakauer JW,Hadjiosif AM,Xu J,Wong AL,Haith AM.2019.Motor 
learning.Compr.Physiol9(2):613–63 [PubMed: 30873583] 

10. Bastian AJ. 2008. Understanding sensorimotor adaptation and learning for rehabilitation. Curr. 
Opin. Neurol 21(6):628–33 [PubMed: 18989103] 

11. Henriques DYP, Cressman EK. 2012. Visuomotor adaptation and proprioceptive recalibration. J. 
Mot. Behav 44(6):435–44 [PubMed: 23237466] 

12. Chase SM, Schwartz AB, Kass RE. 2009. Bias, optimal linear estimation, and the differences 
between open-loop simulation and closed-loop performance of spiking-based brain–computer 
interface algorithms. Neural Netw. 22(9):1203–13 [PubMed: 19502004] 

13. Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE. 2010. Comparison of 
brain– computer interface decoding algorithms in open-loop and closed-loop control. J. Comput. 
Neurosci 29(1):73–87 [PubMed: 19904595] 

14. Orsborn AL, Pesaran B. 2017. Parsing learning in networks using brain–machine interfaces. Curr. 
Opin. Neurobiol 46:76–83 [PubMed: 28843838] 

15. Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB. 2008. Functional 
network reorganization during learning in a brain-computer interface paradigm. PNAS 
105(49):19486–91 [PubMed: 19047633] 

16. Chase SM, Kass RE, Schwartz AB. 2012. Behavioral and neural correlates of visuomotor 
adaptation observed through a brain-computer interface in primary motor cortex. J. Neurophysiol 
108(2):624–44 [PubMed: 22496532] 

17. Zhou X, Tien RN, Ravikumar S, Chase SM. 2019. Distinct types of neural reorganization during 
long-term learning. J. Neurophysiol 121(4):1329–41 [PubMed: 30726164] 

18. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, et al. 2014. Neural constraints on learning. 
Nature 512(7515):423–26 [PubMed: 25164754] 

19. Hwang E, Bailey P, Andersen R. 2013. Volitional control of neural activity relies on the natural 
motor repertoire. Curr. Biol 23(5):353–61 [PubMed: 23416098] 

20. Sakellaridi S,Christopoulos VN,Aflalo T,Pejsa KW,Rosario ER,et al. .2019.Intrinsic variable 
learning for brain-machine interface control by human anterior intraparietal cortex. Neuron 
102(3):694–705.e3 [PubMed: 30853300] 

21. Golub MD, Sadtler PT, Oby ER, Quick KM, Ryu SI, et al. 2018. Learning by neural reassociation. 
Nat. Neurosci 21(4):607–16 [PubMed: 29531364] 

22. Taylor JA,Krakauer JW,Ivry RB.2014.Explicit and implicit contributions to learning in a 
sensorimotor adaptation task. J. Neurosci 34(8):3023–32 [PubMed: 24553942] 

23. Oby ER, Golub MD, Hennig JA, Degenhart AD, Tyler-Kabara EC, et al. 2019. New neural activity 
patterns emerge with long-term learning. PNAS 116(30):15210–15 [PubMed: 31182595] 

24. Yang CS, Cowan NJ, Haith AM. 2021. De novo learning versus adaptation of continuous control in 
a manual tracking task. eLife 10:e62578 [PubMed: 34169838] 

25. Fetz EE. 1969. Operant conditioning of cortical unit activity. Science 163(3870):955–58 [PubMed: 
4974291] 

26. Moritz CT, Fetz EE. 2011. Volitional control of single cortical neurons in a brain–machine 
interface. J. Neural Eng 8:025017 [PubMed: 21436531] 

Dadarlat et al. Page 21

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Ganguly K, Carmena JM. 2009. Emergence of a stable cortical map for neuroprosthetic control. 
PLOS Biol. 7(7):e1000153 [PubMed: 19621062] 

28. Wander JD, Blakely T, Miller KJ, Weaver KE, Johnson LA, et al. 2013. Distributed cortical 
adaptation during learning of a brain–computer interface task. PNAS 110(26):10818–23 [PubMed: 
23754426] 

29. Gulati T, Ramanathan DS, Wong CC, Ganguly K. 2014. Reactivation of emergent task-related 
ensembles during slow-wave sleep after neuroprosthetic learning. Nat. Neurosci 17(8):1107–13 
[PubMed: 24997761] 

30. Gulati T, Guo L, Ramanathan DS, Bodepudi A, Ganguly K. 2017. Neural reactivations during 
sleep determine network credit assignment. Nat. Neurosci 20(9):1277–84 [PubMed: 28692062] 

31. Dayan E, Cohen LG. 2011. Neuroplasticity subserving motor skill learning. Neuron 72(3):443–54 
[PubMed: 22078504] 

32. Athalye VR, Ganguly K, Costa RM, Carmena JM. 2017. Emergence of coordinated neural 
dynamics underlies neuroprosthetic learning and skillful control. Neuron 93(4):955–70.e5 
[PubMed: 28190641] 

33. Athalye VR, Santos FJ, Carmena JM, Costa RM. 2018. Evidence for a neural law of effect. 
Science 359(6379):1024–29 [PubMed: 29496877] 

34. Peters AJ, Chen SX, Komiyama T. 2014. Emergence of reproducible spatiotemporal activity during 
motor learning. Nature 510(7504):263–67 [PubMed: 24805237] 

35. Dhawale AK, Smith MA, Ölveczky BP. 2017. The role of variability in motor learning. Annu. Rev. 
Neurosci 40:479–98 [PubMed: 28489490] 

36. Koralek AC, Jin X, Long JD II, Costa RM, Carmena JM. 2012. Corticostriatal plasticity is 
necessary for learning intentional neuroprosthetic skills. Nature 483(7389):331–35 [PubMed: 
22388818] 

37. Koralek A, Costa R, Carmena J. 2013. Temporally precise cell-specific coherence develops in 
corticostriatal networks during learning. Neuron 79(5):865–72 [PubMed: 23954030] 

38. Liu Z, Schieber MH. 2020. Neuronal activity distributed in multiple cortical areas during voluntary 
control of the native arm or a brain-computer interface. eNeuro 7(5):ENEURO.0376–20.2020

39. Clancy KB,Koralek AC,Costa RM,Feldman DE,Carmena JM.2014.Volitional modulation of 
optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci 17(6):807–9 
[PubMed: 24728268] 

40. Arduin PJ, Fregnac Y, Shulz DE, Ego-Stengel V. 2013. “Master” neurons induced by operant 
conditioning in rat motor cortex during a brain-machine interface task. J. Neurosci 33(19):8308–20 
[PubMed: 23658171] 

41. Ganguly K, Dimitrov DF, Wallis JD, Carmena JM. 2011. Reversible large-scale modification 
of cortical networks during neuroprosthetic control. Nat. Neurosci 14(5):662–67 [PubMed: 
21499255] 

42. Gallego JA, Makin TR, McDougle SD. 2022. Going beyond primary motor cortex to improve 
braincomputer interfaces. Trends Neurosci. 45(3):176–83 [PubMed: 35078639] 

43. Dum R,Strick PL.2004.Motor areas in the frontal lobe: the anatomical substrate for the central 
control of movement. In Motor Cortex in Voluntary Movements: A Distributed System for 
Distributed Functions, ed. Riehle A, Vaadia E, pp. 3–47. Boca Raton, FL: CRC

44. Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD. 2017. Perspectives on classical 
controversies about the motor cortex. J. Neurophysiol 118(3):1828–48 [PubMed: 28615340] 

45. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, et al. 2003. Learning to control 
a brain–machine interface for reaching and grasping by primates. PLOS Biol. 1(2):e42 [PubMed: 
14624244] 

46. Gallego JA, Perich MG, Chowdhury RH, Solla SA, Miller LE. 2020. Long-term stability 
of cortical population dynamics underlying consistent behavior. Nat. Neurosci 23(2):260–70 
[PubMed: 31907438] 

47. Cherian A, Krucoff MO, Miller LE. 2011. Motor cortical prediction of EMG: evidence that a 
kinetic brain-machine interface may be robust across altered movement dynamics. J. Neurophysiol 
106(2):564–75 [PubMed: 21562185] 

Dadarlat et al. Page 22

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Cisek P, Kalaska JF.2005. Neural correlates of reaching decisions in dorsal premotor cortex: 
specification of multiple direction choices and final selection of action. Neuron 45(5):801–14 
[PubMed: 15748854] 

49. Shanechi MM, Hu RC, Powers M, Wornell GW, Brown EN, Williams ZM. 2012. Neural 
population partitioning and a concurrent brain-machine interface for sequential motor function. 
Nat. Neurosci 15(12):1715–22 [PubMed: 23143511] 

50. Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, et al. 2012. A high-performance 
neural prosthesis enabled by control algorithm design. Nat. Neurosci 15(12):1752–57 [PubMed: 
23160043] 

51. Orsborn AL, Moorman H, Overduin S, Shanechi M, Dimitrov D, Carmena JM. 2014. Closed-
loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 
82(6):1380–93 [PubMed: 24945777] 

52. Stavisky SD, Kao JC, Nuyujukian P, Ryu SI, Shenoy KV. 2015. A high performing brain–machine 
interface driven by low-frequency local field potentials alone and together with spikes. J. Neural 
Eng 12:036009 [PubMed: 25946198] 

53. Mulliken GH, Musallam S, Andersen RA. 2008. Decoding trajectories from posterior parietal 
cortex ensembles. J. Neurosci 28(48):12913–26 [PubMed: 19036985] 

54. Whitlock JR. 2017. Posterior parietal cortex. Curr. Biol 27(14):R691–95 [PubMed: 28743011] 

55. Andersen RA, Buneo CA. 2002. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci 
25:189–220 [PubMed: 12052908] 

56. Batista AP,Buneo CA,Snyder LH,Andersen RA.2022.Reach plans in eye-centered 
coordinates.Science 285(5425):257–60

57. Neely RM, Koralek AC, Athalye VR, Costa RM, Carmena JM. 2018. Volitional modulation of 
primary visual cortex activity requires the basal ganglia. Neuron 97(6):1356–68.e4 [PubMed: 
29503189] 

58. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019. Single-trial neural dynamics 
are dominated by richly varied movements. Nat. Neurosci 22(10):1677–86 [PubMed: 31551604] 

59. Ganguly K, Secundo L, Ranade G, Orsborn AL, Chang EF, et al. 2009. Cortical representation 
of ipsilateral arm movements in monkey and man. J. Neurosci 29(41):12948–56 [PubMed: 
19828809] 

60. Mahmoudi B, Sanchez JC. 2011. A symbiotic brain-machine interface through value-based 
decision making. PLOS ONE 6(3):e14760 [PubMed: 21423797] 

61. Silversmith DB,Abiri R,Hardy NF,Natraj N,Tu-Chan A,et al. .2021.Plug-and-play control of 
a brain– computer interface through neural map stabilization. Nat. Biotechnol 39(3):326–35 
[PubMed: 32895549] 

62. Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, et al. 2021. Multi-scale neural decoding and 
analysis. J. Neural Eng 18:045013

63. Nason SR, Vaskov AK, Willsey MS, Welle EJ, An H, et al. 2020. A low-power band of neuronal 
spiking activity dominated by local single units improves the performance of brain–machine 
interfaces. Nat. Biomed. Eng 4(10):973–83 [PubMed: 32719512] 

64. Trautmann EM, Stavisky SD, Lahiri S, Ames KC, Kaufman MT, et al. 2019. Accurate estimation 
of neural population dynamics without spike sorting. Neuron 103(2):292–308.e4 [PubMed: 
31171448] 

65. Trautmann EM,O’Shea DJ,Sun X,Marshel JH,Crow A,et al. .2021.Dendritic calcium signals in 
rhesus macaque motor cortex drive an optical brain-computer interface. Nat. Commun 12:3689 
[PubMed: 34140486] 

66. Mitani A, Dong M, Komiyama T. 2018. Brain-computer interface with inhibitory neurons reveals 
subtype-specific strategies. Curr. Biol 28(1):77–83.e4 [PubMed: 29249656] 

67. Clancy KB, Mrsic-Flogel TD. 2012. The sensory representation of causally controlled objects. 
Neuron 109(4):677–89.e4

68. Prsa M, Galiñanes GL, Huber D. 2017. Rapid integration of artificial sensory feedback during 
operant conditioning of motor cortex neurons. Neuron 93(4):929–39.e6 [PubMed: 28231470] 

69. Buzsáki G,Anastassiou CA,Koch C.2012.The origin of extracellular fields and currents—
EEG,ECoG, LFP and spikes. Nat. Rev. Neurosci 13(6):407–20 [PubMed: 22595786] 

Dadarlat et al. Page 23

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



70. So K, Dangi S, Orsborn AL, Gastpar MC, Carmena JM. 2014. Subject-specific modulation of local 
field potential spectral power during brain–machine interface control in primates. J. Neural Eng 
11:026002 [PubMed: 24503623] 

71. Flint RD, Wright ZA, Scheid MR, Slutzky MW. 2013. Long term, stable brain machine interface 
performance using local field potentials and multiunit spikes. J. Neural Eng 10:056005 [PubMed: 
23918061] 

72. Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E. 2013. Inducing γ oscillations and precise 
spike synchrony by operant conditioning via brain–machine interface. Neuron 77(2):361–75 
[PubMed: 23352171] 

73. Benabid AL, Costecalde T, Eliseyev A, Charvet G, Verney A, et al. 2019. An exoskeleton 
controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-
concept demonstration. Lancet Neurol. 18(12):1112–22 [PubMed: 31587955] 

74. Hwang EJ, Andersen RA. 2009. Brain control of movement execution onset using local field 
potentials in posterior parietal cortex. J. Neurosci 29(45):14363–70 [PubMed: 19906983] 

75. Degenhart AD, Bishop WE, Oby ER, Tyler-Kabara EC, Chase SM, et al. 2020. Stabilization of 
a braincomputer interface via the alignment of low-dimensional spaces of neural activity. Nat. 
Biomed. Eng 4(7):672–85 [PubMed: 32313100] 

76. Shanechi MM, Orsborn AL, Moorman HG, Gowda S, Dangi S, Carmena JM. 2017. Rapid control 
and feedback rates enhance neuroprosthetic control. Nat. Commun 8:13825 [PubMed: 28059065] 

77. Willett FR, Suminski AJ, Fagg AH, Hatsopoulos NG. 2013. Improving brain–machine interface 
performance by decoding intended future movements. J. Neural Eng 10:026011 [PubMed: 
23428966] 

78. Wolpert DM, Flanagan JR. 2001. Motor prediction. Curr. Biol 11(18):R729–32 [PubMed: 
11566114] 

79. Kao JC, Ryu SI, Shenoy KV. 2017. Leveraging neural dynamics to extend functional lifetime of 
brainmachine interfaces. Sci. Rep 7:7395 [PubMed: 28784984] 

80. Law AJ, Rivlis G, Schieber MH. 2014. Rapid acquisition of novel interface control by small 
ensembles of arbitrarily selected primary motor cortex neurons. J. Neurophysiol 112(6):1528–48 
[PubMed: 24920030] 

81. Tremblay R, Lee S, Rudy B. 2016. GABAergic interneurons in the neocortex: from cellular 
properties to circuits. Neuron 91(2):260–92 [PubMed: 27477017] 

82. Makino H, Hwang EJ, Hedrick NG, Komiyama T. 2016. Circuit mechanisms of sensorimotor 
learning. Neuron 92(4):705–21 [PubMed: 27883902] 

83. Markowitz DA, Wong YT, Gray CM, Pesaran B. 2011. Optimizing the decoding of movement 
goals from local field potentials in macaque cortex. J. Neurosci 31(50):18412–22 [PubMed: 
22171043] 

84. Garcia-Garcia MG, Marquez-Chin C, Popovic MR. 2020. Operant conditioning of motor cortex 
neurons reveals neuron-subtype-specific responses in a brain-machine interface task. Sci. Rep 
10:19992 [PubMed: 33203973] 

85. Vendrell-Llopis N, Fang C, Qü AJ, Costa RM, Carmena JM. 2022. Diverse operant control 
of different motor cortex populations during learning. Curr. Biol 32(7):1616–22.e5 [PubMed: 
35219429] 

86. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. 2006. Bayesian population decoding of 
motor cortical activity using a Kalman filter. Neural Comput. 18(1):80–118 [PubMed: 16354382] 

87. Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, et al. 2012. A recurrent neural network 
for closed-loop intracortical brain–machine interface decoders. J. Neural Eng 9:026027 [PubMed: 
22427488] 

88. Willsey MS, Nason-Tomaszewski SR, Ensel SR, Temmar H, Mender MJ, et al. 2022. Real-
time brain-machine interface in non-human primates achieves high-velocity prosthetic finger 
movements using a shallow feedforward neural network decoder. Nat. Commun 13:6899 
[PubMed: 36371498] 

89. Taylor DM, Tillery SIH, Schwartz AB. 2002. Direct cortical control of 3D neuroprosthetic devices. 
Science 296(5574):1829–32 [PubMed: 12052948] 

Dadarlat et al. Page 24

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



90. Orsborn AL, Dangi S, Moorman HG, Carmena JM. 2012. Closed-loop decoder adaptation 
on intermediate time-scales facilitates rapid BMI performance improvements independent of 
decoder initialization conditions. IEEE Trans. Neural Syst. Rehabil. Eng 20(4):468–77 [PubMed: 
22772374] 

91. Brandman DM, Hosman T, Saab J, Burkhart MC, Shanahan BE, et al. 2018. Rapid calibration 
of an intracortical brain-computer interface for people with tetraplegia. J. Neural Eng 15:026007 
[PubMed: 29363625] 

92. Li Z, O’Doherty JE, Lebedev MA, Nicolelis MAL. 2011. Adaptive decoding for brain-machine 
interfaces through Bayesian parameter updates. Neural Comput. 23(12):3162–204 [PubMed: 
21919788] 

93. Madduri MM, Burden SA, Orsborn AL. 2021. A game-theoretic model for co-adaptive brain-
machine interfaces. In 2021 10th International IEEE/EMBS Conference on Neural Engineering 
(NER), pp. 327–30. Piscataway, NJ: IEEE

94. Marathe AR, Taylor DM. 2011. Decoding position, velocity, or goal: Does it matter for brain–
machine interfaces? J. Neural Eng 8:025016 [PubMed: 21436529] 

95. Golub MD, Yu BM, Chase SM. 2015. Internal models for interpreting neural population activity 
during sensorimotor control. eLife 4:e10015 [PubMed: 26646183] 

96. Gowda S, Orsborn AL, Overduin SA, Moorman HG, Carmena JM. 2014. Designing dynamical 
properties of brain–machine interfaces to optimize task-specific performance. IEEE Trans. Neural 
Syst. Rehabil. Eng 22(5):911–20 [PubMed: 24760941] 

97. Zhang Y, Chase SM. 2015. Recasting brain-machine interface design from a physical control 
system perspective. J. Comput. Neurosci 39(2):107–18 [PubMed: 26142906] 

98. Blakemore SJ, Frith CD, Wolpert DM. 1999. Spatio-temporal prediction modulates the perception 
of self-produced stimuli. J. Cogn. Neurosci 11(5):551–59 [PubMed: 10511643] 

99. Eaton RW,Libey T,Fetz EE.2017.Operant conditioning of neural activity in freely behaving 
monkeys with intracranial reinforcement. J. Neurophysiol 117(3):1112–25 [PubMed: 28031396] 

100. Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG. 2010. Incorporating feedback from 
multiple sensory modalities enhances brain-machine interface control. J. Neurosci 30(50):16777–
87 [PubMed: 21159949] 

101. Johansson RS, Flanagan JR. 2009. Coding and use of tactile signals from the fingertips in object 
manipulation tasks. Nat. Rev. Neurosci 10(5):345–59 [PubMed: 19352402] 

102. Delhaye BP, Long KH, Bensmaia SJ. 2018. Neural basis of touch and proprioception. Compr. 
Physiol 8(4):1575–602 [PubMed: 30215864] 

103. Sainburg RL, Poizner H, Ghez C. 1993. Loss of proprioception produces deficits in interjoint 
coordination. J. Neurophysiol 70(5):2136–47 [PubMed: 8294975] 

104. Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, et al. 2014. Restoring natural 
sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med 6:222ra19

105. Penfield W, Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex of 
man as studied by electrical stimulation. Brain 60(4):389–443

106. Histed MH, Ni AM, Maunsell JHR. 2013. Insights into cortical mechanisms of behavior from 
microstimulation experiments. Prog. Neurobiol 103:115–30 [PubMed: 22307059] 

107. Cohen MR, Newsome WT. 2004. What electrical microstimulation has revealed about the neural 
basis of cognition. Curr. Opin. Neurobiol 14(2):169–77 [PubMed: 15082321] 

108. Roche JP, Hansen MR. 2015. On the horizon: cochlear implant technology. Otolaryngol. Clin. N. 
Am 48(6):1097–116

109. Murphey DK, Maunsell JH. 2007. Behavioral detection of electrical microstimulation in different 
cortical visual areas. Curr. Biol 17(10):862–67 [PubMed: 17462895] 

110. Doty RW. 1965. Conditioned reflexes elicited by electrical stimulation of the brain in macaques. 
J. Neurophysiol 28:623–40 [PubMed: 14347624] 

111. Dadarlat MC, O’Doherty JE, Sabes PN. 2015. A learning-based approach to artificial sensory 
feedback leads to optimal integration. Nat. Neurosci 18(1):138–44 [PubMed: 25420067] 

Dadarlat et al. Page 25

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



112. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, et al. 2013. Restoring the sense 
of touch with a prosthetic hand through a brain interface. PNAS 110(45):18279–84 [PubMed: 
24127595] 

113. London BM, Jordan LR, Jackson CR, Miller LE. 2008. Electrical stimulation of the 
proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans. Neural Syst. 
Rehabil. Eng 16(1):32–36 [PubMed: 18303803] 

114. O’Doherty JE, Shokur S, Medina LE, Lebedev MA, Nicolelis MA. 2019. Creating a 
neuroprosthesis for active tactile exploration of textures. PNAS 116(43):21821–27 [PubMed: 
31591224] 

115. Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE, et al. 2016. Intracortical 
microstimulation of human somatosensory cortex. Sci. Transl. Med 8:361ra141

116. Stoney SD, Thompson WD, Asanuma H. 1968. Excitation of pyramidal tract cells by 
intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol 31(5):659–
69 [PubMed: 5711137] 

117. Butovas S, Schwarz C. 2003. Spatiotemporal effects of microstimulation in rat neocortex: a 
parametric study using multielectrode recordings. J. Neurophysiol 90(5):3024–39 [PubMed: 
12878710] 

118. Histed MH, Bonin V, Reid RC. 2009. Direct activation of sparse, distributed populations of 
cortical neurons by electrical microstimulation. Neuron 63(4):508–22 [PubMed: 19709632] 

119. Kumaravelu K, Sombeck J, Miller LE, Bensmaia SJ, Grill WM. 2022. Stoney vs. Histed: 
quantifying the spatial effects of intracortical microstimulation. Brain Stimul. 15(1):141–51 
[PubMed: 34861412] 

120. Dadarlat MC, Sun Y, Stryker MP. 2019. Widespread activation of awake mouse cortex by 
electrical stimulation. In 2019 9th International IEEE/EMBS Conference on Neural Engineering 
(NER), pp. 1113–17. Piscataway, NJ: IEEE

121. Stieger KC, Eles JR, Ludwig KA, Kozai TDY. 2022. Intracortical microstimulation pulse 
waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil 
activation. J. Neural Eng 19:026024

122. Eles JR, Stieger KC, Kozai TD. 2021. The temporal pattern of intracortical microstimulation 
pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J. Neural 
Eng 18:015001

123. Stieger KC, Eles JR, Ludwig KA, Kozai TD. 2020. In vivo microstimulation with cathodic and 
anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil 
and pyramidal neurons of male mice. J. Neurosci. Res 98(10):2072–95 [PubMed: 32592267] 

124. Venkatraman S, Carmena JM. 2009. Behavioral modulation of stimulus-evoked oscillations in 
barrel cortex of alert rats. Front. Integr. Neurosci 3:10 [PubMed: 19521539] 

125. Trevathan JK, Asp AJ, Nicolai EN, Trevathan JM, Kremer NA, et al. 2021. Calcium imaging 
in freely moving mice during electrical stimulation of deep brain structures. J. Neural Eng 
18:026008

126. Kumaravelu K, Tomlinson T, Callier T, Sombeck J, Bensmaia SJ, et al. 2020. A comprehensive 
model-based framework for optimal design of biomimetic patterns of electrical stimulation for 
prosthetic sensation. J. Neural Eng 17:046045 [PubMed: 32759488] 

127. Bashivan P, Kar K, DiCarlo JJ. 2019. Neural population control via deep image synthesis. Science 
364(6439):eaav9436 [PubMed: 31048462] 

128. Romo R, Hernández A, Zainos A, Salinas E. 1998. Somatosensory discrimination based on 
cortical microstimulation. Nature 292:387–90

129. Leal-Campanario R, Delgado-García JM, Gruart A. 2006. Microstimulation of the 
somatosensory cortex can substitute for vibrissa stimulation during Pavlovian conditioning. 
PNAS 103(26):10052–57 [PubMed: 16782811] 

130. Otto KJ, Rousche PJ, Kipke DR. 2005. Microstimulation in auditory cortex provides a substrate 
for detailed behaviors. Hear. Res 210(1/2):112–17 [PubMed: 16209915] 

131. Otto KJ, Rousche PJ, Kipke DR. 2005. Cortical microstimulation in auditory cortex of rat elicits 
bestfrequency dependent behaviors. J. Neural Eng 2(2):42–51 [PubMed: 15928411] 

Dadarlat et al. Page 26

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



132. Callier T, Brantly NW, Caravelli A, Bensmaia SJ. 2020. The frequency of cortical 
microstimulation shapes artificial touch. PNAS 117(2):1191–200 [PubMed: 31879342] 

133. Butovas S, Schwarz C. 2007. Detection psychophysics of intracortical microstimulation in rat 
primary somatosensory cortex. Eur. J. Neurosci 25(7):2161–69 [PubMed: 17419757] 

134. Callier T, Schluter EW, Tabot GA, Miller LE, Tenore FV, Bensmaia SJ. 2015. Long-term stability 
of sensitivity to intracortical microstimulation of somatosensory cortex. J. Neural Eng 12:056010 
[PubMed: 26291448] 

135. Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MAL. 2007. Primate reaching 
cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci 27(21):5593–602 
[PubMed: 17522304] 

136. Doherty JEO, Lebedev MA, Li Z, Nicolelis MAL. 2012. Virtual active touch using randomly 
patterned intracortical microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng 20(1):85–93 
[PubMed: 22207642] 

137. Thomson EE, Carra R, Nicolelis MA. 2013. Perceiving invisible light through a somatosensory 
cortical prosthesis. Nat. Commun 4:1482 [PubMed: 23403583] 

138. Richardson AG, Ghenbot Y, Liu X, Hao H, Rinehart C, et al. 2019. Learning active 
sensing strategies using a sensory brain–machine interface. PNAS 116(35):17509–14 [PubMed: 
31409713] 

139. Sober SJ, Sabes PN. 2003. Multisensory integration during motor planning. J. Neurosci 
23(18):6982–92 [PubMed: 12904459] 

140. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically 
optimal fashion. Nature 415(6870):429–33 [PubMed: 11807554] 

141. Dadarlat MC, Sabes PN. 2016. Encoding and decoding of multi-channel ICMS in macaque 
somatosensory cortex. IEEE Trans. Hapt 9(4):508–14

142. Risso G, Valle G, Iberite F, Strauss I, Stieglitz T, et al. 2019. Optimal integration of intraneural 
somatosensory feedback with visual information: a single-case study. Sci. Rep 9:7916 [PubMed: 
31133637] 

143. Makino H, Hwang EJ, Hedrick NG, Komiyama T. 2016. Circuit mechanisms of sensorimotor 
learning. Neuron 92(4):705–21 [PubMed: 27883902] 

144. Koralek AC, Jin X, Long JD II, Costa RM, Carmena JM. 2012. Corticostriatal plasticity is 
necessary for learning intentional neuroprosthetic skills. Nature 483(7389):331–35 [PubMed: 
22388818] 

145. Long JD, Carmena JM. 2013. Dynamic changes of rodent somatosensory barrel cortex 
are correlated with learning a novel conditioned stimulus. J. Neurophysiol 109(10):2585–95 
[PubMed: 23468389] 

146. Recanzone GH, Merzenich MM, Dinse HR. 1992. Expansion of the cortical representation of 
a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cereb. 
Cortex 2(3):181–96 [PubMed: 1511220] 

147. Dinse HR, Recanzone GH, Merzenich MM. 1993. Alterations in correlated activity parallel 
ICMS-induced representational plasticity. NeuroReport 5(2):173–76 [PubMed: 8111006] 

148. Fox K, Stryker M. 2017. Integrating Hebbian and homeostatic plasticity: introduction. Philos. 
Trans. R. Soc. B 372(1715):20160413

149. Jackson A, Mavoori J, Fetz EE. 2006. Long-term motor cortex plasticity induced by an electronic 
neural implant. Nature 444(7115):56–60 [PubMed: 17057705] 

150. Rebesco JM, Stevenson IH, Körding KP, Solla SA, Miller LE. 2010. Rewiring neural interactions 
by micro-stimulation. Front. Syst. Neurosci 4:39 [PubMed: 20838477] 

151. Rebesco JM, Miller LE. 2011. Enhanced detection threshold for in vivo cortical stimulation 
produced by Hebbian conditioning. J. Neural Eng 8:016011 [PubMed: 21252415] 

152. Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR. 1992. Topographic 
reorganization of the hand representation in cortical area 3b of owl monkeys trained in a 
frequency-discrimination task. J. Neurophysiol 67(5):1031–56 [PubMed: 1597696] 

153. Ni AM, Maunsell JHR. 2010. Microstimulation reveals limits in detecting different signals from a 
local cortical region. Curr. Biol 20(9):824–28 [PubMed: 20381351] 

Dadarlat et al. Page 27

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



154. Dalgleish HW, Russell LE, Packer AM, Roth A, Gauld OM, et al. 2020. How many neurons are 
sufficient for perception of cortical activity? eLife 9:e58889 [PubMed: 33103656] 

155. Houweling AR, Brecht M. 2008. Behavioural report of single neuron stimulation in 
somatosensory cortex. Nature 451(7174):65–68 [PubMed: 18094684] 

156. Jeon BB, Fuchs T, Chase SM, Kuhlman SJ. 2022. Existing function in primary visual cortex is 
not perturbed by new skill acquisition of a non-matched sensory task. Nat. Commun 13:3638 
[PubMed: 35752622] 

157. Salzman DC, Britten KH, Newsome WT. 1990. Cortical microstimulation influences judgements 
of motion direction. Nature 346:174–77 [PubMed: 2366872] 

158. Romo R,Hernández A,Zainos A,Brody CD,Lemus L.2000.Sensing without touching: 
psychophysical performance based on cortical microstimulation. Neuron 26(1):273–78 [PubMed: 
10798410] 

159. Hughes CL, Flesher SN, Weiss JM, Boninger M, Collinger JL, Gaunt RA. 2021. Perception 
of microstimulation frequency in human somatosensory cortex. eLife 10:e65128 [PubMed: 
34313221] 

160. Salas MA, Bashford L, Kellis S, Jafari M, Jo H, et al. 2018. Proprioceptive and cutaneous 
sensations in humans elicited by intracortical microstimulation. eLife 7:e32904 [PubMed: 
29633714] 

161. Heming E, Sanden A, Kiss ZHT. 2010. Designing a somatosensory neural prosthesis: percepts 
evoked by different patterns of thalamic stimulation. J. Neural Eng 7:064001 [PubMed: 
21084731] 

162. D’Anna E, Petrini FM, Artoni F, Popovic I, Simanić I, et al. 2017. A somatotopic bidirectional 
hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. 
Rep 7:10930 [PubMed: 28883640] 

Dadarlat et al. Page 28

Annu Rev Biomed Eng. Author manuscript; available in PMC 2024 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SUMMARY POINTS

1. Sensory and motor neural circuits form through paired experience and 

continually adapt together to control sensorimotor function.

2. The inclusion of sensory feedback, whether natural or artificial, in motor 

brain–machine interfaces (BMIs) leads to learning and error-based corrections 

that in turn lead to performance differences relative to predicting motor intent 

alone.

3. All elements of a motor MBI together define a sensorimotor transformation 

that influences the neural computations for learning and control.

4. Artificial sensation is integrated with natural sensory and motor processing 

during closed-loop sensorimotor behaviors.

5. Neural circuits adapt to continued electrical stimulation, even in the absence 

of behavioral relevance.

6. The tight link between sensory inputs and motor outputs in closed-loop BMIs 

engages innate neural mechanisms for learning, thereby changing the nature 

of engineering problems that must be solved to optimize BMI performance.
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FUTURE ISSUES

1. Algorithms to train closed-loop BMIs must include constraints informed by 

learning and control mechanisms in the brain.

2. Design of optimal stimulation patterns for artificial sensation must include 

closed-loop experiments, where behavioral relevance will drive plasticity and 

learning.
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Figure 1. 
Closed-loop brain–machine interfaces (BMIs).
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Figure 2. 
Motor brain–machine interfaces define multistep sensorimotor transformations. This 

illustration highlights the transformation in an example interface where the firing of 100 

neurons in the primary motor cortex (M1) controls the velocity of a two-dimensional cursor 

through a linear decoding algorithm. Of the many brain areas that contribute to movement, 

we chose to measure from one (M1). Our sensors measure only a small fraction of the 

thousands of neurons in M1. These 100 neurons now define the motor output (behavioral 

readout; purple), while all other neurons can only indirectly contribute to movement 

(nonreadout; gray). Finally, the decoding algorithm maps a pattern of neural activity in 

the 100 readout neurons into a two-dimensional velocity.
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Figure 3. 
(a) A stimulating microelectrode is implanted in layer iii of the cortex. (b) Parameters 

that can be manipulated during electrical stimulation of brain tissue include the amplitude, 

frequency, timing, and shape of biphasic pulses.
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