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NAD+ dependent UPRmt activation underlies
intestinal aging caused by mitochondrial
DNA mutations

Liang Yang1,2,3,8, Zifeng Ruan1,3,4,8, Xiaobing Lin1,3,8, Hao Wang1,3, Yanmin Xin1,3,
Haite Tang1,3, Zhijuan Hu1,3,4, Yunhao Zhou1,3,4, Yi Wu 1,2,3, Junwei Wang1,3,
Dajiang Qin2,5, Gang Lu6, Kerry M. Loomes7, Wai-Yee Chan 6 &
Xingguo Liu 1,2,3

Aging in mammals is accompanied by an imbalance of intestinal homeostasis
and accumulation ofmitochondrial DNA (mtDNA)mutations. However, little is
known about how accumulated mtDNA mutations modulate intestinal
homeostasis. We observe the accumulation of mtDNA mutations in the small
intestine of aged male mice, suggesting an association with physiological
intestinal aging. Using polymerase gamma (POLG)mutatormice andwild-type
mice, we generate male mice with progressive mtDNA mutation burdens.
Investigation utilizing organoid technology and in vivo intestinal stem cell
labeling reveals decreased colony formation efficiency of intestinal crypts and
LGR5-expressing intestinal stem cells in response to a threshold mtDNA
mutation burden. Mechanistically, increased mtDNA mutation burden
exacerbates the aging phenotype of the small intestine through ATF5 depen-
dent mitochondrial unfolded protein response (UPRmt) activation. This aging
phenotype is reversed by supplementation with the NAD+ precursor, NMN.
Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations
that regulates the intestinal aging.

The adult intestinal epithelium is composed of differentiated cells
forming villi and proliferating cells in crypts. Leucine-rich repeat-
containing G protein-coupled receptor 5 (LGR5)-expressing intestinal
stem cells (ISCs), residing at the base of the crypt, can differentiate to
different epithelial cells (enterocytes, Paneth cells, goblet cells,
microfold cells, tuft cells, etc.) and regenerate the epithelium1,2. These

differentiated epithelial cells form orderly intestinal structures to
maintain intestinal homeostasis and fundamental functions such as
absorption, secretion, barrier and antimicrobial function.

ISCs are supported by a niche of accessory cell types to generate
mature epithelial cell types,which fuel intestinal renewal, regeneration
and development. These niche cells of ISCs include Gli1+, Foxl1+
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stromal cells and Paneth cells, and secrete Wnt molecules as self-
renewal factors to support intestinal crypts3–5. Signaling pathways
underlying the development process of intestinal epithelial cells are
well studied. Wnt and Notch signals are essential for maintaining stem
cell activity and balanced differentiation between secretory and
absorptive cell lineages6,7. The phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (Akt) pathway is also involved in the intestinal dif-
ferentiation and proliferation8, while the transforming growth factor
beta (TGF-β) pathway negatively regulates growth of normal epithelial
cells9–12. Notum andWnt signals play vital roles in the aging process of
intestine as marked by reduction of ISC number and alteration of ISC
function13,14. However, detailed understanding of the signal pathways
regulating intestinal aging is lacking.

Mitochondrial DNA (mtDNA)mutations are widely regarded as an
important cause of aging and age-associated diseases15,16 and report-
edly induce the aging of multiple organs inmouse such as ovary, heart
and liver17–19. In particular, the aging phenotypes of tissues with strong
energy requirements such as heart and liver tissues are accelerated by
excessive mtDNA mutations, which facilitate mitochondrial dysfunc-
tion by compromising oxidative phosphorylation20. The accumulation
of mtDNA mutations in aged human clinical intestinal samples21–23

indicates that mtDNA stability may also be important for intestinal
aging. However, the sub-cellular mechanisms involved are still
unknown while the perturbed epithelial cell crosstalk caused by
increased mtDNA mutation content remains to be investigated.

mtDNA-mutator (PolgAMut/Mut) mice exhibit multiple premature
aging phenotypes by ninemonths of age17,24, and decreased lifespan of
13–15 months25,26. As a result, PolgAMut/Mut mice are widely utilized to
investigate the roles of mtDNA mutations in the aging process27–31.
Using this mouse model, we demonstrate an association between
mtDNA mutation content and the intestinal aging phenotypes. We
found that increased mtDNA mutation burden triggers an ATF5-
dependent mitochondrial unfolded protein response (UPRmt) by NAD+

depletion. These findings reveal a regulatory mechanism whereby the
UPRmt mediates the intestinal aging phenotype caused by increased
mtDNA mutation burden.

Results
High mtDNA mutation burden induces an aging-like phenotype
in the small intestine
Similar to aged human clinical intestinal samples21–23, the small intes-
tine of aged mouse intestine, characterized by decreased intestinal
crypt number and increased villus length, higher expression of
CDKN1A/p21 (a well-known senescence marker) and shorter telomere
length (Supplementary Fig. 1a–c), accumulates more mtDNA muta-
tions, primarily low-frequency (less than 0.05) point mutations (Sup-
plementary Fig. 1d, e). This observation demonstrates a link between
mtDNA mutation content and physiological intestinal aging.

To investigate the effect of mtDNA mutation content on small
intestinal aging, we generated mice with four ascribed categories of
mtDNA mutational burden: negligible (WT/WT), low (WT/WT*), mod-
erate (WT/Mut**) and high (Mut/Mut***) as described18. We then
detected intestinal changes at 3, 8 and 12months in intestinal sections
and using an organoid system (Fig. 1a). Because intestinal crypt num-
ber decreases and villus length increases during intestinal aging14,32–34,
we first performed hematoxylin-eosin (H&E) staining to examine
intestinal architecture. As compared to WT/WT, WT/WT* mice with
theoretically maternally transmitted mtDNA mutations showed no
significant difference in intestinal architecture during aging, indicating
little effect on the intestinal aging. As compared to WT/WT and WT/
WT*, Mut/Mut*** mice exhibited clear aging-like changes and accu-
mulation of apoptotic cells in the small intestine at 8 months, which
wasmore pronounced at 12 months (Fig. 1b, c). The higher expression
ofCDKN1A/ p21 and shorter telomere length inMut/Mut*** at 8months
also supported exacerbation of small intestine aging with increased

mtDNA mutation burden (Supplementary Fig. 1f, g). We also used an
in vitro intestinal organoid system to reflect ISC function1,35 and found
that organoids derived from Mut/Mut*** mice were fewer and smaller
in size versus WT/WT* and WT/Mut** mice (Fig. 1d). The decreased
colony formation efficiency in Mut/Mut*** mice indicates mtDNA
mutations impair ISC function.

To study the link between the observed aging phenotypes and
mtDNAmutation content in detail, we profiled mtDNAmutation types
and frequencies in the small intestines of our mouse models. As
compared to WT/WT mice, at 8 months Mut/Mut*** mice accumulate
significantly more point mutations, primarily as low-frequency (less
than 0.05) point mutations; these were also observed in the small
intestine of aged wild-type mice (Supplementary Fig. 2a–d). Notably,
the intestine of WT/WT* and WT/Mut** mice with little apparent aging
phenotype accumulate low quantities of mtDNA mutations (less than
900) at 8 months whereas the intestine of Mut/Mut*** mice accumu-
lates high quantities of mtDNA mutations (average mutation number
above 4,000) at 8 months. Interestingly, the brain and liver of WT/
Mut** mice did accumulate much more expected mtDNA point
mutations but small intestine didn’t, implying a possible mechanism
for clearing mutated mtDNAs in the small intestine (Supplementary
Fig. 2b–d and Supplementary Fig. 3a, b). Overall, the above results
indicate that increased mtDNAmutation burden induces an aging-like
phenotype in the small intestine.

mtDNA mutations result in NAD+ depletion during
intestinal aging
To further explore the mechanism by which increased mtDNA muta-
tion burden regulates intestinal aging, we performed RNA sequencing
(RNA-seq) and analyzed 780 upregulated differential genes in the
intestines of Mut/Mut*** mice as compared to WT/WT* at 8 months
using Gene Ontology (GO) analysis (Supplementary Fig. 4a, b). Most
enriched GO terms are involved in mitochondrial respiratory function
and metabolic processes, demonstrating an alteration of mitochon-
drial function caused bymtDNAmutations. As expected, the intestinal
crypt cells in Mut/Mut*** mice exhibit a lower mitochondrial inner
membrane potential and higher ROS concentrations as compared to
WT/WT*mice, indicating that highmtDNAmutation content results in
mitochondrial dysfunction during intestinal aging (Supplementary
Fig. 4c, d). Notably, the enriched NADH dehydrogenase complex
assemblypathway implies an impairmentofNADH/NAD+ redox inMut/
Mut*** intestines (Fig. 2a). This perturbed redox potential was con-
firmed by transfection of intestinal crypt cells with SoNar, a NADH/
NAD+ sensor36,37, which showed a higher NADH/NAD+ ratio in Mut/
Mut*** mice (Fig. 2b, c). We also transfected intestinal crypt cells with
FiNad (a NAD+ sensor38), and found less NAD+ content in the Mut/
Mut*** cells (Fig. 2d, e), leading us to investigate the role of NAD+

depletion in the intestinal aging.

NAD+ repletion alleviates small intestinal aging caused by
increased mtDNA mutation content, which is independent of
mitophagy
In response to dietary supplementation with the NAD+ precursor,
nicotinamide mononucleotide (NMN)39,40, we found increased crypt
number, decreased villus length and presence of apoptotic cells in the
intestine of Mut/Mut*** mice (Fig. 3a, b). We further validated the
upregulation of NAD+ concentration in the intestinal crypts of Mut/
Mut*** mice treated with NMN (Supplementary Fig. 5), thus indicating
that NAD+ repletion in vivo alleviates the small intestine aging phe-
notypes caused by mtDNA mutation burden. In parallel, we found
NAD+ repletion in vitro could rescue decreased colony formation
efficiency in Mut/Mut*** intestinal organoids (Fig. 3c). Together these
results indicate that NAD+ depletion is a key mediator by which
increased mtDNA mutation burden induces the aging phenotype of
small intestine.
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As NAD+ depletion reportedly compromises mitophagy41,42, it
raises the possibility that NAD+ repletion could activate mito-
phagy to remove mutated mtDNAs, thereby alleviating the small
intestine aging phenotypes. By detecting mitophagy using anti-
LC3B and anti-TOM20 IF in the intestine crypts of WT/WT*, WT/
Mut** and Mut/Mut*** mice at 3, 8 and 12 months, we indeed

observed compromised mitophagy in Mut/Mut*** mice at
8 months (Supplementary Fig. 6a). Nevertheless, NAD+ repletion
in vivo did not rescue mitophagy deficiency or mtDNA mutation
burden in the intestinal crypts of Mut/Mut*** mice at 8 months
(Supplementary Fig. 6b, c), indicating that intestinal aging
induced by NAD+ depletion is independent of mitophagy.
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Increased mtDNA mutation burden impairs Wnt/β-catenin
signaling and induces a decline in LGR5-positive intestinal
cells through NAD+ depletion
Due to the important roles of signaling pathways including Wnt, Notch,
Notum, PI3K/Akt, and TGF-β pathways in regulating the development
process of intestinal epithelial cells, we assayed these signalingpathways
and their correlation with NAD+ depletion during intestinal aging. Using
RNA-seq analysis, we found that only differential genes associated with
Wnt/β-catenin signaling were enriched in Mut/Mut*** versus WT/WT*
intestine at 8 months, which are downregulated by mtDNA mutations
(Fig. 4a). AsWnt/β-catenin signaling is required for LGR5-expressing ISCs
tomaintain intestinal regeneration, asmarked by the presence of Cyclin
D1 (CD1)-expressing cells (Fig. 4b), we further performed anti-β-catenin
and anti-CD1 immunofluorescence (IF) in the intestinal crypts of WT/
WT*, WT/Mut** and Mut/Mut*** mice at 3, 8 and 12 months. We found
that β-catenin fluorescence intensity (FI) is decreased at 8 months with
fewer CD1-expressing cells in Mut/Mut*** mice versus either WT/WT* or
WT/Mut** mice (Fig. 4c, d). These results suggest that increasedmtDNA
mutation burden impairs theWnt/β-catenin pathway. Importantly, NAD+

repletion rescues this pathway in the intestine of Mut/Mut*** mice
(Fig. 4e), indicating NAD+ depletion underlies the lack of ISC regenera-
tion through the Wnt/β-catenin pathway.

We next investigated the effect ofmtDNAmutationburden on the
number of LGR5-expressing ISCs. Crossing LGR5-GFP+/- (LGR5-eGFP-
IRES-CreERT2 reporter)1 and WT/Mut** (PolgAWT/Mut) mice, we gener-
ated four genotype LGR5-GFP positive mice with increasing levels of
mtDNA mutation burden as depicted in Fig. 5a. We noted that LGR5-
positive cells decline sharply at 8 months in Mut/Mut*** mice (Fig. 5b),
indicating an adverse effect of mtDNA mutation burden. NAD+ reple-
tion increases the number of LGR5-positive intestinal cells in Mut/
Mut*** mice (Fig. 5c).

For the requirement of Wnt molecules, such as WNT243, WNT44

andWNT5A44, secreted from niche cells including Gli1+, Foxl1+ stromal,
Paneth and myofibroblast cells as self-renewal factors to support
ISCs3–5,43,44, we assayed the expression of these Wnt molecules in the
intestinal crypts of WT/WT*, WT/Mut** and Mut/Mut*** mice at 8
months. We found all the tested Wnt proteins are decreased in Mut/
Mut*** versus WT/WT* mice (Fig. 5d), showing that increased mtDNA
mutation burden inhibits secretion of Wnt molecules. NAD+ repletion
partially rescues the reduction ofWNT2 andWNT4 protein expression
in Mut/Mut*** mice (Fig. 5d and Supplementary Fig. 7a, b), implying
that mtDNA mutation burden can inhibit the secretion of these two
Wnt molecules through NAD+ depletion. Furthermore, we observed
downregulation of Foxl1 but not Gli1 in Mut/Mut*** intestine, implying
a possible reduction of Foxl1+ cells caused bymtDNAmutation burden
(Supplementary Fig. 7c).

As activation of Notch signaling reportedly induces a subset of
Paneth cells to gain stem cell features with subsequently proliferation
and differentiation into villus epithelial cells45, we performed anti-
Notch1 immunofluorescence. Notch signal activation was observed in

the intestinal crypt base of Mut/Mut*** mice at 8 months (Supple-
mentary Fig. 7d), providing a possible explanation for the increase of
villus length in the aged intestine lacking the Wnt/β-catenin pathway.
NAD+ repletion rescues the Foxl1 downregulation and Notch1 upre-
gulation in Mut/Mut*** mice (Supplementary Fig. 7e), suggesting that
mtDNAmutation burden can regulate the function or number of niche
cells through NAD+ depletion. Taken together, NAD+ depletion caused
by increased mtDNA mutation burden induces the decline of LGR5-
positive intestinal cells via impairment of the Wnt/β-catenin pathway.

NAD+ depletion activates ISR to regulate mtDNA
mutation-induced aging phenotypes through impairment
of the Wnt/β-catenin pathway
How does NAD+ depletion regulate the Wnt/β-catenin pathway during
the intestinal aging caused by mtDNA mutation burden? We per-
formed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of the upregulated differential genes in the intestines of Mut/
Mut*** versus WT/WT* mice at 8 months. Here, increased mtDNA
mutation burden triggers a retrograde mitochondria-to-nucleus com-
munication by upregulating ISR including oxidative phosphorylation,
glutathione metabolism, nicotinate and nicotinamide metabolism,
folate biosynthesis, the PPAR signaling pathway and carbon metabo-
lism (Fig. 6a and Supplementary Fig. 8a).

Upon mitochondrial ISR, eukaryotic initiation factor 2 α subunit
(eIF2α) is phosphorylated46, which subsequently results in global
attenuation of cytosolic translation coincident with preferential trans-
lation of mitochondrial stress-responsive transcription factors such as
activating transcription factor 4 (ATF4)47–50, ATF551,52 and the C/EBP
Homologous Protein (CHOP)53,54 to restore mitochondrial function.
Using western blotting, we observed upregulation of eIF2α phosphor-
ylation (eIF2α-P) and ATF5 but not ATF4 and CHOP in the intestine of
Mut/Mut*** mice, which was decreased by in vivo NAD+ repletion
(Fig. 6b, c and Supplementary Fig. 8b, c). Consistent with direct control
of ATF5 translation by phosphorylation of eIF2α in response to stress55,
eIF2α phosphorylation inhibitor, ISRIB, suppresses ATF5 upregulation
in Mut/Mut*** intestine (Fig. 6d). These results showed that NAD+

depletion triggers ATF5-dependent ISR activation.
ISR inhibition increases β-catenin protein expression in the

intestinal crypts of Mut/Mut*** mice (Fig. 6e), implying it regulates
intestinal aging by restoring Wnt/β-catenin signaling. To test the roles
of ISR activation in intestinal aging, we used ISRIB and siAtf5 to inhibit
ISR in Mut/Mut*** intestinal crypts (Supplementary Fig. 8d). We found
that both ISRIB and siAtf5 could obviously rescue decreased organoid
formation efficiency caused by increased mtDNA mutation burden
(Fig. 6f, g).

We next asked how NAD+ depletion regulates ISR? Among NAD+

consuming enzymes, SIRT7 downregulation caused by NAD+ depletion
during aging reportedly regulates the UPRmt by suppressing mito-
chondrial ribosomal protein expression56,57. Despite no reduction of
SIRT7 protein in Mut/Mut*** versus WT/WT* mice (Supplementary

Fig. 1 | IncreasedmtDNAmutation burden induces an aging-like phenotype in
the small intestine. aDiagram depicting the experimental methods for detecting
the changes of small intestine and organoids derived from isolated crypts in the
mice with four categories of mtDNA mutation burden at 3, 8, and 12 month. The
figures of small intestine, intestinal crypt, and organoids were generated with the
help of Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 4.0 unported license (https://creativecommons.org/
licenses/by/4.0/deed.en). PolgAWT/Mut (WT/Mut**) mice were crossed to generate
three types of offspring with a theoretically maternally transmitted mtDNA
mutations, i.e. PolgAWT/WT (WT/WT*), PolgAWT/Mut (WT/Mut**) and PolgAMut/Mut (Mut/
Mut***). PolgAWT/WT mice with negligible level of mtDNA mutations (WT/WT) were
used as an additional control. b Representative images of small intestine stained
with H&E in WT/WT, WT/WT*, WT/Mut**, and Mut/Mut*** mice at 3, 8, and
12 months of age (Scale bar, 100μm). The villus length and number of crypts per

millimeter of small intestine are quantified below (Data are presented as the
mean ± S.D of 9 intestinal segments from 3mice per group; two-way ANOVA test).
c Representative images of intestinal crypts stained with TUNEL in WT/WT*, WT/
Mut**, andMut/Mut*** mice at 3, 8, and 12months of age (Scale bar, 20μm). Since
no difference was observed during intestinal aging betweenWT/WT andWT/WT*,
WT/WT*mice was used a control. The number of TUNEL-positive cells per crypt is
quantified on right (Data are presented as the mean ± S.D and n = 3 mice per
group; two-way ANOVA test). d Representative crypt images at Day 0 and orga-
noids at Day 8 in the intestine of WT/WT*, WT/Mut**, andMut/Mut*** mice at 3, 8,
and 12 months of age (Scale bar, 100μm). Crypt size, organoid size and relative
organoid number per well were quantified. Average organoid number per well
was normalized toWT/WT* at 3months. Data are presented as themean ± S.D of 6
wells from 3mice per group; two-way ANOVA test. Source data are provided with
this paper.
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Fig. 8e), SIRT7 overexpression inhibits eIF2α phosphorylation of Mut/
Mut*** intestinal crypt cells (Supplementary Fig. 8f). Consistent with
previous reports58,59, these observations support that NAD+ depletion
caused by increased mtDNA mutation burden decreases SIRT7 activity
to regulate ISR. Taken together, these results indicate that mtDNA
mutationburden causes intestinal aging throughNAD+ depletion,which
activates ATF5-dependent ISR to inhibit Wnt/β-catenin signaling.

The ISR caused by mtDNA mutation burden regulates UPRmt

activation
As the ISR regulation factor, ATF5, activate UPRmt by regulating mito-
chondrial import efficiency60, we assayed the marker protein expres-
sion of UPRmt including LONP1, caseinolytic peptidase P (ClpP) and
heat shock protein 60 (HSP60) in Mut/Mut*** intestine, which exhib-
ited ATF5-dependent ISR activation. Interestingly, only LONP1, a key
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mitochondrial protease for clearing unfolded proteins upon mito-
chondrial stress response61, is obviously increased while its mito-
chondrial content is not altered in Mut/Mut*** intestinal crypts (Fig. 7a
and Supplementary Fig. 9a, b). Both ISRIB and siAtf5 inhibited the

upregulation of LONP1 in Mut/Mut*** intestinal crypt cells (Fig. 7b, c),
demonstrating that mtDNA mutation burden regulates LONP1
expression by ATF5-dependent ISR. Overall, intestinal aging induced
by increased mtDNA mutation burden is mediated through the

Fig. 2 | IncreasedmtDNAmutationburden results inNAD+ depletionduring the
intestinal aging. a Gene Ontology (GO) enrichment of differentially upregulated
genes in Mut/Mut*** mice at 8 months of age versus WT/WT* mice was performed
using clusterProfiler package, and significance was determined by Fisher exact test
of adjusted p-value by Benjamini–Hochberg (BH) method (n = 3 mice per group).
b Detection of NADH/NAD+ ratio in the intestinal crypts of Mut/Mut*** mice and
WT/WT* mice at 8 months of age using SoNar and cpYFP imaging (Scale bar,
10μm). cQuantification of NADH/NAD+ ratios as in (b) (90 intestinal crypts from 3
mice per group; unpaired comparison using nonparametric Mann–Whitney test).

Central line: median, box: interquartile ranges (IQR), whisker: ranges except
extreme outliers (>1.5*IQR), circles: individual data points; d Detection of NAD+

content in the intestinal crypts of Mut/Mut*** mice and WT/WT* mice using
mCherry-FiNad andmCherry-cpYFP imaging (Scale bar, 10μm). eQuantification of
mCherry-FiNad fluorescence corrected by mCherry-cpYFP as in (d) (90 intestinal
crypts from 3 mice per group; unpaired comparison using nonparametric
Mann–Whitney test). Central line: median, box: IQR, whisker: ranges except
extremeoutliers (>1.5*IQR), circles: individualdata points. Sourcedata are provided
with this paper.
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Fig. 3 | NAD+ repletion alleviates small intestine aging phenotypes caused by
mtDNAmutation burden. a Representative images of small intestine stained with
H&E inMut/Mut*** mice at 8months of agewith NMN or control (water) (Scale bar,
100μm). Villus length and number of crypts per millimeter are quantified on right;
WT/WT* is used as an additional control (Data are presented as themean ± S.D of 9
intestinal segments from 3 mice per group; unpaired two-tailed Student’s t-test).
bRepresentative images of intestinal crypts stainedwith TUNEL inMut/Mut***mice
at 8 months of age with NMNor control (Scale bar, 20μm). The number of TUNEL-

positive cells per crypt is quantified on right (Data are presented as the mean ± S.D
and n = 3 mice per group; unpaired two-tailed Student’s t-test). c Representative
images of crypts at Day 0 and organoids at Day 8 from the intestine of Mut/Mut***
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t-test. Source data are provided with this paper.
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ATF5-dependent UPRmt activation, which is characterized by LONP1
upregulation.

Discussion
During the aging process, mtDNA mutations are observed to be
accumulated in aged rodent and human tissues21–23,62–65. We showed
previously that the significant accumulation of much more low-

frequency (less than 0.5%) mtDNA point mutations in human
oocytes during aging is linked with impaired blastocyst formation18.
We also observed the accumulation of low-frequency point muta-
tions in aged mouse intestine, implying an important role in phy-
siological aging. Notably, the aged intestine of POLG mutator mice
show a similar but more rapid accumulation of low-frequency
mtDNA point mutations versus wild-type mice aged intestine,
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providing a suitable model for investigating the roles of mtDNA
mutation burden on intestinal aging.

Using this mouse model, we found that increased mtDNA muta-
tion burden resulted in NAD+ depletion during intestinal aging with
subsequent activation of the ATF5-dependent UPRmt. These mechan-
isms regulate mtDNA mutation-induced aging phenotypes and LGR5-
positive ISC exhaustion through impaired Wnt/β-catenin signal-
ing (Fig. 7d).

Using in vivo ISC labeling and organoid technology, we defined the
landscape of cross-cell signals caused by mtDNA mutation burden in
ISCs and niche cells. Wnt/β-catenin signaling is required for ISCs to
maintain the balance between proliferation and differentiation7,66,67.
High levels of Wnt signaling at the base of intestinal crypts activates β-
catenin in ISCs, which upregulates its target genes (c-MYC, Cyclin D1,
etc.) to promote ISC differentiation into the transient amplifying (TA)
zone68. Our study showed that low mtDNA mutation burden activates
theWnt/β-catenin pathway in the base of intestinal crypts and increases
the number of CD1-expressing cells in the TA zone during intestinal
aging (Fig. 4). Impairment of this cross-cell communication was
observed in the aged intestine caused by increased mtDNA mutation
burden (Fig. 4), implying an important role in small intestine aging.
These findings provide insights into the intestinal cell differentiation
processes. Upon aging, intestinal crypt size, villus length, Paneth cell
number, and goblet cell number all increase, and the number and
regenerative potential of ISCs are reduced upon aging inmice14,34,69. It is
interesting that intestinal villus length increases while ISC number is
decreased in the small intestine, requiring further studies.

NAD+ depletion is regarded as a common signature of aging70,71,
which is observed in many tissues during aging72–75. It also reportedly
compromises mitophagy41,42, which exacerbates accelerated
aging41,76–79. Similarly, we observed NAD+ depletion and compromised
mitophagy during intestinal aging in response to increased mtDNA
mutation burden. We also found that NAD+ depletion activates the
ATF5-dependent UPRmt to regulate intestinal aging and that the com-
promisedmitophagy could not be restored byNAD+ repletion. Overall,
our study provides a mechanism linking NAD+ depletion and aging,
and supports its utility as a biomarker tomonitor the aging of different
tissues.

Mitochondrial ISR, triggered by mitochondrial stress, modulates
protein synthesis and selectively overexpresses a set of stress-
responsive genes to activate pathways including one carbon metabo-
lism, serine acid biosynthesis and antioxidant mechanism/redox
homeostasis48,49,53,54,80–82. The stress-responsive transcription factors,
ATF447–50, ATF551,52 and/or CHOP53,54, reportedly mediate the tran-
scription of mitochondrial ISR genes. We found that increasedmtDNA
mutation burden triggers ISR activation through NAD+ depletion.
Interestingly, ATF5 but not ATF4 and CHOP is upregulated in the aged
Mut/Mut*** intestine, demonstrating a preferentially translation
of ATF5.

The UPRmt is reportedly activated by various mitochondrial
stresses including mitonuclear protein imbalance and mitochondrial
import efficiency60,83, which ismarked by increased protein expression
of LONP1, HSP60 and ClpP. We found that increased mtDNAmutation
burden triggers the ATF5-dependent UPRmt activation and resulting
LONP1 upregulation, and regulates intestinal aging phenotypes. The

specific upregulation of LONP1 protein provides a candidate marker
for intestinal aging caused by increased mtDNA mutation burden.

Finally, we showed that NAD+ repletion in vitro and in vivo
increases Wnt/β-catenin signaling as well as the number of LGR5-
expressing ISCs in the small intestine. Moreover, both siAtf5 and ISRIB
enhance the regenerative potential of aged intestinal crypts. These
findings identify multiple potential candidates for both treating and
preventing intestinal aging.

Methods
Mice
PolgAD257A heterozygous mice (PolgAWT/Mut, Stock no: 017341, USA) and
LGR5-EGFP-IRES-creERT2 heterozygous mice (LGR5WT/GFP Stock no:
008875, USA) were purchased from the Jackson Laboratory. The
genotypes of siblings were determined by sequencing the genome of
mouse tail at 3 weeks old.Wild-type C57BL/6 J micewith different ages
(3 months, 8, 12, and 20 months) were purchased from the Gem-
Pharmatech co. Ltd (Nanjing, China). PolgAWT/Mut male mice were con-
tinuously crossed toWT femalemice formaintaining the population of
PolgAWT/Mut mice. Then, the male and female PolgAWT/Mut siblings were
crossed to generate three genotypemice includingWT/WT*,WT/Mut**
and Mut/Mut***. Mice were housed in an environment of suitable
temperature (25 °C) and humidity (typically 50%) under a 12 h: 12 h
light/dark cycle (7 am/7 pm) with accessing to food and water ad libi-
tum. The samebatch ofmalemicewas used to performexperiments in
accordance with relevant guidelines and regulations, which had been
reviewed and approved by Guangzhou Institutes of Biomedicine and
Health Ethical Committee (Approve no. 2018040). Mice were eutha-
nized using CO2 inhalation.

Histology
Sections of jejunum, the middle region of small intestine, were dis-
sected from mice and fixed in 4% formalin for 24 h and embedded in
paraffin. The jejunum sections were mounted on slides and stained
with hematoxylin-eosin (H&E), and observed under a light microscope
(Zeiss, Germany).

TUNEL staining
A TUNEL assay kit (In Situ Cell Death Detection Kit, Roche, 45-
12156792910) was used to characterize apoptosis in the jejunum sec-
tions according to themanufacture’s instruction. After being dewaxed
and hydrated, the jejunum sections were placed in 200mL 0.1M citric
acid buffer (pH 6.0) and irradiatedwith 750wattsmicrowave for 1min.
The sections were immediately cooled with double distilled water
(~25°C) and washed twice with PBS. After antigen repair, the sections
were fixedwith 4%paraformaldehyde for 1 h at room temperature, and
were subsequently incubated with protease K for 30min at 37 °C.
Then, the slides were immersed in 0.1M Tris-HCl (pH 7.5) containing
3% bovine serum albumin and 20% normal bovine serum for 30min at
room temperature. The sections were incubated with 50μL TUNEL
reaction mixture in a humid environment under dark for 1 h at 37 °C.
After 3 times of PBS washing, the sections were stained with DAPI
solution (D9542, Sigma–Aldrich, USA), sealed and visualized under a
Zeiss LSM 710 with a 10× objective. The number of TUNEL-positive
cells was quantified by ImageJ software.

Fig. 4 | NAD+ depletion impairs Wnt/β-catenin signaling during the intestinal
aging caused by mtDNA mutation burden. a Heatmap of differential genes
associated with Wnt/β-catenin signaling in WT/WT*, WT/Mut** and Mut/Mut***
mice at 8 months of age (n = 3 mice per group). b Schematic illustration of LGR5-
expressing ISCs, proliferated epithelial cells and Wnt/β-catenin signaling in the
intestinal crypts. The figure of intestinal crypt was generated with the help of
Servier Medical Art, provided by Servier, licensed under a Creative Commons
Attribution 4.0 unported license (https://creativecommons.org/licenses/by/4.0/
deed.en). c, d Anti-β-catenin (c) and anti-CD1 (d) IF in the intestinal crypts of

WT/WT*, WT/Mut** and Mut/Mut*** mice at 3, 8 and 12 months of age. Relative FIs
of β-catenin and CD1+ cell number per crypt are quantified on right (Scale bar,
10μm; data are presented as the mean ± S.D and n = 3 mice per group; two-way
ANOVA test). e Anti-β-catenin and anti-CD1 IF in the intestinal crypts of Mut/Mut***
mice at 8 months of age treated with NMN or water. Relative FI of β-catenin and
CD1+ cell number per crypt are quantified on right (Scale bar, 10μm; data are
presented as the mean± S.D and n = 3 mice per group; unpaired two-tailed Stu-
dent’s t-test). Source data are provided with this paper.
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Detection of telomere length
Mouse telomere repeats were measured by real-time quantitative PCR
as described84. Briefly, total genome of jejunum was prepared using a
genome extraction kit (TianGen, China, DP304). The PCR reaction was

run on a CFX-96 real-time PCR detection system (BioRad, USA) with an
SYBRGreenQPCRkit (TaKaRa,RR820A). Theprimers (forwardprimer:
5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′,
reverse primer: 5′-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTA
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20μm). ISC number is quantified at bottom (Data are presented as the mean ± S.D
and n = 3 mice per group; two-way ANOVA test). c Representative images of LGR5-
expressing ISCs in Mut/Mut***&LGR5WT/GFP mice at 8 months of age treated with
NMN or water control (Scale bar, 10μm). ISC number is quantified on right (Data
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Student’s t-test). d Anti-WNT2, anti-WNT4 and anti-WNT5A IF in the intestine of
WT/WT*, WT/Mut** and Mut/Mut*** mice at 8 months of age treated with NMN or
water control. Relative FI is quantified on right (Scale bar, 100μm; data are pre-
sented as the mean± S.D and n = 3 mice per group; one-way ANOVA test). Source
data are provided with this paper.
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CCCT-3′) were used to detect telomere. Amplification of 36B4 in the
same samples was used as an internal control for detecting telomere
length, and the primers (forward primer: 5′-ACTGGTCTAGGACCCGA-
GAAG-3′, reverse primer: 5′-TCAATGGTGCCTCTGGAGATT-3′) were
used to detect 36B4. Relative telomere length was calculated and
normalized to values obtained from the amplification of 36B4.

Analysis of mtDNA mutations
Total genome of jejunum was prepared using a genome extraction kit
(TianGen, China, DP304). Four pairs of primers were used to amplify
region 1611-5657, amplified with a forward primer (5′-AAAAGCAGC-
CACCAATAAAG-3′) and a reverse primer (5′-GAGAAATGATGGTGG-
TAGGA-3′), region 5636-9914, amplified with a forward primer
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(5′-ACTCCTACCACCATCATTTC-3′) and a reverse primer (5′-GAGAAG
GCTATGGTGAGGTT-3′), region 9876-14278, amplified with a forward
primer (5′-TATGCCATCTACCTTCTTCA-3′) and a reverse primer (5′-
ATTTGGACTATTAGGCAGAC-3′) and region 14258-1611, amplified with
a forward primer (5′-AGTCTGCCTAATAGTCCAAA-3′) and a reverse
primer (5′-CTTTATTGGTGGCTGCTTTT-3′), which covers the whole
mtDNA sequence.

PCR of mtDNA using the genome of jejunum as template was
performed, and the four amplified fragments were mixed for sequen-
cing. Briefly, 3μg mixture of mtDNA was used to construct a library as
described85 for a better homogeneity of sequencing depth. Then, the
library was sent to Berry Genomics. Co., Ltd (Beijing, China) and
sequenced on an Illumina Hiseq4000 platform using 150 bp paired
end reads for 3 G flux. mtDNAmutations were analyzed as described15.

Small intestinal crypt isolation and organoid culture
Small intestinal crypts were isolated from jejunum sections as
described86, and cultured using “ENR” culture medium as
described87,88. Mice were sacrificed by cervical dislocation. The jeju-
num was dissected longitudinally, cleaned with PBS at 4 °C, and cut
into tissue blocks with 1 centimeter length. After being cleaned 10–20
times with PBS containing 100U/mL penicillin/streptomycin, the
jejunum segments were incubated with 2mM EDTA solution (pH 8.0)
for 20min at 4 °C, shaken by a vortex shaker for 2min and centrifuged
at 110 g for 5min. After the supernatant was removed, the intestinal
crypts were gently flicked with DMEM/F-12 medium, centrifuged at
110 g for 5min, and resuspended with ENR medium. 10μL intestinal
crypt suspension and 60μL matrigel weremixed, added into a 24-well
cell culture plate, and polymerized for 15min at 37 °C. The intestinal
crypts were culturedwith ENRmedium, and the frequency of organoid
formation was analyzed as described35. siAtf5 (Sense strand sequence:
5′-GCTCGTAGACTATGGGAAAdTdT-3′) was used for silencing the Atf5
genes in the intestinal crypt cells following the procedure described in
the Lipofectamine™ RNAiMAX transfection kit. After validating silence
efficiency, the siRNA and control siNC (5′-TTCTCCGAACGTGTCACGT-
3′) were added into the “ENR”medium. Then, isolated intestinal crypts
were cultured with this medium for the first 2 days, and organoid
formation was visualized with an optical microscope (ECLIPSE Ts2-FL,
Nikon, Japan) at Day 8.

Detection of mitochondrial inner membrane potential and ROS
For detecting mitochondrial inner membrane potential, the isolated
mouse intestinal crypt cells were incubated with JC-1 (Beyotime,
C2003S, China) for 30min at room temperature in the dark. Then,
fluorescence intensity was detected using a BD Fortessa flow cyt-
ometer (BD Biosciences, USA) within 1 h and analyzed using FlowJo
V10 software. The gating strategy is shown in Supplementary Fig. 10.
For detecting ROS, isolated mouse intestinal crypt cells were first

seeded on a 20mmglass-bottom cell culture dish. Then, the cells were
incubated with DCF (Invitrogen, D399, USA) for 30min at room tem-
perature, and imaged using a Zeiss LSM 880 with a 63× objective.

Immunofluorescence
Immunofluorescencewas performedon 6 μmthick paraffin or frozen
sections. The paraffin sections of jejunum were deparaffinized,
rehydrated, and permeabilized in 10mM sodium citrate buffer. After
being restored to room temperature, the frozen sections of jejunum
were first soaked in PBS for 10min and then blocked for 30min.
Then, all sections were incubated with primary antibodies overnight
at 4 °C. After 5 times washing with PBS, the sections were incubated
with Alexa Fluor 488 and 568 conjugated secondary antibodies (Life
Technologies). Finally, the sections were imaged using a Zeiss LSM
900 or a Zeiss LSM 710 with a 10× objective after incubation with
DAPI solution (D9542, Sigma–Aldrich, USA) for 10min. Antibodies
used were as follows: anti-HSP60 (Abcam, ab46798, 1:200), anti-
Cyclin D1 (Abcam, ab16663, 1:200), anti-Gli1 (Santa Cruz Bio-
technology, sc-515751, 1:100), anti-Foxl1 (Santa Cruz Biotechnology,
SC-130373, 1:100), anti-LC3B (Cell Signal Technology, 2775, 1:200),
anti-TOM20 (Abcam, ab56783, 1:200), anti-β-catenin (Cell Signal
Technology, 9562 S, 1:200), anti-Notch1 (Abclonal, A7636, 1:100),
anti-WNT2 (Abclonal, A23997, 1:100), anti-WNT5A (Abclonal, A12744,
1:100), anti-WNT4 (Bio-Techne, MAB4751, 1:100), anti-CDKN1A/p21
(Abclonal, A2691, 1:100), anti-Mouse IgG (H + L), Alexa Fluor 488
(Thermo Fisher Scientific, A-11001, 1:500), anti-Rabbit IgG (H + L),
Alexa Fluor 488 (Thermo Fisher Scientific, A-11008,1:500) and anti-
Rabbit IgG (H + L), Alexa Fluor 568, (Thermo Fisher Scientific, A-
11011, 1:500).

Imaging for detecting NADH/NAD+ ratio and NAD+ level
SoNar/cpYFP plasmids formeasuring NADH/NAD+ ratio, andmCherry-
FiNad/mCherry-cpYFP plasmids for measuring the NAD+ level were
gifts from Professor Yi Yang and Yuzheng Zhao (East China University
of Science and Technology, China). The intestinal crypt cells were
transfected with these plasmids for 24–48 h, and then seeded on a
20mm glass-bottom cell culture dish (FluoroDish, World Precision
Instruments, FD35-100) for imaging using a Zeiss LSM 710 with a 40×
objective. The F405 nm/F488 nm ratios of SoNar and the F488 nm/
F543 nm ratios of mCherry-FiNad were calculated as described
previously32–34.

RNA sequencing
Total RNA of the jejunum sections was extracted using a TRIzol-based
protocol. Libraries were prepared following the instructions for the
IlluminaTruSeq RNA Sample Prep kit. After sequencing was performed
on a Illumina NovaSeq instrument, data were analyzed with RSEM
software. Then, DESeq2 was used to identify the differential expressed

Fig. 6 | NAD+ depletion activates ISR to regulate mtDNA mutation-induced
aging phenotypes through impaired Wnt/β-catenin signaling. a Kyoto Ency-
clopedia of Genes and Genomes pathway enrichment of differentially upregulated
genes in Mut/Mut*** mice at 8 months of age versus WT/WT* mice was performed
using clusterProfiler package, and significance was determined by Fisher exact test
of adjusted p-value by BH method (n = 3 mice per group). b Protein expression of
eIF2α-P and ATF5 by western blot analysis in the intestinal crypts of WT/WT*, WT/
Mut** and Mut/Mut*** mice at 8 months of age. Relative band densities quantified
using ImageJ are shown at bottom (Data are presented as the mean± S.D and n = 3
mice per group; one-way ANOVA test). c Protein expression of eIF2α-P and ATF5 by
western blot analysis in the intestinal crypts of Mut/Mut*** mice treated with NMN
orwater. Relative banddensitiesquantifiedusing ImageJ are shownatbottom (Data
are presented as the mean ± S.D and n = 3 mice per group; one-way ANOVA test).
d Protein expression of ATF5 bywestern blot analysis inMut/Mut*** intestinal crypt
cells treated with Control or ISRIB. Relative band densities quantified using ImageJ
are shown on right (Data are presented as themean± S.D and n = 3mice per group;

paired two-tailed Student’s t-test).e Protein expressionofβ-catenin bywesternblot
analysis in Mut/Mut*** intestinal crypt cells treated with ISRIB or control. Relative
band densities quantified using ImageJ are shown on right (Data are presented as
the mean ± S.D and n = 3 mice per group; paired two-tailed Student’s t-test).
f Representative organoid images at Day 8 from the intestinal crypts of Mut/Mut***
mice at 8 months of age with 500nM ISRIB or water control (Scale bar, 100μm).
Organoid size and relative organoid number per well are quantified on right, and
the average organoid number per well is normalized to the control. (Data are
presented as the mean± S.D and n = 3 mice per group; unpaired two-tailed Stu-
dent’s t-test) g Representative organoid images at Day 8 from the intestinal crypts
of Mut/Mut*** mice at 8 months of age with siAtf5 or control siNC (Scale bar,
100μm); organoid size and relative organoid number per well are quantified at
bottom. Average organoid number per well is normalized to the control. Data are
presented as the mean± S.D and n = 3 mice per group; unpaired two-tailed Stu-
dent’s t-test. Source data are provided with this paper.
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genes, with p-adjust <0.05 & abs (log2FoldChange)>0.5. Gene Ontol-
ogy was performed using ClusterProfiler.

NMN and ISRIB supplementation
For NAD+ repletion in vivo, β-NMN (1094-61-7, Sigma–Aldrich, USA)
was administered in drinking water to treat mice for 2 weeks as
described53. For NAD+ repletion in vitro, β-NMN solution was first
prepared into autoclaved water at the certain dose and sterilely fil-
tered, and then added into “ENR”medium for culturing intestinal crypt
cells. For inhibiting ISR in vitro, 500 nM ISRIB (S0706, Selleck, USA)

was first prepared into autoclaved water at the certain dose and fil-
tering sterilely as described89, and then added into “ENR”medium for
culturing intestinal crypt cells.

SIRT7 overexpression
ThepLVX-SIRT7-Puro and control pLVX-Puro plasmidswere separately
transfected into intestinal crypt cells following the instructions for the
Lipofectaminew 3000 Reagent kit (L3000015, Invitrogen, USA). After
48 h, intestinal crypt cells were lysed, and then protein expression of
SIRT7 and eIF2α-P was assayed by western blotting.
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Fig. 7 | The ISR causedbymtDNAmutationburden regulatesUPRmt activation.
a Protein expression of HSP60, LONP1, and ClpP by western blot analysis in the
intestinal crypts in WT/WT*, WT/Mut**, and Mut/Mut*** mice at 8 months of age.
Relative band densities quantified using ImageJ are shown at bottom (Data are
presented as the mean± S.D and n = 3 mice per group; one-way ANOVA test).
b Protein expression of LONP1 by western blot analysis in the intestinal crypts of
Mut/Mut*** mice treated with ISRIB or control. Relative band densities quantified
using ImageJ are shown on right (Data are presented as the mean ± S.D and n = 3
mice per group; paired two-tailed Student’s t-test). c Protein expression of LONP1

by western blot analysis in the intestinal crypts of Mut/Mut*** mice treated with
siAtf5 or siNC. Relative band densities quantified using ImageJ are shown on right
(Data are presented as the mean± S.D and n = 2 mice per group; paired two-tailed
Student’s t-test). d Summary of mechanism regulating intestinal aging caused by
mtDNA mutation burden. The figures of small intestine and mitochondria were
generated with the help of Servier Medical Art, provided by Servier, licensed under
a Creative Commons Attribution 4.0 unported license (https://creativecommons.
org/licenses/by/4.0/deed.en).
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Measurement of NAD+ content
Small intestinal crypts were isolated and sent to Tsinghua University
(Beijing, China) for determining NAD+ content using a liquid
chromatography-tandem mass spectrometry (LC–MS/MS). The
ACQUITY UPLC H-Class system was coupled a 6500plus QTrap mass
spectrometer (AB SCIEX, USA), equipped with a heated electrospray
ionization (HESI) probe. Extractswere separatedby a synergiHydro-RP
column (2.0 × 100mm, 2.5μm, phenomenex). The mobile phase con-
sisted of a binary solvent system: mobile phase A (2mM triisobutyla-
mine adjusted with 5mM acetic acid in water) and mobile phase B
(methanol). A 15-min gradient with flow rate of 250μL/minwas used as
follows: 0–1.5min, 5%B; 1.5–9min, 5–35% B; 9.5–12min, 98%
B;12.1–15min, 5%B. Column chamber and sample tray were held at
35 °C and 10 °C, respectively, and data were acquired in multiple
reaction monitor (MRM) mode. The nebulizer gas (Gas1), heater gas
(Gas2), and curtain gas were set at 50, 50, and 35 psi, respectively. The
ion spray voltage was −4500V in negative ion mode. The optimal
probe temperature was determined to be 450 °C. The SCIEX OS
1.6 software was applied for metabolite identification and peak
integration.

Western blotting
Equal amounts of total protein extracted from the intestinal crypt cells,
were electrophoresed on 12% polyacrylamide/sodium dodecyl sulfate
gel and transferred onto polyvinylidene fluoride membranes. After
beingblocked for 45min, themembraneswere incubatedwithprimary
antibodies for 1 h. Subsequently, membranes were incubated with
horseradish peroxidase-coupled secondary antibodies for 1 h after 3
times washing with PBS. Finally, the immunoreactivity was detected
using Immobilon Western Chemiluminescent HRP Substrate (Milli-
pore, USA, WBKLS0500). The antibodies used were as follows: anti-
HSP60 (Abcam, ab46798, 1:1000), anti-LONP1 (Cell Signal Technology,
28020, 1:1000), anti-CDKN1A/p21 (Abclonal, A2691, 1:100), anti-
Phospho-eIF2α-S51 (Abclonal, AP0692, 1:1000), anti-ClpP (Abcam,
ab124822, 1:1000), anti-ATF4 (Abcam, ab216839, 1:1000), anti-
ATF5(Abcam, ab184923, 1:1000), anti-CHOP(Cell Signal Technology,
2895 S, 1:1000), anti-TOM20 (Proteintech, 11802-1-AP, 1:1000), anti-
WNT4 (Bio-Techne, MAB4751, 1:1000), anti-SIRT7 (Abclonal, A22735,
1:1000), anti-Actin (HUABIO, ET1702-67, 1:3000), HRP Conjugated
Goat anti-Mouse IgG (HUABIO, HA1006, 1:3000) and HRP Conjugated
Goat anti-Rabbit IgG (HUABIO, HA1001,1:3000).

Statistical analysis
Data are shown as mean± Standard Deviation (SD). All statistical ana-
lysis was performed using Student’s t-test or ANOVA test from the
GraphPad Prism software (GraphPad) as indicated in the figure
legends. P values of less than 0.05 were considered as significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA-seq and mtDNA-seq data have been deposited in the
Genome Sequence Archive (GSA) at the Beijing Institute of Genomics
(BIG) Data Center, BIG, Chinese Academy of Sciences (https://bigd.big.
ac.cn/gsa), and the accession numbers are CRA012233 for RNA-seq
(https://ngdc.cncb.ac.cn/gsa/browse/CRA012233) and CRA012237 for
mtDNA-seq (https://ngdc.cncb.ac.cn/gsa/browse/CRA012237) that are
publicly accessible. The LC–MS/MS data for measuring NAD+ content
hasbeendeposited in theMassIVEdata repository (https://massive.ucsd.
edu/) and are availablewith the accession codeMSV000093751 (https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000093751).
All other relevant data supporting the key findings of this study are
available within the article and its supplementary information files. Any

additional information is available upon request to the corresponding
author (Xingguo Liu, liu_xingguo@gibh.ac.cn). Source data are provided
with this paper.
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