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Background. Growing evidence has revealed that m6A modification of long noncoding RNAs (lncRNAs) dynamically controls tumor
stemness and tumorigenesis-related processes. However, the prognostic significance of m6A-related lncRNAs and their associations
with stemness in low-grade glioma (LGG) remain to be clarified.Methods. Amulticenter transcriptome analysis of lncRNA expression
in 1,247 LGG samples was performed in this study. The stemness landscape of LGG tumors was presented and associations with
clinical features were revealed. The m6A-related lncRNAs were identified between stemness groups and were further prioritized via
least absolute shrinkage and selection operator Cox regression analysis. A risk score model based on m6A-related lncRNAs was
constructed and validated in external LGG datasets. Results. Based on the expression of LINC02984, PFKP-DT, and CRNDE, a risk
model and nomogram were constructed; they successfully predicted the survival of patients and were extended to external datasets.
Significant correlations were observed between the risk score and tumor stemness. Moreover, patients in different risk groups exhibited
distinct tumor immune microenvironments and immune signatures. We finally provided several potential compounds suitable for
specific risk groups, whichmay aid in LGG treatment.Conclusions. This novel signature presents noteworthy value in the prediction of
prognosis and stemness status for LGG patients and will foster future research on the development of clinical regimens.

1. Introduction

Low-grade glioma (LGG) refers grades II and III gliomas, as
defined by The Cancer Genome Atlas (TCGA) classification
[1]. A large majority of LGG patients have isocitrate dehydro-
genase (IDH)mutations, and LGG patients have better survival
outcomes than glioblastoma patients. However, most LGG
patients eventually develop glioblastoma (GBM), which is
resistant to chemotherapy and radiotherapy, thus resulting in
high mortality [2]. Moreover, novel independent factors for
survival risk stratification of LGG patients need to be identified,
as the prognoses are within a similar range for those grades II

and III patients with IDH mutation [3]. Cancer stem cells
(CSCs) are a class of pluripotent cells with the capabilities of
self-renewal, unrestricted proliferation, and multidirectional
differentiation [4]. Stemness refers to the differentiation poten-
tial of CSCs. Stemness has been proven to play important roles
in glioma progression and treatment resistance [5]. Deep
sequencing and computational approaches are well established
to provide insight for the estimation of cancer stemness, such as
the gene expression-based stemness index (mRNAsi) devel-
oped by a one-class logistic regression (OCLR) machine learn-
ing algorithm [6]. Therefore, predictive regimens combining
these stemness indices are imperative for LGG patients.
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N6-methyladenosine (m6A) is the most abundant modi-
fication in mammalian RNAmolecules. It affects RNA stabil-
ity, translation, translocation, and splicing [7]. m6A-binding
proteins (readers), demethylases (erasers), and methyltrans-
ferases (writers) constitute the m6A regulation loop [8]. Evi-
dence has highlighted the roles of m6A in CSC generation and
maintenance and in turn its influence on the carcinogenic
process and therapeutic resistance [9]. Dixit et al. [10] found
that the m6A reader YTHDF2 could stabilize MYCmRNA in
glioma stem cells, which promotes oncogenic pathway activa-
tion and tumor growth. Long noncoding RNAs (lncRNAs)
have been found to play important roles in glioma cancers
and can be modified by m6A modification. The stability of
MALAT1 is mediated by the m6A writer METTL3 and fur-
ther activates NF-κB signaling to promote IDH-wild-type gli-
oma progression [11]. The m6A reader IGF2BP3 was found
to regulate WEE2-AS1, which further promotes glioblastoma
progression through the stabilization of the RPN2 protein and
activation of the downstream PI3K-Akt signaling pathway
[12]. However, the efficiency of m6A-related lncRNAs in
reflecting cancer stemness heterogeneity and their ability to
stratify LGG patients into different prognostic risk groups are
still largely unknown.

In this study, the stemness index was first evaluated based
on multicenter transcriptome data for LGG patients. The
m6A-related lncRNAs were identified, and potential func-
tions were inferred in different stemness groups. Then, an
m6A-related lncRNA prognostic signature was constructed
based on the predictive capacity of LINC02984, PFKP-DT,
and CRNDE. Risk groups with distinct overall survival out-
comes and stemness scores were categorized into training and
validation datasets. The differences in the tumor immune
microenvironment (TIME) and immune signatures were
compared between risk groups. CMap analysis identified sev-
eral potential compounds ideal for treating different risk
groups. The risk model that we presented will improve the
accuracy of prognosis prediction for LGG patients.

2. Materials and Methods

2.1. LGG Dataset Collection and Processing. The RNA-
sequencing profiles for lower grade gliomas were collected
from TCGA (https://portal.gdc.cancer.gov/) and the Chinese
Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/) data-
sets [13]. Only primary tumor samples withWHO grades II and
III were included in this study. This yielded 511 samples from
the TCGA-LGG cohort, 282 samples from the CGGA-693, and
144 samples from the CGGA-325 cohort. Gene expression levels
were quantified by fragments per kilobase million values. These
LGG datasets provided sample-matched clinical information,
which included overall survival time, vital status, age, gender,
WHOgrade, IDHmutation, 1p/19q codeletion, andO6-methyl-
guanine-DNA methyltransferase (MGMT) promoter methyla-
tion. We also obtained two microarray datasets of LGG for the
Affymetrix Human Genome U133 Plus 2.0 Array platform as
external datasets, which included 162 patients from GSE108474
and 148 patients from E-MATB-3892. The annotation of
lncRNAs was downloaded from GENCODE V34. Only

lncRNAs presented in TCGA and CGGA were retained for
further analysis. All expression profiles were log2 transformed.
The characteristics of the datasets used in this study are shown in
Table S1.

2.2. Stemness Estimation for LGG Samples. The gene
expression-based stemness index (mRNAsi) was calculated
via the OCLR algorithm [6], which ranged from 0 to 1. The
median of the mRNAsi score was set as the cutoff to define
the mRNAsi-high and mRNAsi-low groups. Twenty-nine
stem cell gene sets from the Molecular Signature Database
(MsigDB, v2022.1.Hs), and 26 gene sets from StemChecker
(Table S2) were also collected. StemChecker is a systematic
web server that collects stemness signatures through the
curation of transcriptome analysis, RNAi screens, transcrip-
tion factor target gene sets, literature retrieval, and compu-
tational derivation [14]. The single-sample GSEA (ssGSEA)
algorithm was applied to estimate the enrichment of stem-
ness gene sets for LGG patients [15].

2.3. Identification of m6A-Related lncRNAs and Construction
of the ceRNA Network. A gene set of 23 m6A regulators, includ-
ing 13 readers (LRPPRC, RBMX, HNRNPA2B1, HNRNPC,
FMR1, YTHDF3, YTHDF1, YTHDF2, IGF2BP2, IGF2BP3,
IGF2BP1, YTHDC1, and YTHDC2), eight writers (ZC3H13,
METTL3, RBM15, RBM15B, VIRMA, WTAP, METTL16, and
METTL14), and two erasers (FTO and ALKBH5), was obtained
from the literature. The associations between lncRNAs and m6A
regulators were calculated by Spearman’s rank correlation
analysis. Only lncRNAs with an absolute Spearman correlation
coefficient (ρ)>0.3 and p-adjusted<0.05 (FDR method) were
considered m6A-related lncRNAs. We further assessed the
lncRNA-mediated ceRNA network in LGG patients via the
Lnc2m6A webserver (http://hainmu-biobigdata.com/Lnc2m6A),
which revealed ceRNA interactions by integrating experimental
miRNA regulatory information and coexpression analysis [16].

2.4. Development and Validation of the m6A-Related lncRNA
Risk Score Model. Univariate Cox regression was first per-
formed to identify prognostic m6A-related lncRNAs in the
TCGA-LGG cohort. Then, least absolute shrinkage and selection
operator (LASSO) Cox regression was used to filter essential
lncRNAs via the glmnet R package. We used 10-time cross-
validation to assess the optimal values for λ by the lambda.1se
function. The predictive model was established as previously
described [17, 18], and a multivariable Cox regression model
was constructed based on the selected lncRNA features in the
training dataset. A risk score model was then proposed as
follows:

Risk score RSð Þ ¼ ∑
N

i¼1
Coei×Expið Þ; ð1Þ

where N is the number of m6A-related lncRNAs after filtra-
tion, Coei is the regression coefficient of lncRNAi obtained
from the multivariable Cox regression analysis, and Expi is
the expression level of lncRNAi in LGG patients.

The regression coefficient and the cutoff value (median
risk score) in the training dataset were retained and applied
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to the CGGA-693 and CGGA-325 cohorts to calculate the
risk score. LGG patients in each dataset were divided into
high- and low-risk groups based on the same cutoff. Due to
the differences between sequencing and array platforms, the
regression coefficients from the training dataset were used
for the GSE108474 and E-MATB-3892 datasets, and the
median risk score in each dataset was used as the cutoff.
The difference in overall survival between the two risk
groups was assessed by the log-rank test. Time-dependent
receiver operating characteristic (ROC) curves were utilized
to estimate the sensitivity and specificity of the m6A-related
lncRNA risk model for LGG patients.

2.5. Nomogram Analysis. The nomogram analysis was per-
formed following the methods of Guo et al. [19]. Clinical
features, including age, sex, grade, IDH mutation, 1p/19q
codeletion, MGMT methylation, and our risk score, were
included in the multivariable Cox regression model in the
TCGA-LGG training dataset. Variables with significant
prognostic efficacy were used to create a nomogram for
LGG patients via the rms R package. Based on the con-
structed nomogram, the formula for prognostic features
and clinical-related points was obtained from the nomogra-
mEx R package and then applied to the CGGA-693 and
CGGA-325 cohorts to calculate nomogram points. Time-
dependent ROC and decision curve analyses were also per-
formed to evaluate the applicability of the nomogram.

2.6. Immune Infiltration and Immune Signature Estimation.
To estimate the immune cell infiltration for LGG patients, we
assessed the TCGA-LGG, CGGA-693, and CGGA-325 expres-
sion profiles via the TIMER 2.0 (http://timer.cistrome.org/)
website [20] and obtained the predicted cell infiltration levels
for 22 immune cell types based on the leucocyte signature
matrix 22 (LM22) signatures using the CIBERSORT algorithm
[21]. The immune signature, including immune checkpoints,
cytolytic activity (CYT), human leukocyte antigen (HLA),
interferon (IFN) response, and tumor-infiltrating lymphocytes
(TILS), was corrected from a previous study [22]. We also
collected 67 immune-regulatory genes, which included 45
immune stimulators and 22 immune inhibitors from Vidotto
et al.’s [23] study. ssGSEAwas applied to estimate the activities of
immune signatures in LGG patients.

2.7. Connectivity Map (CMap) Analysis. CMap (https://clue.
io/) was used to predict potential compounds associated with
different risk groups of LGG patients. The top 150 differen-
tially expressed genes were first imported to the tool, and
only compounds with exact targets and mode of action
(MoA) data were retained. The remaining compounds with
a negative enrichment score and FDR< 0.05 were considered
potential therapeutic drugs.

2.8. Statistical Analysis. The statistical analyses in this study
were performed by R 4.1.1 software. The m6A-related
ceRNA network was visualized by Cytoscape 3.7.2. Func-
tional enrichment analysis of ceRNAs was performed by
Metascape with Homo sapiens as the selected parameter.
The Kolmogorov‒Smirnov test (ks.test in R software) was
used to estimate the normality of the distribution for the

expression level, mRNAsi index, stemness gene set score,
immune cell infiltration, and immune signature data. We
found that 90.60%, 99.29%, and 96.39% of lncRNAs showed
non-normally distributed expression patterns, and 58.66%,
93.71%, and 84.44% of protein-coding genes expression
showed non-normally distributed expression patterns in
the TCGA-LGG, CGGA-693, and CGGA-325 datasets,
respectively. These results were consistent with previous
findings that less than 50% of protein-coding genes were
normally distributed in the TCGA transcriptome [24].
Only the mRNAsi was normally distributed, while the other
variables were not normally distributed. Considering the dis-
tribution of these features, we used Student’s t-test to esti-
mate the differences in the mRNAsi between LGG groups,
and Wilcoxon’s rank sum tests were used to estimate the
differences in expression level, stemness gene set score,
immune cell infiltration, and immune signature score. In
addition, Spearman correlation was used for correlation
analysis. The differences in clinical features, including sex
and age, between LGG groups were identified by the chi-
squared test to estimate potential bias. GSEA was implemen-
ted via the clusterProfiler R package [25]. Nonparametric
Kaplan‒Meier survival curve analysis is one of the best
options for survival analysis [26]. We used Kaplan‒Meier
curves to estimate the survival status of LGG patients, and
the significance of survival differences between LGG groups
was estimated by the log-rank test. Differences with a p value
less than 0.05 were considered significant.

3. Results

3.1. The Stemness Index Is Associated with LGG Clinical
Features. To explore the relationship between cancer stemness
and clinical features, we first employed the OCLR algorithm
based on the gene expression profiles of 511 TCGA-LGG
patients, 282 CGGA-693 patients, and 144 CGGA-325
patients. Then, patients were ranked from low to high
based on the mRNAsi, and the matched clinical features are
shown in Figure 1(a)–1(c). We found that the patients with
MGMT promoter methylation, 1p/19q codeletion, and IDH
mutation demonstrated significantly higher mRNAsi scores
(Figure 1(d)–1(f)). No significant correlation between sex
and mRNAsi was observed. In addition, patients with grade
III exhibited lower mRNAsi scores than those with grade II in
the TCGA-LGG and CGGA-325 cohorts, while the phenome-
non was reversed in the CGGA-693 dataset (Figure 1(d)–1(f)).
As shown in Figure 1(f), patients aged <50 years displayed
significantly higher mRNAsi scores than older patients. All
these results were partly consistent with the analysis of the
stemness landscape for glioblastoma patients [27]. Two com-
mon biomarkers of LGG somatic mutation provided by the
TCGA center were also included. The stemness index was
significantly lower in alpha-thalassemia/mental retardation,
X-linked (ATRX) mutant samples than in wild-type samples
but significantly higher in the telomerase reverse transcriptase
(TERT) mutant group (Figure S1). Based on the median value,
LGG patients were divided into mRNAsi-high and mRNAsi-
low groups. K‒M survival analysis revealed that the high

Stem Cells International 3

http://timer.cistrome.org/
http://timer.cistrome.org/
http://timer.cistrome.org/
https://clue.io/
https://clue.io/
https://clue.io/


MGMT

Methylated

Unmethylated

1p19q

Noncodel

Codel

1.00

0.50

0.00

0.00

0.25

0.50

0.75

1.00

mRNAsi

TCGA_LGG

ðaÞ

IDH

Mutant

Wild type

Gender

Female

Male

Grade

WHO II

WHO III

1.00

0.50

0.00

CGGA_693

ðbÞ

Age

80

10

1.00

0.50

0.00

CGGA_325

NA

ðcÞ

 p = 2.29e – 05
0.00

0.25

0.50

0.75

1.00

Unmethylated Methylated

p < 2.2e – 16

Noncodel Codel

p = 2.59e – 12

Wild type Mutant

p = 0.39
0.00

0.25

0.50

0.75

1.00

Female Male

p = 0.043

WHO II WHO III

p = 0.84

<50 >50

MGMT 1p/19q IDH

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00Gender Grade Age

ðdÞ

p = 0.31 p = 8.4e – 11 p = 8.5e – 05

p = 0.90 p = 0.045 p = 0.25

Unmethylated Methylated Noncodel Codel Wild type Mutant

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

MGMT 1p/19q IDH

Gender Grade Age

Female Male WHO II WHO III <50 >50

m
R

N
A

si

ðeÞ

p = 0.130.00

0.25

0.50

0.75

p = 1.1e – 070.00

0.25

0.50

0.75

1.001.00

p = 0.000480.00

0.25

0.50

0.75

1.00

p = 0.860.00

0.25

0.50

0.75

1.00

p = 0.0350.00

0.25

0.50

0.75

1.00

p = 0.0250.00

0.25

0.50

0.75

1.00

Unmethylated Methylated Noncodel Codel Wild type Mutant

Female Male WHO II WHO III <50 >50

MGMT 1p/19q IDH

Gender Grade Age

ðfÞ
FIGURE 1: Continued.
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mRNAsi group presented significantly better survival out-
comes than the mRNAsi-low group in all three LGG cohorts
(Figure 1(g)–1(i)). These results indicate a strong association
between the stemness index and clinical features of LGG
patients.

3.2. Identification of m6A-Related lncRNAs in LGG Stemness
Groups. The interplay between m6A and noncoding RNAs
plays pivotal roles in modulating cancer stemness [28]. To
identify potential m6A-related lncRNAs contributing to
LGG stemness, the differential expression of lncRNAs
between the mRNAsi-high and mRNAsi-low groups was first
explored. Since no bias for sex and age was observed between
LGG groups (Figure S2, chi-square test p>0:05), we per-
formed the Wilcoxon rank-sum test for differential analysis,
as previously described [29]. In total, we identified 1,328,
1,387, and 586 upregulated lncRNAs as well as 1,360,
1,568, and 607 downregulated lncRNAs in the TCGA-
LGG, CGGA-693, and CGGA-325 cohorts, respectively
(mRNAsi-high vs. mRNAsi-low, Wilcoxon’s rank sum test
FDR< 0.05). There were 263 upregulated and 307 downre-
gulated lncRNA that shared similar expression patterns
across multicenter LGG datasets (Figure 2(a)). We next esti-
mated the associations of these lncRNAs with m6A regula-
tors by Spearman correlation analysis and identified 364
robust m6A-related lncRNAs (Figure 2(b)). These lncRNAs
were significantly overlapped with the m6A-related lncRNAs
in the LGG tumor type provided from Lnc2m6A, which
integrated high-confidence targets for m6A regulators and
computational methods (overlap number= 242, hypergeo-
metric test p value< 2.2e–16). A balanced distribution was
observed between lncRNAs and 23 m6A regulators
(Figure 2(c)). Among them, YTHDF2 was associated with
the highest number of lncRNAs, while no significant correla-
tions were acquired for IFG2BP1 and ALKBH5 in the
TCGA-LGG cohort.

To explore the potential biological function of m6A-
related lncRNAs, we used the ceRNA tools in Lnc2m6A
and extracted coexpressed lncRNA/gene pairs to construct
a ceRNA network. The network comprised 36 m6A-related
lncRNAs, 2,562 protein-coding genes, and 8,421 interactions
(Figure 2(d)). Functional enrichment analysis based on the
genes related to 26 upregulated and three downregulated
lncRNAs in the ceRNA network was performed. The ribo-
nucleoprotein complex biogenesis, cytoplasmic translation,
brain development, and several metabolic processes were
found to be related to upregulated lncRNAs (Figure 2(e)).
For downregulated lncRNAs, their interacting genes were
enriched in immune regulation processes, such as hemato-
poietic or lymphoid organ development and negative regula-
tion of T cell activation and in cancer-related functions, such
as response to tumor necrosis factor (Figure 2(f)). These
results highlight the essential roles of m6A-related lncRNAs
in tumorigenesis.

3.3. The m6A-Related lncRNA Risk Score Exhibits Prognostic
Efficiency and Reveals Tumor Stemness Heterogeneity. To
develop a prognostic signature for LGG patients, univariate
Cox regression was performed based on the 364 m6A-related
lncRNAs expression in the TCGA-LGG training set. In total,
238 candidate lncRNAs were identified to be associated with
LGG overall survival; these included 116 risk-related factors
and 122 protective factors. LASSO-Cox analysis was further
performed using the 238 lncRNAs mentioned above, and
three m6A-related lncRNAs (LINC02984, PFKP-DT, and
CRNDE) were retained according to the optimal λ value
(Figure S3). We next calculated the risk score for all LGG
datasets based on the multivariable Cox regression coeffi-
cient of three lncRNAs (LINC02984: 0.7096, PFKP-DT:
−1.0337, and CRNDE: 0.5098) and split the patients into
high- and low-risk groups using the cutoff (the median
risk score in the training dataset). The OS of the patients
in the high-risk group was worse than that of patients in
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FIGURE 1: The clinical features associated with the mRNAsi index in LGG patients. (a–c) The overview of the correlation between mRNAsi
and clinical features for TCGA-LGG, CGGA-693, and CGGA-325 cohorts. Columns represent LGG samples ranked by mRNAsi from low to
high. (d–f ) Violin plots of mRNAsi in LGG patients classified by MGMT methylation, 1p/19q codeletion, IDH mutation, gender, grade, and
age for TCGA-LGG, CGGA-693, and CGGA-325 cohorts. Differential analysis between the LGG groups was estimated by the Student’s t-test.
(g–i) Kaplan–Meier survival plots for stemness-high and stemness-low patients for TCGA-LGG, CGGA-693, and CGGA-325 cohorts.
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the low-risk group. The patients were then ranked according
to the corresponding risk scores, and the dead patients
tended to be included in the high-risk group. Consistent
with the coefficients, the expression levels of LINC02984
and CRNDE were elevated in the high-risk group, and the
expression level of PFKP-DT was decreased in this group.
Moreover, the time-dependent AUCs of the risk model in
predicting 1-, 3-, and 5-year OS were 0.875, 0.838, and 0.742,
respectively (Figure 3(a)). Using the same coefficient and
cutoff, similar results were also observed in the CGGA-693
and CGGA-325 datasets (Figures 3(b) and 3(c)). Similarly,
no bias for sex or age was observed between LGG risk groups
(Figure S4, chi-square test p>0:05). Moreover, LGG patients
with high-risk scores exhibited poorer OS than those
with low-risk scores in two external microarray datasets
(Figure S5). Collectively, these results indicated the
prognostic efficiency of an m6A-related lncRNA risk score
for LGG survival.

The relationship between the risk score and tumor stem
cells was further estimated. In general, we found that the risk
score was negatively correlated with the mRNAsi in all three
LGG cohorts (Figure 3(d), p value< 2.2e–16). The unique
stemness status of brain cells leads to the restricted negative
correlations between mRNAsi and tumor pathological fea-
tures for LGG [6], which may introduce bias in stem cell
landscape analysis. Thus, stem cell gene sets from two public
resources (StemChecker and MsigDB) were also included to
estimate tumor stemness. The gene set activities were glob-
ally increased in the high-risk groups for all datasets
(Figures 3(e) and 3(f ), Figure S6), which verified that the
m6A-related risk score could reveal tumor stemness
heterogeneity.

3.4. Nomogram Construction and Validation. As the risk
score alone may not be sufficient for predicting LGG prog-
nosis, we followed the methods of Guo et al. [19] to construct
a nomogram in combination with other clinical features. In

accordance with the multivariable Cox regression model
(Figure 4(a)), age, grade, and risk score were independent
indicators of LGG OS. Among them, the risk score had the
highest predictive power. Thus, a 1-, 3-, and 5-year OS
nomogram was constructed based on these factors, and
the risk score remained a good reference and predictive
marker for clinicians (C-index= 0.874, Figure 4(b)). As
shown in the DCA (Figure 4(c)), the nomogram had a great
benefit for predicting LGG OS. According to the nomogram
points, the time-dependent AUCs (0.924, 0.902, and 0.806
for 1-, 3- and 5-year survival prediction, respectively, in the
TCGA training dataset) were better than those of the risk
score alone (Figure 4(d)). The efficiency of the nomogram
was further verified in external datasets based on the same
point formula, and high performance was also observed in
the CGGA-693 and CGGA-325 cohorts (Figures 4(e)
and 4(f )).

3.5. Functional Characterization of the m6A-Related lncRNA
Risk Score. GSEA was utilized to identify potential biological
processes associated with the m6A-related lncRNA risk score
according to the ordered gene list of high-risk compared to
low-risk groups. In the TCGA-LGG cohort, angiogenesis, blood
vessel development, and several immune regulation processes
were all enriched in the high-risk group (Figure 5(a)). Neuro-
transmitter secretion and transport, behavior, and learning or
memory functions were enriched in the low-risk group
(Figure 5(b)). For the CGGA-693 dataset, the collagen-activated
signaling pathway and Hippo signaling were significantly
enriched in the high-risk group (Figure 5(c)). Limited collagens
expression was observed in the normal brain, while elevated
collagen levels have been proven to drive glioma progression,
which was in accordance with our results [30]. In addition,
catabolic-related processes were highly enriched in the CGGA-
693 low-risk group (Figure 5(d)). Similar functional results were
found between the CGGA-325 and TCGA-LGG datasets
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FIGURE 2: Identification and functional analysis of m6A-related lncRNAs between stemness groups. (a) Venn plot showing the overlap of
upregulated and downregulated lncRNAs among TCGA-LGG, CGGA-693, and CGGA-325 cohorts. Differential analysis between the LGG
groups was estimated by the Wilcoxon’s rank sum tests. (b) Venn plot showing the overlap of m6A-related lncRNAs among LGG cohorts.
(c) The distribution of m6A regulators for regulating lncRNAs across LGG cohorts. (d) The ceRNA network for m6A-related lncRNAs. The
circle node represents protein-coding genes, the square node represents lncRNAs, and the node size reflects the note degree in the network.
(e, f ) The enriched biological process of genes linked with upregulated and downregulated genes in the ceRNA network.
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(Figures 5(e) and 5(f)), which implies the robustness of the risk
score in distinguishing high- and low-risk LGG patients.

3.6. Comparison of the TIME and Immune Signatures for the
High- and Low-Risk Groups. Since the GSEA results showed
significant enrichment of immune regulatory function, we
next investigated whether the constitution of the TIME
and activities of immune signatures were different in the
high- and low-risk groups. The immune landscapes of
LGG patients for 22 immune cell types were first depicted

via CIBERSORT (Figure 6(a) and Figure S7(A)). In general,
there were relatively high proportions of M2 macrophages
and monocytes in the LGG TIME. In the TCGA dataset,
the infiltration levels of memory resting CD4+ T cells, M1
macrophages, M2 macrophages, activated mast cells, and
neutrophils were increased in the high-risk group. The
level of plasma B cells, naïve CD4+ T cells, follicular
helper T cells, and eosinophils were significantly decreased
(Figure 6(b)) in the high-risk group. For the CGGA-693
dataset, higher levels of naïve B cell, memory resting
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CD4+ T cells, M2 macrophages, activated myeloid dendritic
cells, and neutrophils were observed, while lower levels of
memory B cells, plasma B cells, CD8+ T cells, regulatory
T cells (Tregs), and monocytes were observed in the high-
risk group (Figure 6(b)). Although no significant results were
found in the CGGA-325 cohort, similar trends between risk
groups were observed, such as the increased level of M2
macrophages (Figure S7(B)). We next investigated the
differences in immune-related signatures and found that
the activities of all signatures were elevated in the high-risk
group (Figure 6(c) and Figure S7(C)). The activities of
immune inhibitors were significantly higher than those of
immune stimulators in the high-risk group for all LGG
datasets, which may be associated with the worse survival
of these patients (Figure S8). Consistent with the prognostic
coefficient from the Cox model, the expression of PFKP-DT
was positively correlated with the levels of cancer-killing
immune cells such as CD8+ T cells, while the expression
levels of CRNDE and LINC02984 were positively related to
the infiltration levels of M2 macrophage, whose predominance
contributed to the suppression of immunity (Figure 6(d) and
Figure S7(D)) [31].

3.7. Identification of Potential Compounds Ideal for Treating
the Risk Groups. To explore the candidate compounds ideal
for treating m6A-related risk groups, CMap analysis was
employed based on the top 150 differentially expressed genes
between risk groups. The 10 most applicable compounds in
the high- and low-risk groups for each LGG dataset are

shown in Figure 7(a). Among them, several compounds,
such as eugenol and brefeldin-a, were found to be specifically
useful for patients in high-risk groups. We also identified
that NF-449, nomifensine, methimazole, and other drugs
were suitable for low-risk patients. MoA analysis revealed
that bromodomain, KIT, PDGFR, topoisomerase, and
VEGFR inhibitors were common targets of compounds
suitable for the high-risk group (Figure 7(b)). For the low-
risk group, adrenergic receptor agonists, cytochrome P450
inhibitors, dopamine receptor antagonists, and serotonin
receptor antagonists were common targets of the different
compounds (Figure 7(c)). Further studies are needed to
verify the therapeutic value of these compounds for LGG
patients.

4. Discussion

Tumor stemness has been attributed to postsurgery recur-
rence and therapeutic resistance in glioma patients [32].
Growing evidence has already shown that specific lncRNAs
modified by m6A can influence the malignancy of tumors by
regulating stemness in the glioma TIME [11, 33]. To deter-
mine the value of m6A-related lncRNAs in predicting LGG
prognosis and stemness status, 1,247 LGG patients from
multicenter datasets were enrolled in this study. The stem
cell landscapes of LGG patients were characterized, and asso-
ciations with clinical features were estimated. Consistent
with previous findings [27], methylated MGMT, 1p/19q
codeletion, and IDH mutation patients all possessed a higher
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FIGURE 5: GSEA analysis for LGG risk groups. (a, b) Top 10 upregulated and downregulated enriched biological processes between high- and
low-risk groups in the TCGA-LGG dataset. (c, d) Top 10 upregulated and downregulated enriched biological processes between high and
low-risk groups in the CGGA-693 dataset. (e, f ) Top 10 upregulated and downregulated enriched biological processes between high- and low-
risk groups in the CGGA-325 dataset.
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mRNAsi. For WHO grades, patients with grade II exhibited
increased mRNAsi scores in both the TCGA-LGG and
CGGA-325 cohorts. A previous study reported that the neg-
ative correlation between mRNAsi and tumor pathology was
restricted to LGG, which may be due to the reduced cell
differentiation caused by IDH1 mutation [6, 34].

Previous studies have revealed the essential roles of m6A-
related lncRNAs in tumor stemness [35]. Through integrat-
ing differentially expressed lncRNAs and their correlations
with m6A regulators, we identified 364 robust m6A-related
lncRNAs for LGG patients. Some lncRNAs have been
reported to be modified by m6A and associated with tumors.

For instance, YTHDF3 serves as an m6A reader to negatively
regulate GAS5, thus triggering YAP phosphorylation and
degradation and inhibiting the progression of colorectal can-
cer [36]. The m6A reader IGF2BP2 could regulate DANCR
to promote cancer stemness-like properties and pathogenesis
[37]. Moreover, DANCR has been reported to be strongly
associated with glioma malignancy [38]. We constructed a
risk signature based on the expression of LINC02984, PFKP-
DT, and CRNDE and successfully sectionalized LGG
patients into risk groups with different survival statuses.
CRNDE is a well-known target for glioma treatment, and
its great prognostic value has been proven at the bulk and

CGGA_325

CGGA_693

TCGA_LGG

CGGA_325

CGGA_693

TCGA_LGG

R
A

F
-2

6
5

E
u

ge
n

o
l

B
X

-7
9

5

A
V

L
-2

9
2

I-
B

E
T

-7
6

2

B
re

fe
ld

in
-a

T
G

-1
0

1
3

4
8

L
o

m
it

ap
id

e

M
as

it
in

ib

SQ
-2

2
5

3
6

D
o

xo
ru

b
ic

in

Im
p

o
rt

az
o

le

Id
ar

u
b

ic
in

O
xy

p
u

ri
n

o
l

B
A

Y
-6

1
-3

6
0

6

A
u

ra
n

o
fi

n

C
D

-4
3

7

P
it

av
as

ta
ti

n

R
IT

A

P
F

I-
1

M
G

-1
3

2

R
u

ca
p

ar
ib

P
ip

am
p

er
o

n
e

T
el

at
in

ib

Sa
xa

gl
ip

ti
n

SB
-2

0
2

1
9

0

R
u

ci
n

o
l

A
M

-6
3

0

N
ep

af
en

ac

N
u

tl
in

-3

N
F

-4
4

9

M
et

o
cl

o
p

ra
m

id
e

N
o

m
if

en
si

n
e

M
et

h
im

az
o

le

H
O

-0
1

3

SB
-2

5
8

5
8

5

M
et

h
io

p
ri

l

M
et

h
o

xa
m

in
e

F
en

o
ld

o
p

am

B
ar

as
er

ti
b

-H
Q

P
A

Ir
b

es
ar

ta
n

G
ri

se
o

fu
lv

in

Su
fe

n
ta

n
il

Su
m

at
ri

p
ta

n

B
R

D
-A

4
9

7
6

5
8

0
1

T
T

N
P

B

L
o

fe
xi

d
in

e

O
xa

to
m

id
e

V
al

p
ro

ic
-a

ci
d

D
ia

ze
p

am

B
R

D
-K

1
6

1
3

3
7

7
3

T
h

io
te

p
a

−2

0

norm_cs

Log10 (FDR)
4
8
12

0

1

2

3

4

5

6
Counts

High risk
−2

0

Low risk

ðaÞ

M
as

it
in

ib
T

el
at

in
ib

B
re

fe
ld

in
-a

R
A

F
-2

6
5

T
G

-1
0

1
3

4
8

A
u

ra
n

o
fi

n
A

V
L

-2
9

2
B

A
Y

-6
1

-3
6

0
6

B
X

-7
9

5
C

D
-4

3
7

D
o

xo
ru

b
ic

in
E

u
ge

n
o

l
I-

B
E

T
-7

6
2

Id
ar

u
b

ic
in

Im
p

o
rt

az
o

le
L

o
m

it
ap

id
e

M
G

-1
3

2
O

xy
p

u
ri

n
o

l
P

F
I-

1
P

ip
am

p
er

o
n

e
P

it
av

as
ta

ti
n

R
IT

A
R

u
ca

p
ar

ib
R

u
ci

n
o

l
Sa

xa
gl

ip
ti

n
SB

-2
0

2
1

9
0

SQ
-2

2
5

3
6

Bromodomain inhibitor
KIT inhibitor
PDGFR inhibitor
Topoisomerase inhibitor
VEGFR inhibitor
Adenylyl cyclase inhibitor
Androgen receptor antagonist
BIG1 inhibitor
BTK inhibitor
Dipeptidyl peptidase inhibitor
Dopamine receptor antagonist
FLT3 inhibitor
HMGCR inhibitor
IKK inhibitor
Importin inhibitor
JAK inhibitor
MDM inhibitor
Microsomal trigylceride transfer protein inhibitor
NFKB inhibitor
P38 MAPK inhibitor
PARP inhibitor
Proteasome inhibitor
Protein synthesis inhibitor
RAF inhibitor
Retinoid receptor agonist
Src inhibitor
Syk inhibitor
Tyrosinase inhibitor
Xanthine oxidase inhibitor

Mechanism of action

ðbÞ

B
R

D
-K

1
6

1
3

3
7

7
3

V
al

p
ro

ic
-a

ci
d

M
et

o
cl

o
p

ra
m

id
e

N
o

m
if

en
si

n
e

A
M

-6
3

0
B

ar
as

er
ti

b
-H

Q
PA

B
R

D
-A

4
9

7
6

5
8

0
1

D
ia

ze
p

am
F

en
o

ld
o

p
am

G
ri

se
o

fu
lv

in
H

O
-0

1
3

Ir
b

es
ar

ta
n

L
o

fe
xi

d
in

e
M

et
h

im
az

o
le

M
et

h
io

p
ri

l
M

et
h

o
xa

m
in

e
N

ep
af

en
ac

N
F

-4
4

9
N

u
tl

in
-3

O
xa

to
m

id
e

SB
-2

5
8

5
8

5
Su

fe
n

ta
n

il
Su

m
at

ri
p

ta
n

Th
io

te
p

a
T

T
N

P
B

Adrenergic receptor agonist
Cytochrome P450 inhibitor
Dopamine receptor antagonist
Serotonin receptor antagonist
17,20 lyase inhibitor
ACE inhibitor
Androgen biosynthesis inhibitor
Angiotensin receptor antagonist
Antithyroid agent
Aurora kinase inhibitor
Benzodiazepine receptor agonist
Cannabinoid receptor antagonist
Cyclooxygenase inhibitor
Dopamine receptor agonist
GABA receptor agonist
Glucocorticoid receptor agonist
HDAC inhibitor
Histamine receptor antagonist
MDM inhibitor
Noradrenaline uptake inhibitor
Opioid receptor modulator
PPAR receptor agonist
Purinergic receptor antagonist
Retinoid receptor agonist
Serotonin receptor agonist
Steroid sulfatase inhibitor
Tubulin inhibitor
Voltage-gated sodium channel blocker

Mechanism of action

ðcÞ
FIGURE 7: Explorations of compounds target the risk groups by CMap analysis. (a) Heatmap showing enrichment score of top 10 compounds
for each LGG risk group. Compounds targeting high-risk groups were colored by red and low-risk groups in blue. (b, c) Heatmap showing
each compound that shares the mechanism of actions (rows) in high- and low-risk groups. Sorted by descending number of the compound
with a shared mechanism of actions.

14 Stem Cells International



single-cell levels in a previous study [39]. PFKP, the nearest
protein-coding gene for PFKP-DT, has been reported to
interact with VDAC2, thus regulating phenotypic repro-
graming and glucose metabolism of glioma stem cells [40].
Collectively, these findings highlight the critical roles of
m6A-related lncRNAs in LGG stemness regulation and sur-
vival prediction.

The effect of tumor stemness on the TIME has recently
been supported by experimental evidence [41]. We estimated
the TIME of LGG tumors and found that patients in different
risk groups exhibited heterogeneity for specific immune cells.
The infiltration levels of memory resting CD4+ T cells, M2
macrophages, and neutrophils were all increased in high-risk
groups across LGG datasets. As reported, macrophages are
the most abundant cell types in the TIME for glioma, and the
tumor-associated macrophages and their secreted factors are
essential to the progression of glioma. Among them, M2
macrophages were proven to mediate protumor effects and
lead to the suppression of systemic immunity [31, 42]. More-
over, evidence has demonstrated that neutrophils can support
the expansion of the glioma stem cell pool via an S100
protein-dependent mechanism, thus promoting the glioblas-
toma progression, which was consistent with our study [43].
We also found that the plasma B cells, whose expansion can
be a predictor of favorable patient survival [44], were
decreased in high-risk groups. In addition, a decrease in
CD8+ T cell infiltration and elevated activities of immune
inhibitors were observed in the high-risk group. These results
may partially explain the poor survival of the LGG patients in
the high-risk groups.

We next made efforts to identify compounds that may be
appropriate for the treatment of patients at different risk levels.
Eugenol (a bioactive constituent present in essential oils) was
found to specifically target factors enriched in high-risk
patients. Li et al. [45] found that eugenol could induce apopto-
tic and antimetastatic activity through the MMP signaling
pathway in a glioma rat model. Treatment with brefeldin-a
significantly inhibited stem cell self-renewal and improved
the survival of a gliomamousemodel [46]. For low-risk groups,
several drugs that have been reported were also identified. For
instance, methimazole has been employed to treat glioblastoma
in phase 2 clinical trials (accession numbers: NCT05607407
and NCT02654041). Moreover, the functions of methoxamine,
TTNPB, and other compounds in inhibiting glioma cells have
been previously described [47, 48]. Collectively, we indeed
found highly promising compounds that may be applicable
for glioma treatment.

5. Conclusion

In conclusion, we systemically estimated the association
between tumor stemness and LGG clinical features. A risk
model based on important m6A-related lncRNAs was con-
structed to predict LGG prognosis and stemness status was
constructed. The differences in the TIME were explored, and
potential compounds were identified between risk groups.
The signature that we present will provide novel insight
into clinical regimens for LGG patients.
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