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The emergence and spread of drug-resistant Plasmodium falciparum parasites
have hindered efforts to eliminate malaria. Monitoring the spread of drug
resistance is vital, as drug resistance can lead to widespread treatment failure.
We develop a Bayesian model to produce spatio-temporal maps that depict
the spread of drug resistance, and apply our methods for the antimalarial sul-
fadoxine-pyrimethamine. We infer from genetic count data the prevalences
over space and time of various malaria parasite haplotypes associated with
drug resistance. Previous work has focused on inferring the prevalence of
individual molecular markers. In reality, combinations of mutations at mul-
tiple markers confer varying degrees of drug resistance to the parasite,
indicating that multiple markers should be modelled together. However, the
reporting of genetic count data is often inconsistent as some studies report
haplotype counts, whereas some studies report mutation counts of individual
markers separately. In response, we introduce a latent multinomial Gaussian
process model to handle partially reported spatio-temporal count data. As
drug-resistant mutations are often used as a proxy for treatment efficacy,
point estimates from our spatio-temporal maps can help inform antimalarial
drug policies, whereas the uncertainties from our maps can help with
optimizing sampling strategies for future monitoring of drug resistance.
1. Introduction
Malaria is a deadly disease caused by parasites that are transmitted by mosqui-
toes. During the treatment of a malaria infection, the parasites undergo selective
pressure, favouring the survival of parasites that have genetic mutations which
confer on them resistance against the drug treatment. For Plasmodium falci-
parum, the most common species of malaria parasites, drug resistance is a
major threat to the control of the disease. It is therefore important to be able
to quantify changes in antimalarial drug resistance, including for sulfadox-
ine-pyrimethamine (SP) that is used for intermittent preventive treatment for
high-risk groups, namely pregnant people and young children.

Spatio-temporal trends in antimalarial drug resistance can be monitored
using molecular markers known to be associated with drug resistance as a
proxy of clinical efficacy. Plasmodium falciparum resistance against SP is charac-
terized by mutations on the dhps and dhfr genes [1]. In fact, SP-resistant
parasites often carry multiple SP-resistant mutations (a set of molecular mar-
kers or a haplotype). Genetic studies are easier to conduct and are a fraction
of the cost of a clinical study—allowing for larger numbers of samples to be col-
lected across more spatio-temporal locations [2]. This makes data from genetic
studies readily amenable to model-based geostatistics.

To our knowledge, all works to date that have statistically mapped the geos-
patial distribution of the dhps and dhfr markers have modelled each marker
separately [3–6]. Most relevant to the work presented in our paper, Flegg
et al. [3] developed a predictive model for the geographical and temporal
trends across Africa of the prevalence of mutations on the dhps gene of the para-
site that are associated with SP resistance. A separate model was used for each
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Table 1. Summary of notation used in §2.1.

notation description

G no. molecular markers under consideration

H no. full haplotypes under consideration

N no. data points

Ri no. realized haplotypes that data point i reports

p i vector (length H) of full haplotype probabilities at

data point i

z i vector (length H) of full haplotype counts at data

point i

yi vector (length Ri) of realized haplotype counts at

data point i

A i binary matrix (size Ri × H) linking realized haplotypes

to full haplotypes
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marker (dhps A437G, dhps K540E and dhps A581G), which
models the count data with binomial distributions.
Correlation between binomial probabilities are specified
according to the spatio-temporal distance between their cor-
responding sites. Specifically, the logit transformation of the
binomial probabilities are set to follow a Gaussian process
(GP) distribution.

Although existing spatio-temporal mapping work has
focused on individual marker mutations, molecular studies
have shown that it is the presence of the double mutant hap-
lotype dhps A437G/K540E and triple mutant haplotype dhps
A437G/K540E/A581G in the parasite that are most strongly
associated with an increased risk of SP treatment failure
[7,8], and thus the most clinically relevant. Therefore, new
modelling approaches are needed to obtain spatially continu-
ous maps of haplotype prevalences, not just of individual
marker mutation prevalences. However, not all studies report
the presence or absence of each mutation simultaneously, i.e.
the counts of full haplotypes are not reported. Instead, studies
may only report the number of samples that carry each indi-
vidual marker mutation. Since the samples corresponding to
each reported count may overlap, we cannot use a multi-
nomial distribution directly. Moreover, some studies only
report on a smaller subset of all mutations of interest. We
handle these discrepancies caused by partially reported data
under a latent multinomial model [9,10], where the observed
counts are treated as binary combinations of unobserved mul-
tinomial counts. In this paper, we extend the spatio-temporal
GP models of individual dhps markers [3,6] to model the pre-
valences of multiple haplotypes by using a latent multinomial
distribution with GPs. Handling all haplotypes within one
model allows us to leverage all available data to greater utility.

This paper is structured as follows. In §2, we present the
latent multinomial GP model for mapping SP drug resistance
based on mutations on the dhps gene. We do not account for
mutations on the dhfr gene as mutations on the dhps gene
are more closely related to clinical SP failure and there is a
triple dhfr mutation widely spread across Africa already [11].
This is followed by the outputs of the model in §3, showing
the prevalence of each haplotype of interest over space and
time. Finally, in §4, we discuss the implications of our findings.
2. Methods
In this paper, we construct a Bayesian hierarchical model that is
capable of modelling partially reported multinomial count data
for spatio-temporal changes in drug resistance. This modelling
framework is needed to handle reporting inconsistencies found
across studies on the prevalences of drug-resistant haplotypes,
where different studies may report on different combinations of
mutations. For example, the list of dhps mutations compiled by
the Worldwide Antimalarial Resistance Network [12] includes:
dhps 437G, dhps 540E, dhps 581G, dhps 437G-540E, dhps 437G-
540E-581G and dhps 437G-540E-A581. These inconsistencies in
data collection and study design significantly complicate model
construction and parameter inference. We develop a latent multi-
nomial model (§2.1) with a GP prior specification (§2.2). We
describe how spatio-temporal maps of haplotype prevalences
are produced under a Bayesian framework in §2.3.

2.1. Latent multinomial model formulation
Suppose that we have G molecular markers of interest for
monitoring drug resistance (table 1). For our application, we
have G = 3 molecular markers, namely dhps 437, dhps 540 and
dhps 581. Define a full haplotype to be a binary string of length
G recording whether each of these mutations are present (1) or
absent (0). This results in H = 2G possible full haplotypes.

Over space and time we have N studies (figure 1); study i (i =
1,…, N) is conducted to estimate the prevalence p i at this
location of the H haplotypes associated with drug resistance.
We define z i to be a vector of length H that stores the number
of each of the H full haplotypes for the ith study, and ni = zi,1 +
zi,2 + · · · + zi,H to be the known sample size of the study. The

counts fzigNi¼1 are considered unobserved (latent), each following
a multinomial distribution:

zi j pi � Multðni, piÞ for i ¼ 1, . . . , N: ð2:1Þ

For each i = 1,…, N, we observe binary combinations of the
latent counts, depending on the way counts are reported in
the ith study. We refer to the set of full haplotypes that are
included by a single observed count as a realized haplotype.
For example, the realized haplotype 437G-540E includes the
full haplotypes 110 (437G-540E-A581) and 111 (437G-540E-
581G). The collection of realized haplotypes reported may vary
across studies, which we encode within a configuration matrix.
As an example, for a study which reports on the realized haplo-
types dhps 437G, dhps 540E, dhps 581G, dhps 437G-540E,
dhps 437G-540E-A581 and dhps 437G-540E-581G, we have the
following configuration matrix:

000 001 010 011 100 101 110 111

dhps 437G
dhps 540E
dhps 581G

dhps 437G-540E

dhps 437G-540E-581G

dhps 437G-540E-A581

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

2
666666664

3
777777775
:

ð2:2Þ

In this way, for an observed count of the samples with the dhps
437G mutation, we need to sum the number of the four haplo-
types {100, 101, 110, 111}, while for an observed count of the
samples with dhps 437G-540E, we only need to sum the haplo-
types {110, 111}. The configuration matrix is constructed based
on which haplotypes are included in each count reported by
a study.



yipifj(X)

1 ��i ��N

θ zi

Ai

1 ��j ��H

Figure 1. Graphical model for latent multinomial data with multiple popu-
lations whose haplotype prevalences fpigNi¼1 are correlated through Gaussian
processes. fj (X) denotes the vector ( fj(x1),…, fj(xN)). Circles correspond to
random variables while squares correspond to constant values. A shaded
node indicates that the variable is observed. A dotted outline indicates
that the variable is deterministically calculated from its parent variables. Vari-
ables contained within a plate (box) are replicated according to the index at
the bottom right.
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We denote the number of realized haplotypes reported in
study i by Ri and the reported counts of the realized haplotypes
by vector yi of length Ri, for i = 1,…, N. Let Ai be the constructed
Ri ×H configuration matrix of 0’s and 1’s, determined from the
realized haplotypes reported in study i. For each i = 1,…, N
(figure 1), the latent counts zi must be a non-negative integer
solution to the system

yi ¼ Aizi ð2:3Þ

and the sample size constraint ni = zi,1 + zi,2 + · · · + zi,H. Since the
sample size, ni, is known, we let the first row of Ai always be a
vector of ones and the first observed count be the sample size,
i.e. yi,1 = ni for all i.

To calculate the likelihood, we marginalize out the latent
counts fzigNi¼1 exactly by enumerating all possible latent counts
zi that satisfy (2.3). The full likelihood is

pðy1, . . . , yN jp1, . . . , pNÞ ¼
YN
i¼1

pðyijpiÞ, ð2:4Þ

where

pðyijpiÞ ¼
X

zi :Aizi¼yi

pðyi, zijpiÞ

¼
X

zi :Aizi¼yi

ni
zi1, . . . , ziH

pzi1i1 � � � pziHiH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðzi jpiÞ

1ðyi ¼ AiziÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pðyi jziÞ

:
ð2:5Þ

The summation in (2.5) requires us to enumerate, for each i = 1,
…, N, the feasible set of solutions

F ðAi, yiÞ :¼ fz [ ZH
�0 :Aiz ¼ yig, ð2:6Þ

where ZH
�0 is the space of H-dimensional non-negative

integer vectors. We find all elements of the feasible set
with a branch-and-bound algorithm (electronic supplementary
material, S1). This algorithm is run once prior to parameter
inference.
2.2. Gaussian process prior specification
To account for the correlation between haplotype prevalences
for different studies, we model the haplotype prevalences as a
softmax transformation of H independent GPs:

pij ¼
expðfjðxiÞÞ

expðf1ðxiÞÞ þ � � � þ expðfHðxiÞÞ
for i ¼ 1, . . . , N, j ¼ 1, . . . , H ð2:7Þ
and

fjðx1Þ, . . . , fjðxNÞ � NðmjðXÞ, CjðX, XÞÞ for j ¼ 1, . . . , H,

ð2:8Þ
where pi are the haplotype prevalences of population i,
X ¼ fxigNi¼1 are the spatio-temporal coordinates and covariates
for each study, and fj is the jth GP whose mean function and
covariance function are mj and Cj respectively. The vector mj(X)
denotes the concatenation of (mj(x1),…, mj(xN)), and Cj(X, X)
is a matrix whose (i, i0)th entry is Cj(x i, x i0). The mean and covari-
ance functions are further parametrized by GP hyperparameters
θ (figure 1).

For each data point i = 1,…, N, our covariates xi = (λi, ϕi, ti, ri)
consist of the longitude λi, latitude ϕi, median year of study ti,
and P. falciparum parasite rate ri (as estimated from the Malaria
Atlas Project [13]). We assume that the mean function varies
linearly with the parasite rate:

mjðxiÞ ¼ mj þ bjri, ð2:9Þ

where μj is a baseline mean value and βj quantifies the effect of
parasite rate on the prevalence of haplotype j. We choose our
covariance function from the Gneiting class of covariance func-
tions on a sphere [14], along with a white noise term:

Cjðxi, xi0 Þ ¼ s2j 1þ ðti � t i0 Þ2
t2j

þ dGCðxi, xi0 Þ
dj

 !�1

þs21ði ¼ i0Þ,

ð2:10Þ
where s2j is the spatio-temporal variance, τj is the timescale par-
ameter, δj is the lengthscale parameter, σ2 is the noise variance,
dGC(xi, xi0) is the great circle distance (in degrees) between data
points i and i0, and 1ð�Þ is the indicator function. Other Gneiting
covariance functions are possible, but we choose a simple one
that resembles the rational quadratic covariance function. Note
that all hyperparameters except for σ2 are haplotype-specific.
We place weakly informative priors on the GP hyperparameters
u ¼ fmj, bj, sj, tj, djgHj¼1 < fsg; see electronic supplementary
material, S2, for details.
2.3. Bayesian inference
We perform Bayesian inference using Markov chain Monte Carlo
(MCMC) to obtain the posterior distribution

pðp1, . . . , pN , ujYÞ
/ pðYjp1, . . . , pNÞpðp1, . . . , pN juÞpðuÞ, ð2:11Þ

where Y denotes the collection of all observed data (y1,…, yN),
the likelihood p(Y|p1,…, pN) is defined in (2.4) and (2.5), the
prior p(p1,…, pN|θ) in §2.2 and the hyperprior p(θ) in electronic
supplementary material, S2. We use the No-U-Turn sampler
(NUTS) [15] to perform MCMC sampling, which uses gradient
information of the logarithm of (2.11) to produce posterior
chains of low autocorrelation. We run 5 MCMC chains each
with 1000 iterations, discarding the first half as burn-in
iterations. After MCMC sampling, we produce predictive
maps of haplotype prevalences on grid cells of size 0:2� � 0:2�

across sub-Saharan Africa for each year between 2000 and
2020. Let p* denote the vector of haplotype prevalences for an
arbitrary grid cell with covariates x*. To obtain samples from
the posterior p(p*|Y), we draw samples from the distribution
p(p*|p1,…, pN, θ), where the values of p1,…, pN, θ are taken
from the posterior samples output by NUTS. This is justified
by the fact that

pðp�jYÞ ¼
ð
pðp�jp1, . . . , pN , uÞpðp1, . . . , pN , ujYÞdp1, � � � , dpN du:

ð2:12Þ
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Figure 2. Distribution (over grid cells of study area) of the posterior medians of H = 8 prevalences of dhps haplotypes from year 2000 to year 2020. The dark blue
line represents the median over the grid cells of our study area, the dark blue band represents the 50% interval and the light blue band the 95% interval. Posterior
medians in all panels are presented on a square root scale.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230570

4

Based on GP theory [16], the distribution p(p*|p1,…, pN, θ) fol-
lows a normal distribution with the softmax transformation
(2.7) applied, allowing the posterior predictive distribution
p(p*|Y) to be exactly sampled given samples of the posterior
distribution p(p1,…, pN, θ|Y).
3. Results
We fit our latentmultinomial GPmodel to SP resistance data in
Africa, where it is common for parasites to have multiple SP-
resistant mutations on the dhps gene and studies may report
the number of samples with mutations differently. Here, we
consider G = 3 mutations on the dhps gene, namely A437G,
K540E and A581G, leading to H = 8 distinct full haplotypes.
We use a dataset collated by the Worldwide Antimalarial
Resistance Network [12], as detailed in electronic supplemen-
tary material, S3. This dataset reports a total of six realized
haplotypes, listed in (2.2), although each data point typically
does not report all realized haplotypes. Our primary goal
is to obtain Bayesian estimates of the prevalences (i.e.
multinomial probabilities) of the 8 full haplotypes across
sub-Saharan Africa over the duration of interest 2000–2020.

The total computational time for preprocessing and
MCMC was 7.9 h. We achieve a potential scale reduction
factor [17] of R̂ , 1:02 for all parameters, and each haplotype
prevalence had an effective sample size greater than 500. The
MCMC chains exhibit good mixing, as indicated by the repre-
sentative trace plots shown in electronic supplementary
material, figure S1.

We divide the region of interest into a 0:2� � 0:2� grid,
where we define our area of interest to be the region where
the Malaria Atlas Project maps malaria transmission [13,18].
For each spatio-temporal coordinate x* of a grid cell and
year, we find the posterior predictive distribution of the full
haplotype prevalences at x*. Figure 2 shows the distribution
of posterior median prevalences over the region of interest
for all eight haplotypes during 2000–2020. Over this region,
of the H = 8 haplotypes, three have very low prevalence
over the entire duration of interest: A437-540E-A581, A437-
K540-581G and A437-540E-581G.

We also provide visual summaries of the spatial distri-
bution of prevalences of 5 selected haplotypes (the three
low prevalence haplotypes from figure 2 are excluded) and
their change over time. Figure 3 shows the median and stan-
dard deviation summaries of the posterior predictive
distributions over the region of interest in the years 2000,
2010 and 2020. The results presented in this figure are
broadly consistent with literature in that the vast majority
of mutant dhps haplotypes have the A437G mutation [19].
The spatial patterns shown by our heatmaps agree with the
results of Naidoo & Roper [20], who report the double
mutation A437G-K540E as the most prevalent mutant haplo-
type in East Africa (third column), and also the single
mutation A437G as the most prevalent mutant haplotype in
West and Central Africa (second column).

In the case where the prevalence of an individual
mutation (A437G, K540E or A581G) is of interest, these can
still be captured as outputs of our model by simply summing
over the halplotypes that include the mutation. In figure 4,
the spatial distributions of A437G, K540E and A581G are
summarized with posterior median (top row) and standard
deviation (bottom row) in 2020. These results are broadly
consistent with results shown in Flegg et al. [6] for the same
three markers in 2020.

To assess the predictive utility of our model, we rerun the
inference 10 times, each time with a different 10% of the data-
set withheld from inference. For each data point of the full
dataset, the haplotype prevalences are predicted by the pos-
terior median obtained from the inference instance that did
not include the data point. Details of this model validation
procedure are given in electronic supplementary material,
S4. We report in table 2 the mean error (measure of bias)
and mean absolute error (measure of average discrepancy)
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between predictive median and observed prevalences for
each realized haplotype. Means for each realized haplotype
are taken over the data points that report the count of that
realized haplotype. For the realized haplotypes that involve
one mutation only, we compare our errors to those obtained
by Flegg et al. [6], who performed spatio-temporal mapping
in the same study area for individual dhps mutations separ-
ately. Flegg et al. used the same 10-fold cross-validation
approach as us; see table 3 in [6] for their results. Our
mean absolute errors are comparable to those of Flegg et al.
and the direction of bias (i.e. sign of mean error) concurs
for all three mutations. However, the mean errors we report
have larger magnitudes, possibly due to our dataset being
smaller than the dataset used in [6]. Nevertheless, there
is good agreement between the predictive median and
observed prevalences; see electronic supplementary material,
figure S2, for scatterplots comparing the predictive medians
to the corresponding observed prevalences.
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Table 2. Number of data points that report the counts for each realized
haplotype, and the corresponding mean error and mean absolute error
between predictive median and observed prevalences.

realized
haplotype

no. data
points

mean
error

mean
absolute
error

dhps437G 208 0.0389 0.1158

dhps540E 214 0.0096 0.0731

dhps581G 154 −0.0302 0.0553

dhps437G-540E 65 −0.0060 0.0451

dhps437G-540E-581G 35 −0.0518 0.0778

dhps437G-540E-A581 33 −0.0150 0.0758
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4. Discussion
In this paper, we develop a spatio-temporal geostatistical
model to infer for the first time the prevalence of multi-
marker drug-resistant malaria. We illustrate the utility of
this new model for SP, which is a commonly used drug for
intermittent preventive treatment of malaria in pregnancy,
children and infants. Since drug-resistant haplotypes and
markers are often used as a proxy for treatment efficacy,
these maps can help inform antimalarial drug policies. Our
methods take on a Bayesian approach, which are able to
quantify uncertainties about the prevalence of the drug resist-
ance haplotypes. A benefit of quantifying uncertainty is its
use in optimizing sampling strategies for future monitoring
of drug resistance [21].

Existing geostatistical methods in spatio-temporal model-
ling of antimalarial drug resistance use a binomial likelihood
[3,6,21,22], which can only infer the prevalence of a single cat-
egory, e.g. prevalence of one mutation, or prevalence of the
wild-type haplotype. Our models are capable of handling
multiple haplotypes simultaneously by using a multinomial
likelihood, leading to more refined inference about drug
resistance. This has not been done in previous work, as not
all studies provide data on full haplotypes; studies may
only report on a subset of mutations, or group haplotypes
by the number of mutations present, or provide counts for
each mutation separately. We were able to handle these
types of partially reported data by using a latent multinomial
model that treats each reported category as a subset of all full
haplotypes. Although the counts of each full haplotype are
not all experimentally determined, our approach of enumer-
ating all possible latent counts allows us to leverage the
partially reported data for inferring the prevalences of the
full haplotypes.

One limitation of our work presented here is that
sampling bias may be present due to population hetero-
geneity. For example, since SP is commonly used for
intermittent preventive treatment of malaria, many studies
of SP resistance take blood samples from pregnant people.
Bias may also arise from the choice of mutations reported.
If the prevalence of a mutation is very low, it is less likely
to be reported by a study. This may lead to an overestimation
in the prevalence of mutations that are not often reported.
Another limitation is a lack of model checking to verify
whether our model fits the data adequately. Since the haplo-
type categories reported are inconsistent across studies, it
is not straightforward as to what model checking procedures
should be applied.

A possible extension is to include more covariates for the
GP model. Of biological interest are covariates related to drug
pressure, such as treatment-seeking rates [23]. However,
using more covariates implies that more model parameters
need to be inferred. Our current MCMC approach is already
computationally expensive, an issue that may be exacerbated
by the inclusion of more covariates. For a dataset with more
markers and/or larger pools, our enumeration approach may
become infeasible, as there are too many possible latent count
solutions to enumerate. In this case, we can instead treat the
latent counts as model parameters to be sampled during
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MCMC using a custom MCMC sampler [10] based on
Markov bases [24]. MCMC sampling of the latent counts
cannot be performed by gradient-based samplers such as
NUTS, as they cannot handle discrete model parameters.
This is particularly relevant if the dhfr gene is to be included
in future analyses. The computational feasibility of such ana-
lyses depends on the number of reported haplotypes, and on
the number of full haplotypes used in the statistical model.
We illustrate these ideas in electronic supplementary
material, S5, through a case study based on molecular data
collected from India [25], focusing on a dhfr + dhps quintuple
mutation that is associated with clinical failure of SP [26].
There is also more work to do in extending the model to con-
sider dependent GPs, as it is possible that the prevalences of
different haplotypes are related to each other, using for
example the linear model of coregionalization [27] or the
semiparametric latent factor model [28].

At present, the World Health Organization provides
recommendations for implementing intermittent preventive
treatment in pregnancy with SP based on the prevalence of
the dhps K540E and A581G mutations [29]. Although it is
known that different dhps haplotypes confer different degrees
of SP resistance [20], these recommendations are based on the
prevalence of individual mutations, rather than that of full
haplotypes. One possible reason is that there are no existing
methods in the literature to infer the prevalence of full haplo-
types from partially reported data. We address this gap in the
literature by describing how a latent multinomial GP model
can be used to produce spatio-temporal maps of these preva-
lences. The results we present in this paper are able to
quantify the spread of various drug-resistant haplotypes,
and provide uncertainty estimates that can help optimize
sampling strategies for future monitoring of antimalarial
drug resistance.
Data accessibility. The dataset supporting this article is available from the
Wwarn repository: www.wwarn.org/tracking-resistance/sp-molecu-
lar-surveyor [30]. The code used for analysis is available from the
Zenodo repository: https://zenodo.org/records/10354808 [31].

Further details of our methods and results are provided in
electronic supplementary material [32].
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