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Abstract

Objectives Provide physicians and researchers an efficient way to extract information from weakly structured radiology

reports with natural language processing (NLP) machine learning models.

Methods We evaluate seven different German bidirectional encoder representations from transformers (BERT) models on

a dataset of 857,783 unlabeled radiology reports and an annotated reading comprehension dataset in the format of SQuAD

2.0 based on 1223 additional reports.

Results Continued pre-training of a BERT model on the radiology dataset and a medical online encyclopedia resulted in

the most accurate model with an F1-score of 83.97% and an exact match score of 71.63% for answerable questions and

96.01% accuracy in detecting unanswerable questions. Fine-tuning a non-medical model without further pre-training led to

the lowest-performing model. The final model proved stable against variation in the formulations of questions and in dealing

with questions on topics excluded from the training set.

Conclusions General domain BERT models further pre-trained on radiological data achieve high accuracy in answering ques-

tions on radiology reports. We propose to integrate our approach into the workflow of medical practitioners and researchers

to extract information from radiology reports.

Clinical relevance statement By reducing the need for manual searches of radiology reports, radiologists’ resources are freed

up, which indirectly benefits patients.

Key Points

e BERT models pre-trained on general domain datasets and radiology reports achieve high accuracy (83.97% F1-score) on
question-answering for radiology reports.

e The best performing model achieves an F1-score of 83.97% for answerable questions and 96.01% accuracy for questions
without an answer.

e Additional radiology-specific pretraining of all investigated BERT models improves their performance.
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Graphical Abstract

Methods

e  Comparison of 7 BERT models with
different training configurations.

e Pre-trained on 857,783 German Radiology
reports with 227M tokens.

e Fine-tuned on 978 reports with 11,776
question-answer pairs.

Is there progress of the
hemorrhage?

Information Extraction from Weakly Structured
Radiological Reports with Natural Language Queries

Reports

— %

Clinical Relevance

By reducing the need for
manual searches of
Radiology reports,
radiologists' resources are
freed up, which indirectly
benefits patients.

[...] For comparison,
a preliminary survey
dated
12/24/2020 is
available. Slight
increase in size of
right
basal ganglia post
operative
haemorrhage. Constant
centerline shift to
the left[...]

[Answer scores: F1: 83.97%; Exact Match: 71.63% No answer classification accuracy: 96.03%

Eur Radiol (2023), Dada A, Ufer TL, Kim M et al.
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Abbreviations

BERT Bidirectional encoder representations from
transformers

BPE Byte-pair encoding

EM Exact match

HST Highest scored token

MLM  Masked language modeling

NLP Natural language processing

RCQA Reading comprehension question answering
Introduction

Radiology reports significantly impact clinical decision-
making. Therefore, they have to be prepared with utmost
care. An elementary component of evaluating radiology
imaging is the comparison of the latest findings with past
findings. Commonly, only the dynamics of a finding over
time allow for a reliable interpretation. For instance, depend-
ent on an increase or decrease in size, the treatment of a
lesion varies. Often enough, the comparison with past radi-
ology reports requires significant effort. This is attributable
to the fact that radiology reports are weakly structured.
Every radiologist writes in their style with the conse-
quence that it is challenging to compare the reports from

various radiologists directly, not only regarding their struc-
ture but also regarding their choice of words to describe a
particular finding. On the other hand, the information den-
sity in radiology reports is high to such an extent that it
is inadequate to skim the text. Practitioners must read the
reports carefully to capture every critical piece of informa-
tion. Additionally, radiology reports written in prose aggra-
vate the extraction of relevant information. Integrating past
reports strains the already scarce resources of radiology
specialists, and it is even more true for medically challeng-
ing cases where it becomes necessary to review multiple
previous reports. Furthermore, the difficulty in accessing
information is particularly great for radiologists from dif-
ferent institutions, referring physicians, and non-physician
practitioners.

Despite attempts to introduce more structure in radiology
reports through templates (e.g., for BIRADS classifications),
a substantial part of a template is still formulated in free
text. Moreover, even if future reports were more structured,
renouncing past reports’ information would be a significant
drawback. Therefore, holding an application that automati-
cally shows the desired passage in all past reports on request
would be valuable.

In recent years the field of natural language processing
(NLP) shifted toward deep learning methods [1]. One of
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these methods is attention-based transformer models, par-
ticularly bidirectional encoder representations from trans-
formers (BERT) [2]. In contrast to prior approaches, they
can be trained on large volumes of unlabeled data and then
refined on a relatively small labeled dataset. Bressem et al
[3] evaluated two BERT models pre-trained on general
domain data and two trained on 3.8M radiology reports. The
models were trained to detect nine findings (e.g., congestion,
gastric tube, thoracic drains) on 5203 annotated radiology
reports. Datta et al [4] focused on extracting spatial informa-
tion from radiology reports by applying a BERT model in
two steps. First is the recognition of spatial triggers. Second
is determining the relationship between these triggers. They
trained the models on a dataset of 400 manually annotated
radiology reports. Wen et al [5] trained a BERT reading
comprehension question answering (RCQA) model on the
publicly available emrQA dataset [6] which consists of elec-
tronic medical records. Additionally, they complement the
training with i2b2 notes' from their institution and samples
from SQUAD 2.0 [7]. They limited their set of questions to
sentences that start with the word “why.” Radiology reports
are usually divided into a finding and interpretation section.
Recent studies by Liang et al [8] and Fink et al [9] showed
that BERT models perform similarly well to experts in terms
of correctness and comprehensibility when deriving tumor
progression based on finding sections. Overall, transformers
in radiology have clearly outperformed other NLP methods
across different languages in recent years [9-12].

Inspired by these studies, our research aims at evaluat-
ing the performance of German BERT models pre-trained
on radiology reports for information extraction via question
answering. We utilize 857,783 available reports and a previ-
ously released pretrained German BERT model to establish
multiple radiological BERT models and fine-tune them to
an RCQA dataset with 1223 reports annotated in our institu-
tion with questions formulated by trained medical staft and
medical students.

A limitation of the methodology proposed by Bressem
et al [3] is its representation of the problem as a classifica-
tion task, constraining the model’s abilities to a predeter-
mined set of 9 categories. Additionally, their model does
not yield the position of information within a note, further
restricting its general applicability. Similarly, Datta et al [4]
employed a named entity recognition (NER) approach to
determine the exact positions of entities within a text. How-
ever, their method is also limited to their predefined set of
entity labels. Wen et al [5] proposed an RCQA approach
that addresses the limitations of predefined classes and
missing spatial information. They trained on the emrQA

! https://www.i2b2.org/NLP/DataSets/Main.php
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dataset which is constructed by automatic generation using
templates for questions that can be answered using exist-
ing annotations from the i2b2 datasets. Nonetheless, their
approach is still constrained to the NER classes defined in
the source datasets. Furthermore, their questions are limited
to phrases starting with “why,” which restricts the set of
possible questions.

In contrast, our approach is based on a RCQA dataset,
overcoming the limitation of having a fixed number of classi-
fication or NER labels. We do not rely on NER datasets, as we
manually annotate question-answer pairs instead of generating
the dataset from existing ones. Finally, we formulate our set of
questions based on the perspectives of radiologists, ensuring
the applicability of our approach to a clinical setting.

Material and methods

This work uses two types of datasets. First are datasets that
consist of plain text without annotations for the unsupervised
pre-training of the BERT models. Second is a manually
annotated fine-tuning dataset consisting of question-answer
pairs from radiological reports.

Pre-training data

We built the dataset from reports collected retrospectively
from the radiological information system of Essen Uni-
versity Hospital. We gathered 857,783 reports with 92M
words and 227M tokens written between 23.08.1999 and
17.06.2021, covering most major CT and MRI modalities
(see Table A.1 in the supplementary material). We randomly
shuffle and merge the reports into a single text file with a size
of 781 MB to pre-train the transformer models. The ratio
between CT and MRI reports is approximately 70%/30%.
As a complementary dataset, we obtain a dump of Doc-
Check Flexikon?, an open medical encyclopedia maintained
by over 5000 authors, mainly composed of physicians and
medical students. It consists of 14,825 articles across all
medical specialties with 3.7M words and 7.6M tokens>.

Fine-tuning data

As a basis for the RCQA dataset, we collected 1223 addi-
tional radiology reports limited to brain CT scans. Three
medical student assistants in their sixth and eighth semesters
annotated 29,273 question-answer pairs. To prevent over-
lap between pre-training and fine-tuning data, we collected
reports written after 17.06.2021. Due to its popularity in

2 https://flexikon.doccheck.com/
3 Applying the tokenizer of deepset’s base model [12].


https://www.i2b2.org/NLP/DataSets/Main.php
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past publications, the dataset follows the SQuAD 2.0 for-
mat. The format allows comparability with other RCQA
research and simple implementation because of its support
by frameworks.

In contrast to SQuAD 2.0, we provide the annotators
with a list of questions we define with the help of a radiolo-
gist. We made this decision based on two points. First, the
diversity of the original SQuAD 2.0 dataset requires differ-
ent questions for different articles. For example, questions
about historical events are very different from questions
about chemical elements. Conversely, a radiologist’s ques-
tions are limited to specific findings (e.g., the progression of
tumors). Second, we must consider our limited human and
time resources. The annotation of SQuAD 2.0 was crowd-
sourced, which is not an option for sensitive and challeng-
ing clinical data. To evaluate our models’ ability to answer
different questions than the predefined ones, we asked the
annotators to create one custom question for at least every
third report.

We group the questions into categories based on common
radiological observations (e.g., MRI signal changes). The
supplementary material lists all questions and their corre-
sponding categories and provides more details on the RCQA
dataset.

Models

In this study, we utilize two publicly available BERT models.
The first (G-BERT) released by deepset [12] is trained on,
a Wikipedia dump, OpenLegalData®*, and news articles. We
use the model uploaded to Hugging Face [13].

The second model (GM-BERT) [14] is G-BERT further
pre-trained on German medical articles collected from
various internet sources. The sources include the websites
sprechzimmer5 , netdoktor®, doktorweigl7, onmeda®, krank”,
internisten-im-netz'°, apothekenumschaul ! and vitanet'?. In
total, the dataset consists of 194.5 MB of text.

Pre-trained models

We add a classification layer to the pre-trained G-BERT
and GM-BERT models to predict for each report token the

https://de.openlegaldata.io/

www.sprechzimmer.ch
www.netdoktor.de
www.doktorweigl.de
www.onmeda.de
www.krank.de

www.internisten-im-netz.de

www.apotheken-umschau.de

www.vitanet.de

probability of being the start or end token of the answer
span. The inputs to the model are concatenations of the
question and the report of each sample. In addition to the
span boundaries, it predicts a probability for the CLS token,
which encodes sentence-level information for classification
tasks. For questions without an answer, the model maps both
the start and the end tokens to the CLS token.

The pre-training data of G-BERT only includes general
domain data. While GM-BERT was further pre-trained on
medical domain data, the data differs from radiological
reports. We address this limitation by continuing the
pre-training of both models on our radiological report
dataset and the data we collected from Flexikon. We
refer to these models as G-BERT+Rad, GM-BERT+Rad,
G-BERT+Rad+Flex, and GM-BERT+Rad+Flex.

From scratch

Additionally, we initialized a RoBERTa [15] model due to
its improved results on SQuAD. We refer to it as RadBERT.
RoBERTa uses a byte-pair encoding (BPE) tokenizer with a
vocabulary size of 50,000 tokens. Since our dataset is much
smaller than the one used in the ROBERTa paper (160 GB
vs. 781 MB), we decided to decrease the vocabulary size to
8000 tokens and reduce the number of hidden layers from
12 to 6, to avoid excessive computational complexity and
overfitting.

The supplementary material contains a description of the
training configuration of the models.

Metrics

To evaluate the pre-training, we calculate the number of
correctly predicted tokens for the masked language modeling
(MLM). We do this once for the token with the highest
scored token (HST) and once for the five highest scored
tokens (SHST). Matches occur if the token with the highest
prediction score, or one of the SHST, matches the masked
token. We then divide the number of correctly predicted
tokens by the total number of masked tokens. We use the
same metrics SQuAD uses Exact match (EM) and F1-score
for the question-answering performance. EM measures
the percentage of predictions that match the ground truth
answers. The Fl-score measures the average overlap
between the prediction and the ground truth answer. True
positives and negatives are tokens that the correct answer
and the model prediction share or which both do not include.
False positives include tokens the model prediction contains,
but the correct answer does not. Whereas false negatives are
tokens, the correct answer contains, but the model prediction
does not.

In contrast to SQuAD, we exclude questions without an
answer from the F1 and EM scores since we noticed that

@ Springer
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Table 1 Results of the pre-

- > Models Highest scored token 5 highest scored tokens
training evaluation
Average Variance  Standard dev.  Average Variance  Standard dev.

G-BERT 14.4% 0.00% 0.6% 23.3% 0.01% 0.98%
G-BERT+Rad 37.33% 0.01% 0.81% 42.94% 0.01% 1.07%
G-BERT+Rad+Flex 35.11% 0.01% 0.01% 40.56% 0.01% 0.83%
GM-BERT 14.11% 0.01% 0.86% 23.74% 0.00% 0.7%

GM-BERT+Rad 37.02% 0.02% 1.29% 42.72% 0.01% 1.17%
GM-BERT+Rad+Flex 34.61% 0.01% 1.13% 40.53% 0.00% 0.63%
RadBERT 48.05% 0.00% 0.73% 66.46% 0.00% 0.94%

the models were significantly better in classifying unan-
swerable questions than in determining the position of an
answer. This led to an overestimation of the actual model
score. To address this, we measure the binary classification
task of identifying unanswerable questions with a separate
accuracy score.

Results

We evaluated the pre-trained models on a subset of 1000
sentences from radiology reports we excluded from the
training set. We randomly mask a token for each sentence
and let the models predict this missing token. This process
is repeated five times for each model. Table 1 presents the
resulting average, variance, and standard deviation of the
HST and SHST scores we observed during this evaluation.

RadBERT outperforms all other models with an HST
accuracy of 48.05% and SHST of 66.46%. The lowest-
performing models are G-BERT and GM-BERT, with
HST accuracies of 14.4%/14.11% and SHST scores of
23.3%/23.74%. The lowest-performing models were never
trained on radiology reports, while RadBERT was solely
trained on radiological data. The additional pre-training
on medical data of GM-BERT results in no significant dif-
ference from G-BERT. The models that were further pre-
trained on radiological reports indicate a significant boost
in performance (+22.93% HST for G-BERT and +22.91%
for GM-BERT). However, both models still achieve lower

Table 2 Precision of fine-tuned models on answerable questions

scores than RadBERT. The additional pre-training on our
Flexicon dataset decreased the MLLM performance of both
models.

Fine-tuning results

Table 2 displays the mean EM and F1-score across all five
validation folds for questions that can be answered. The
F1-score of G-BERT+Rad-+Flex (83.97%) and the EM-score
of GM-BERT+Rad+Flex (71.81%) are the highest scores in
the RCQA task evaluation. G-BERT and GM-BERT achieve
the lowest precision, while all other models benefit from the
pre-training on our custom datasets. Without further pre-
training, GM-BERT performs better than G-BERT. Except
for RadBERT, all models reach their peak performance
after the first training epoch. Afterward, their performance
decreases, indicating overfitting. Therefore, we implicitly
apply early stopping by saving the model state after each
epoch and finally loading the best-performing state.
Conversely, RadBERT improves up until the fifth epoch.
Therefore, we decided to continue its training for another
five epochs, leading to an improvement of +0.51% F1 and
+1.43% EM. In contrast to the other models, RadBERT
converges slower to lower scores.

The classification accuracy of unanswerable ques-
tions is presented in Table 3. In this evaluation, GM-
BERT+Rad+Flex achieved the highest accuracy. Addi-
tionally, G-BERT and GM-BERT performed better than
the model trained from scratch. The ranking of the other

Table 3 Precision of fine-tuned models on unanswerable questions

Model EM F1 Model EM

G-BERT 28.73% 35.89% G-BERT 89.59%
G-BERT+Rad 70.04% 83.33% G-BERT+Rad 95.52%
G-BERT+Rad+Flex 71.63% 83.97% G-BERT+Rad+Flex 96.01%
GM-BERT 35.06% 45.86% GM-BERT 89.97%
GM-BERT+Rad 70.22% 83.12% GM-BERT+Rad 95.32%
GM-BERT+Rad+Flex 71.81% 83.80% GM-BERT+Rad+Flex 96.12%
RadBERT 55.93% 70.26% RadBERT 87.37%

@ Springer
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Table 4 Precision of fine-tuned models on answerable questions in
CT vs. MRI reports

CT MRI
Category F1 EM F1 EM
G-BERT+Rad 84.15%  70.94%  81.11%  69.10%
G-BERT+Rad+Flex 8543%  72.40%  81.28%  69.84%
GM-BERT+Rad 84.12%  71.09%  80.66%  69.04%
GM-BERT+Rad+Flex  85.01%  72.48%  81.29%  70.01%
RadBERT 71.78%  56.88%  69.62%  56.34%

models remained similar to the results for answerable ques-
tions. However, the overall accuracy is significantly higher.

The pre-training dataset has significantly more CT reports
than MRI reports. We performed an additional evaluation to
investigate this imbalance’s impact on the models pre-trained
on our radiology dataset. As shown in Table 4, we observe
that all models have a slight advantage on CT reports.

Category-wise evaluation

One of our motivations for using a question-answering
model was its potential capability to generalize across
unseen questions. In contrast to classification models, it
learns the mapping between categories and text passages
implicitly through question-answer pairs instead of explicit
classification labels. Therefore, it could deal with examples
from unseen categories. We explore this assumption for
answerable questions with G-BERT+Rad+Flex, the model
that achieved the highest F1-score in the evaluation.

We first compute the evaluation scores for each category
separately. Afterward, we create an individual training set
for each category by excluding the category from the train-
ing set. We train G-BERT+Rad+Flex on each training set

Table5 Results of the category-wise evaluation on the entire data-
set and subsets without the respective category. The custom category
refers to the questions the annotators formulated during the annotation
process

Category-wise Leave-one-out

Category F1 EM F1 EM

Extraneous material 94.12% 85.52% 93.27% 85.94%
MRI signal changes 72.58% 48.65% 68.30% 46.44%
Oncology 71.09% 53.03% 67.34% 51.44%
Hemorrhage 83.38% 63.81% 80.20% 63.16%
Ischemia 65.48% 52.80% 69.13% 55.83%
Inflammation 60.04% 39.41% 60.24% 40.02%
CSF circulation 94.71% 90.00% 95.11% 90.46%
Edema 76.12% 66.30% 71.90% 62.81%
Custom 78.33% 62.01% - -

that is missing one category. These models are then evalu-
ated on the category they have not seen during the training.
Table 5 displays the results of the category-wise evaluation
and the corresponding results of the models that have not
seen the category they are evaluated against.

The results for the categories extraneous material, inflam-
mation, and CSF circulation are relatively similar, indicating
that the model can deal with these questions without prior
training on them. The evaluation of MRI signal changes,
oncology, hemorrhage, and edema displays the expected drop
in accuracy due to the missing training examples. However,
the drop is relatively slight. These observations indicate a
good generalization over unknown question-answer pairs.
Surprisingly, we observed an increased performance on the
category ischemia for the model that was not trained on it.
This may relate to the relatively low number of examples
from this category and overfitting to more frequent catego-
ries. For the custom questions the annotators formulated, we
report an Fl-score of 78.33% and an EM score of 62.01%.
These results are close to the scores across all categories
(83.97% F1-score and 71.63% EM score), supporting our
claim that the model can answer unseen questions.

Discussion

Our experiments show that further radiology-specific pre-
training of a transformer model trained on general domain
data results in the highest precision for radiology RCQA.
Conversely, a model without medical domain pre-training
shows the lowest precision. Additionally, further medical
pre-training of available models results in better models than
training a model from scratch. One possible explanation is
that a model trained from scratch cannot develop sufficient
language comprehension due to the similarity of the texts.
Although RadBERT achieves the highest MLM scores, the
other models benefit from their extensive training on natural
language leading to a better question-answering capability.
Another difference is the size of the pre-training data (781
MB for RadBERT vs. 12 GB for G-BERT). An extensive
dataset is crucial for training BERT models [16].

G-BERT and GM-BERT have shown similar evaluation
scores. We assume that the continued pre-training on 194.5
MB of medical articles GM-BERT received is not enough
to change the weights of G-BERT significantly, or the arti-
cles used are too broadly scattered in the medical domain
to improve radiology report comprehension. Articles used
for further pre-training GM-BERT may be too close to texts
used in the original G-BERT, like medical Wikipedia arti-
cles, to influence the weights. This finding is also indicated
by the increase in performance after training on 781 MB
radiology reports, showing that an increased performance
through training on medical data is possible.
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The evaluation of the custom formulated questions and
the training runs that excluded one question category indi-
cated generalization over unseen questions. Therefore, we
think the model is stable against variations in the formu-
lation of questions, deviating medical language used by
various medical practitioners, reports on other anatomi-
cal regions than the head, and different imaging modali-
ties. Generalization is only possible to a certain degree,
for instance, due to vocabulary that is not included in the
training set.

We were able to show that our model generalizes to unseen
questions. This is a clear advantage over previously intro-
duced classification and NER models. The only other appli-
cation of a BERT model for medical RCQA we are aware of
was reported by Wen et al [5]. In contrast to their study, we
did not restrict our dataset to why-questions. Although our
best model achieves a higher accuracy for answerable ques-
tions (84.0% F1-score vs. 73.5% and 71.6% EM score vs.
67.2%), a direct comparison is unfeasible due to the different
datasets. Wen et al trained on English clinical notes compared
to our German radiology dataset.

In this work, we have dealt exclusively with German
models. However, the approach can be applied to any lan-
guage for which pre-trained transformer models are avail-
able. Especially in English there are models already pre-
trained on clinical data [17, 18].

One important limitation of our approach is the restriction
of answers to a single, consecutive text span. In practice,
however, the answer might consist of multiple spans located
at different locations throughout the text or across multiple
texts. This can either be because some parts only answer the
question partially or because there are several valid, possibly
contradicting, answers to a question. In future research, we
want to address this limitation with multiple span models
based on previous approaches (e.g., [19-21]). Additionally,
the interpretability of transformers remains an open ques-
tion. We think that future research on interpretability opens
up opportunities to discover weaknesses in the models’ rea-
soning and can build trust to incorporate the models into
practical settings.

We explored different approaches to infuse BERT models
with radiology knowledge to establish models with reading
comprehension for reports. The models have shown high
precision and evidence of good generalization. Our approach
can be transferred to other downstream tasks and medical
fields with little effort to provide medical professionals and
researchers with a powerful tool to process large amounts of
text without developing new algorithms for each task.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00330-023-09977-3.
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