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Abstract
Objectives Provide physicians and researchers an efficient way to extract information from weakly structured radiology 
reports with natural language processing (NLP) machine learning models.
Methods We evaluate seven different German bidirectional encoder representations from transformers (BERT) models on 
a dataset of 857,783 unlabeled radiology reports and an annotated reading comprehension dataset in the format of SQuAD 
2.0 based on 1223 additional reports.
Results Continued pre-training of a BERT model on the radiology dataset and a medical online encyclopedia resulted in 
the most accurate model with an F1-score of 83.97% and an exact match score of 71.63% for answerable questions and 
96.01% accuracy in detecting unanswerable questions. Fine-tuning a non-medical model without further pre-training led to 
the lowest-performing model. The final model proved stable against variation in the formulations of questions and in dealing 
with questions on topics excluded from the training set.
Conclusions General domain BERT models further pre-trained on radiological data achieve high accuracy in answering ques-
tions on radiology reports. We propose to integrate our approach into the workflow of medical practitioners and researchers 
to extract information from radiology reports.
Clinical relevance statement By reducing the need for manual searches of radiology reports, radiologists’ resources are freed 
up, which indirectly benefits patients.
Key Points 
• BERT models pre-trained on general domain datasets and radiology reports achieve high accuracy (83.97% F1-score) on  
   question-answering for radiology reports.
• The best performing model achieves an F1-score of 83.97% for answerable questions and 96.01% accuracy for questions  
   without an answer.
• Additional radiology-specific pretraining of all investigated BERT models improves their performance.
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Abbreviations
BERT  Bidirectional encoder representations from 

transformers
BPE  Byte-pair encoding
EM  Exact match
HST  Highest scored token
MLM  Masked language modeling
NLP  Natural language processing
RCQA  Reading comprehension question answering

Introduction

Radiology reports significantly impact clinical decision-
making. Therefore, they have to be prepared with utmost 
care. An elementary component of evaluating radiology 
imaging is the comparison of the latest findings with past 
findings. Commonly, only the dynamics of a finding over 
time allow for a reliable interpretation. For instance, depend-
ent on an increase or decrease in size, the treatment of a 
lesion varies. Often enough, the comparison with past radi-
ology reports requires significant effort. This is attributable 
to the fact that radiology reports are weakly structured.

Every radiologist writes in their style with the conse-
quence that it is challenging to compare the reports from 

various radiologists directly, not only regarding their struc-
ture but also regarding their choice of words to describe a 
particular finding. On the other hand, the information den-
sity in radiology reports is high to such an extent that it 
is inadequate to skim the text. Practitioners must read the 
reports carefully to capture every critical piece of informa-
tion. Additionally, radiology reports written in prose aggra-
vate the extraction of relevant information. Integrating past 
reports strains the already scarce resources of radiology 
specialists, and it is even more true for medically challeng-
ing cases where it becomes necessary to review multiple 
previous reports. Furthermore, the difficulty in accessing 
information is particularly great for radiologists from dif-
ferent institutions, referring physicians, and non-physician 
practitioners.

Despite attempts to introduce more structure in radiology 
reports through templates (e.g., for BiRADS classifications), 
a substantial part of a template is still formulated in free 
text. Moreover, even if future reports were more structured, 
renouncing past reports’ information would be a significant 
drawback. Therefore, holding an application that automati-
cally shows the desired passage in all past reports on request 
would be valuable.

In recent years the field of natural language processing 
(NLP) shifted toward deep learning methods [1]. One of 
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these methods is attention-based transformer models, par-
ticularly bidirectional encoder representations from trans-
formers (BERT) [2]. In contrast to prior approaches, they 
can be trained on large volumes of unlabeled data and then 
refined on a relatively small labeled dataset. Bressem et al 
[3] evaluated two BERT models pre-trained on general 
domain data and two trained on 3.8M radiology reports. The 
models were trained to detect nine findings (e.g., congestion, 
gastric tube, thoracic drains) on 5203 annotated radiology 
reports. Datta et al [4] focused on extracting spatial informa-
tion from radiology reports by applying a BERT model in 
two steps. First is the recognition of spatial triggers. Second 
is determining the relationship between these triggers. They 
trained the models on a dataset of 400 manually annotated 
radiology reports. Wen et al [5] trained a BERT reading 
comprehension question answering (RCQA) model on the 
publicly available emrQA dataset [6] which consists of elec-
tronic medical records. Additionally, they complement the 
training with i2b2 notes1 from their institution and samples 
from SQUAD 2.0 [7]. They limited their set of questions to 
sentences that start with the word “why.” Radiology reports 
are usually divided into a finding and interpretation section. 
Recent studies by Liang et al [8] and Fink et al [9] showed 
that BERT models perform similarly well to experts in terms 
of correctness and comprehensibility when deriving tumor 
progression based on finding sections. Overall, transformers 
in radiology have clearly outperformed other NLP methods 
across different languages in recent years [9–12].

Inspired by these studies, our research aims at evaluat-
ing the performance of German BERT models pre-trained 
on radiology reports for information extraction via question 
answering. We utilize 857,783 available reports and a previ-
ously released pretrained German BERT model to establish 
multiple radiological BERT models and fine-tune them to 
an RCQA dataset with 1223 reports annotated in our institu-
tion with questions formulated by trained medical staff and 
medical students.

A limitation of the methodology proposed by Bressem 
et al [3] is its representation of the problem as a classifica-
tion task, constraining the model’s abilities to a predeter-
mined set of 9 categories. Additionally, their model does 
not yield the position of information within a note, further 
restricting its general applicability. Similarly, Datta et al [4] 
employed a named entity recognition (NER) approach to 
determine the exact positions of entities within a text. How-
ever, their method is also limited to their predefined set of 
entity labels. Wen et al [5] proposed an RCQA approach 
that addresses the limitations of predefined classes and 
missing spatial information. They trained on the emrQA 

dataset which is constructed by automatic generation using 
templates for questions that can be answered using exist-
ing annotations from the i2b2 datasets. Nonetheless, their 
approach is still constrained to the NER classes defined in 
the source datasets. Furthermore, their questions are limited 
to phrases starting with “why,” which restricts the set of 
possible questions.

In contrast, our approach is based on a RCQA dataset, 
overcoming the limitation of having a fixed number of classi-
fication or NER labels. We do not rely on NER datasets, as we 
manually annotate question-answer pairs instead of generating 
the dataset from existing ones. Finally, we formulate our set of 
questions based on the perspectives of radiologists, ensuring 
the applicability of our approach to a clinical setting.

Material and methods

This work uses two types of datasets. First are datasets that 
consist of plain text without annotations for the unsupervised 
pre-training of the BERT models. Second is a manually 
annotated fine-tuning dataset consisting of question-answer 
pairs from radiological reports.

Pre‑training data

We built the dataset from reports collected retrospectively 
from the radiological information system of Essen Uni-
versity Hospital. We gathered 857,783 reports with 92M 
words and 227M tokens written between 23.08.1999 and 
17.06.2021, covering most major CT and MRI modalities 
(see Table A.1 in the supplementary material). We randomly 
shuffle and merge the reports into a single text file with a size 
of 781 MB to pre-train the transformer models. The ratio 
between CT and MRI reports is approximately 70%/30%.

As a complementary dataset, we obtain a dump of Doc-
Check Flexikon2, an open medical encyclopedia maintained 
by over 5000 authors, mainly composed of physicians and 
medical students. It consists of 14,825 articles across all 
medical specialties with 3.7M words and 7.6M tokens3.

Fine‑tuning data

As a basis for the RCQA dataset, we collected 1223 addi-
tional radiology reports limited to brain CT scans. Three 
medical student assistants in their sixth and eighth semesters 
annotated 29,273 question-answer pairs. To prevent over-
lap between pre-training and fine-tuning data, we collected 
reports written after 17.06.2021. Due to its popularity in 

1 https:// www. i2b2. org/ NLP/ DataS ets/ Main. php

2 https:// flexi kon. docch eck. com/
3 Applying the tokenizer of deepset’s base model [12].

https://www.i2b2.org/NLP/DataSets/Main.php
https://flexikon.doccheck.com/
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past publications, the dataset follows the SQuAD 2.0 for-
mat. The format allows comparability with other RCQA 
research and simple implementation because of its support 
by frameworks.

In contrast to SQuAD 2.0, we provide the annotators 
with a list of questions we define with the help of a radiolo-
gist. We made this decision based on two points. First, the 
diversity of the original SQuAD 2.0 dataset requires differ-
ent questions for different articles. For example, questions 
about historical events are very different from questions 
about chemical elements. Conversely, a radiologist’s ques-
tions are limited to specific findings (e.g., the progression of 
tumors). Second, we must consider our limited human and 
time resources. The annotation of SQuAD 2.0 was crowd-
sourced, which is not an option for sensitive and challeng-
ing clinical data. To evaluate our models’ ability to answer 
different questions than the predefined ones, we asked the 
annotators to create one custom question for at least every 
third report.

We group the questions into categories based on common 
radiological observations (e.g., MRI signal changes). The 
supplementary material lists all questions and their corre-
sponding categories and provides more details on the RCQA 
dataset.

Models

In this study, we utilize two publicly available BERT models. 
The first (G-BERT) released by deepset [12] is trained on, 
a Wikipedia dump, OpenLegalData4, and news articles. We 
use the model uploaded to Hugging Face [13].

The second model (GM-BERT) [14] is G-BERT further 
pre-trained on German medical articles collected from 
various internet sources. The sources include the websites 
sprechzimmer5, netdoktor6, doktorweigl7, onmeda8, krank9, 
internisten-im-netz10, apothekenumschau11, and vitanet12. In 
total, the dataset consists of 194.5 MB of text.

Pre‑trained models

We add a classification layer to the pre-trained G-BERT 
and GM-BERT models to predict for each report token the 

probability of being the start or end token of the answer 
span. The inputs to the model are concatenations of the 
question and the report of each sample. In addition to the 
span boundaries, it predicts a probability for the CLS token, 
which encodes sentence-level information for classification 
tasks. For questions without an answer, the model maps both 
the start and the end tokens to the CLS token.

The pre-training data of G-BERT only includes general 
domain data. While GM-BERT was further pre-trained on 
medical domain data, the data differs from radiological 
reports. We address this limitation by continuing the 
pre-training of both models on our radiological report 
dataset and the data we collected from Flexikon. We 
refer to these models as G-BERT+Rad, GM-BERT+Rad, 
G-BERT+Rad+Flex, and GM-BERT+Rad+Flex.

From scratch

Additionally, we initialized a RoBERTa [15] model due to 
its improved results on SQuAD. We refer to it as RadBERT. 
RoBERTa uses a byte-pair encoding (BPE) tokenizer with a 
vocabulary size of 50,000 tokens. Since our dataset is much 
smaller than the one used in the RoBERTa paper (160 GB 
vs. 781 MB), we decided to decrease the vocabulary size to 
8000 tokens and reduce the number of hidden layers from 
12 to 6, to avoid excessive computational complexity and 
overfitting.

The supplementary material contains a description of the 
training configuration of the models.

Metrics

To evaluate the pre-training, we calculate the number of 
correctly predicted tokens for the masked language modeling 
(MLM). We do this once for the token with the highest 
scored token (HST) and once for the five highest scored 
tokens (5HST). Matches occur if the token with the highest 
prediction score, or one of the 5HST, matches the masked 
token. We then divide the number of correctly predicted 
tokens by the total number of masked tokens. We use the 
same metrics SQuAD uses Exact match (EM) and F1-score 
for the question-answering performance. EM measures 
the percentage of predictions that match the ground truth 
answers. The F1-score measures the average overlap 
between the prediction and the ground truth answer. True 
positives and negatives are tokens that the correct answer 
and the model prediction share or which both do not include. 
False positives include tokens the model prediction contains, 
but the correct answer does not. Whereas false negatives are 
tokens, the correct answer contains, but the model prediction 
does not.

In contrast to SQuAD, we exclude questions without an 
answer from the F1 and EM scores since we noticed that 

4 https:// de. openl egald ata. io/
5 www. sprec hzimm er. ch
6 www. netdo ktor. de
7 www. dokto rweigl. de
8 www. onmeda. de
9 www. krank. de
10 www. inter nisten- im- netz. de
11 www. apoth eken- umsch au. de
12 www. vitan et. de

https://de.openlegaldata.io/
http://www.sprechzimmer.ch
http://www.netdoktor.de
http://www.doktorweigl.de
http://www.onmeda.de
http://www.krank.de
http://www.internisten-im-netz.de
http://www.apotheken-umschau.de
http://www.vitanet.de
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the models were significantly better in classifying unan-
swerable questions than in determining the position of an 
answer. This led to an overestimation of the actual model 
score. To address this, we measure the binary classification 
task of identifying unanswerable questions with a separate 
accuracy score.

Results

We evaluated the pre-trained models on a subset of 1000 
sentences from radiology reports we excluded from the 
training set. We randomly mask a token for each sentence 
and let the models predict this missing token. This process 
is repeated five times for each model. Table 1 presents the 
resulting average, variance, and standard deviation of the 
HST and 5HST scores we observed during this evaluation.

RadBERT outperforms all other models with an HST 
accuracy of 48.05% and 5HST of 66.46%. The lowest-
performing models are G-BERT and GM-BERT, with 
HST accuracies of 14.4%/14.11% and 5HST scores of 
23.3%/23.74%. The lowest-performing models were never 
trained on radiology reports, while RadBERT was solely 
trained on radiological data. The additional pre-training 
on medical data of GM-BERT results in no significant dif-
ference from G-BERT. The models that were further pre-
trained on radiological reports indicate a significant boost 
in performance (+22.93% HST for G-BERT and +22.91% 
for GM-BERT). However, both models still achieve lower 

scores than RadBERT. The additional pre-training on our 
Flexicon dataset decreased the MLM performance of both 
models.

Fine‑tuning results

Table 2 displays the mean EM and F1-score across all five 
validation folds for questions that can be answered. The 
F1-score of G-BERT+Rad+Flex (83.97%) and the EM-score 
of GM-BERT+Rad+Flex (71.81%) are the highest scores in 
the RCQA task evaluation. G-BERT and GM-BERT achieve 
the lowest precision, while all other models benefit from the 
pre-training on our custom datasets. Without further pre-
training, GM-BERT performs better than G-BERT. Except 
for RadBERT, all models reach their peak performance 
after the first training epoch. Afterward, their performance 
decreases, indicating overfitting. Therefore, we implicitly 
apply early stopping by saving the model state after each 
epoch and finally loading the best-performing state. 
Conversely, RadBERT improves up until the fifth epoch. 
Therefore, we decided to continue its training for another 
five epochs, leading to an improvement of +0.51% F1 and 
+1.43% EM. In contrast to the other models, RadBERT 
converges slower to lower scores.

The classification accuracy of unanswerable ques-
tions is presented in Table  3. In this evaluation, GM-
BERT+Rad+Flex achieved the highest accuracy. Addi-
tionally, G-BERT and GM-BERT performed better than 
the model trained from scratch. The ranking of the other 

Table 1  Results of the pre-
training evaluation

Models Highest scored token 5 highest scored tokens

Average Variance Standard dev. Average Variance Standard dev.

G-BERT 14.4% 0.00% 0.6% 23.3% 0.01% 0.98%
G-BERT+Rad 37.33% 0.01% 0.81% 42.94% 0.01% 1.07%
G-BERT+Rad+Flex 35.11% 0.01% 0.01% 40.56% 0.01% 0.83%
GM-BERT 14.11% 0.01% 0.86% 23.74% 0.00% 0.7%
GM-BERT+Rad 37.02% 0.02% 1.29% 42.72% 0.01% 1.17%
GM-BERT+Rad+Flex 34.61% 0.01% 1.13% 40.53% 0.00% 0.63%
RadBERT 48.05% 0.00% 0.73% 66.46% 0.00% 0.94%

Table 2  Precision of fine-tuned models on answerable questions

Model EM F1

G-BERT 28.73% 35.89%
G-BERT+Rad 70.04% 83.33%
G-BERT+Rad+Flex 71.63% 83.97%
GM-BERT 35.06% 45.86%
GM-BERT+Rad 70.22% 83.12%
GM-BERT+Rad+Flex 71.81% 83.80%
RadBERT 55.93% 70.26%

Table 3  Precision of fine-tuned models on unanswerable questions

Model EM

G-BERT 89.59%
G-BERT+Rad 95.52%
G-BERT+Rad+Flex 96.01%
GM-BERT 89.97%
GM-BERT+Rad 95.32%
GM-BERT+Rad+Flex 96.12%
RadBERT 87.37%
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models remained similar to the results for answerable ques-
tions. However, the overall accuracy is significantly higher.

The pre-training dataset has significantly more CT reports 
than MRI reports. We performed an additional evaluation to 
investigate this imbalance’s impact on the models pre-trained 
on our radiology dataset. As shown in Table 4, we observe 
that all models have a slight advantage on CT reports.

Category‑wise evaluation

One of our motivations for using a question-answering 
model was its potential capability to generalize across 
unseen questions. In contrast to classification models, it 
learns the mapping between categories and text passages 
implicitly through question-answer pairs instead of explicit 
classification labels. Therefore, it could deal with examples 
from unseen categories. We explore this assumption for 
answerable questions with G-BERT+Rad+Flex, the model 
that achieved the highest F1-score in the evaluation.

We first compute the evaluation scores for each category 
separately. Afterward, we create an individual training set 
for each category by excluding the category from the train-
ing set. We train G-BERT+Rad+Flex on each training set 

that is missing one category. These models are then evalu-
ated on the category they have not seen during the training. 
Table 5 displays the results of the category-wise evaluation 
and the corresponding results of the models that have not 
seen the category they are evaluated against.

The results for the categories extraneous material, inflam-
mation, and CSF circulation are relatively similar, indicating 
that the model can deal with these questions without prior 
training on them. The evaluation of MRI signal changes, 
oncology, hemorrhage, and edema displays the expected drop 
in accuracy due to the missing training examples. However, 
the drop is relatively slight. These observations indicate a 
good generalization over unknown question-answer pairs. 
Surprisingly, we observed an increased performance on the 
category ischemia for the model that was not trained on it. 
This may relate to the relatively low number of examples 
from this category and overfitting to more frequent catego-
ries. For the custom questions the annotators formulated, we 
report an F1-score of 78.33% and an EM score of 62.01%. 
These results are close to the scores across all categories 
(83.97% F1-score and 71.63% EM score), supporting our 
claim that the model can answer unseen questions.

Discussion

Our experiments show that further radiology-specific pre-
training of a transformer model trained on general domain 
data results in the highest precision for radiology RCQA. 
Conversely, a model without medical domain pre-training 
shows the lowest precision. Additionally, further medical 
pre-training of available models results in better models than 
training a model from scratch. One possible explanation is 
that a model trained from scratch cannot develop sufficient 
language comprehension due to the similarity of the texts. 
Although RadBERT achieves the highest MLM scores, the 
other models benefit from their extensive training on natural 
language leading to a better question-answering capability. 
Another difference is the size of the pre-training data (781 
MB for RadBERT vs. 12 GB for G-BERT). An extensive 
dataset is crucial for training BERT models [16].

G-BERT and GM-BERT have shown similar evaluation 
scores. We assume that the continued pre-training on 194.5 
MB of medical articles GM-BERT received is not enough 
to change the weights of G-BERT significantly, or the arti-
cles used are too broadly scattered in the medical domain 
to improve radiology report comprehension. Articles used 
for further pre-training GM-BERT may be too close to texts 
used in the original G-BERT, like medical Wikipedia arti-
cles, to influence the weights. This finding is also indicated 
by the increase in performance after training on 781 MB 
radiology reports, showing that an increased performance 
through training on medical data is possible.

Table 4  Precision of fine-tuned models on answerable questions in 
CT vs. MRI reports

CT MRI
Category F1 EM F1 EM

G-BERT+Rad 84.15% 70.94% 81.11% 69.10%
G-BERT+Rad+Flex 85.43% 72.40% 81.28% 69.84%
GM-BERT+Rad 84.12% 71.09% 80.66% 69.04%
GM-BERT+Rad+Flex 85.01% 72.48% 81.29% 70.01%
RadBERT 71.78% 56.88% 69.62% 56.34%

Table 5  Results of the category-wise evaluation on the entire data-
set and subsets without the respective category. The custom category 
refers to the questions the annotators formulated during the annotation 
process

Category-wise Leave-one-out

Category F1 EM F1 EM

Extraneous material 94.12% 85.52% 93.27% 85.94%
MRI signal changes 72.58% 48.65% 68.30% 46.44%
Oncology 71.09% 53.03% 67.34% 51.44%
Hemorrhage 83.38% 63.81% 80.20% 63.16%
Ischemia 65.48% 52.80% 69.13% 55.83%
Inflammation 60.04% 39.41% 60.24% 40.02%
CSF circulation 94.71% 90.00% 95.11% 90.46%
Edema 76.12% 66.30% 71.90% 62.81%
Custom 78.33% 62.01% - -
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The evaluation of the custom formulated questions and 
the training runs that excluded one question category indi-
cated generalization over unseen questions. Therefore, we 
think the model is stable against variations in the formu-
lation of questions, deviating medical language used by 
various medical practitioners, reports on other anatomi-
cal regions than the head, and different imaging modali-
ties. Generalization is only possible to a certain degree, 
for instance, due to vocabulary that is not included in the 
training set.

We were able to show that our model generalizes to unseen 
questions. This is a clear advantage over previously intro-
duced classification and NER models. The only other appli-
cation of a BERT model for medical RCQA we are aware of 
was reported by Wen et al [5]. In contrast to their study, we 
did not restrict our dataset to why-questions. Although our 
best model achieves a higher accuracy for answerable ques-
tions (84.0% F1-score vs. 73.5% and 71.6% EM score vs. 
67.2%), a direct comparison is unfeasible due to the different 
datasets. Wen et al trained on English clinical notes compared 
to our German radiology dataset.

In this work, we have dealt exclusively with German 
models. However, the approach can be applied to any lan-
guage for which pre-trained transformer models are avail-
able. Especially in English there are models already pre-
trained on clinical data [17, 18].

One important limitation of our approach is the restriction 
of answers to a single, consecutive text span. In practice, 
however, the answer might consist of multiple spans located 
at different locations throughout the text or across multiple 
texts. This can either be because some parts only answer the 
question partially or because there are several valid, possibly 
contradicting, answers to a question. In future research, we 
want to address this limitation with multiple span models 
based on previous approaches (e.g., [19–21]). Additionally, 
the interpretability of transformers remains an open ques-
tion. We think that future research on interpretability opens 
up opportunities to discover weaknesses in the models’ rea-
soning and can build trust to incorporate the models into 
practical settings.

We explored different approaches to infuse BERT models 
with radiology knowledge to establish models with reading 
comprehension for reports. The models have shown high 
precision and evidence of good generalization. Our approach 
can be transferred to other downstream tasks and medical 
fields with little effort to provide medical professionals and 
researchers with a powerful tool to process large amounts of 
text without developing new algorithms for each task.
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