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Abstract
Due to the limitations of the present risk genes in understanding the etiology of amyotrophic lateral sclerosis (ALS), it is necessary 
to find additional causative genes utilizing novel approaches. In this study, we conducted a two-stage proteome-wide association 
study (PWAS) using ALS genome-wide association study (GWAS) data (N = 152,268) and two distinct human brain protein quan-
titative trait loci (pQTL) datasets (ROSMAP N = 376 and Banner N = 152) to identify ALS risk genes and prioritized candidate 
genes with Mendelian randomization (MR) and Bayesian colocalization analysis. Next, we verified the aberrant expression of risk 
genes in multiple tissues, including lower motor neurons, skeletal muscle, and whole blood. Six ALS risk genes (SCFD1, SARM1, 
TMEM175, BCS1L, WIPI2, and DHRS11) were found during the PWAS discovery phase, and SARM1 and BCS1L were confirmed 
during the validation phase. The following MR (p = 2.10 × 10−7) and Bayesian colocalization analysis (ROSMAP PP4 = 0.999, 
Banner PP4 = 0.999) confirmed the causal association between SARM1 and ALS. Further differential expression analysis revealed 
that SARM1 was markedly downregulated in lower motor neurons (p = 7.64 × 10−3), skeletal muscle (p = 9.34 × 10−3), and whole 
blood (p = 1.94 × 10−3). Our findings identified some promising protein candidates for future investigation as therapeutic targets. 
The dysregulation of SARM1 in multiple tissues provides a new way to explain ALS pathology.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a common neuro-
degenerative disease that damages upper and lower motor 
neurons, eventually resulting in muscular weakness and 

paralysis [1]. The pathophysiology of ALS has been shown 
to be significantly influenced by genetic factors, and the life-
time risk in the general population has a heritability of 52.3% 
[2, 3]. To study the pathogenic mechanisms underlying the 
disease, researchers have identified many disease-associated 
genes, such as SOD1, TDP-43, FUS, and C9ORF72, but 
there are still some ALS patients whose etiology cannot be 
explained [4]. Among the current drug treatments, riluzole 
has long been the only drug to extend the survival of patients 
with ALS [5]. Moreover, other treatments, such as gene ther-
apies, are still under investigation [5]. However, the present 
effective therapeutic targets and strategies for ALS are still 
limited. Therefore, new risk genes remain to be discovered, 
which will also facilitate the development of new targets for 
disease treatment.

Previous studies have used genome-wide association studies 
(GWAS) to identify disease-related genetic variants in case–con-
trol studies and have achieved great success in mapping suscep-
tibility genes for ALS [1]. However, GWAS examining genetic 
variation in isolation to explain the pathogenic causes of ALS is 
limited, and complex biological processes have been shown to 
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be involved in the pathogenesis of ALS, such as malfunctioning 
proteins [6, 7]. Previous studies have highlighted the pathology 
of brain proteins in the development of ALS, such as TDP-43 
[8] and FUS [9]. These proteins play crucial roles in regulating 
RNA metabolism and protein homeostasis, and mutations or 
misregulation of their activity can lead to neurodegeneration 
and disease pathology [10]. Therefore, studying the abnormali-
ties in protein abundance in the brain is essential to reveal ALS 
pathogenesis and to identify reliable biomarkers.

To study genetic causes and etiopathogenesis, researchers 
have also concentrated on other ALS-related tissues in addition 
to motor neurons, including skeletal muscle [11] and peripheral 
blood [12]. Skeletal muscle is one of the main target tissues 
affected by ALS [13], and studying genetic abnormalities in 
skeletal muscle biopsies can be correlated with clinical features 
and disease progression in ALS patients. In addition, changes 
observed in gene expression patterns in whole blood may relate 
to the same changes occurring within the brain [14], which 
may offer insight into the pathogenic mechanisms of motor 
neuron degeneration in ALS. Therefore, we tried to combine 
the strengths across tissues and utilize differential expression 
strategies to verify whether the high-confidence risk genes are 
consistently dysregulated in multiple ALS-related tissues.

In the current work, we employed proteome-wide association 
studies (PWAS), a robust technique for investigating the relation-
ship between protein abundance and disease phenotype by com-
bining GWAS and protein quantitative trait loci (pQTL) data 
[15]. To validate our risk genes from multiple levels, we took 
a four-step approach to link the proteome and ALS. First, we 
integrated the large ALS GWAS data [16] and two independent 
human brain pQTL datasets to conduct a two-stage PWAS. The 
discovery pQTL data came from the ROSMAP dataset [17, 18], 
and the confirmatory data came from the Banner dataset [17]. 
We used 376 and 152 human brain proteomes, which have been 
the largest available human brain pQTL dataset so far. Next, to 
further obtain the causal relationship between candidate genes 
and the disease phenotype, we then applied Mendelian rand-
omization and Bayesian colocalization analysis [19]. Finally, we 
verified the impact of the dysregulation of susceptibility genes 
found in human brain on ALS pathogenesis in various tissues 
using differential expression analysis of lower motor neurons, 
skeletal muscle, and whole blood. Figure 1 shows the detailed 
procedures of various analysis stages in the study.

Materials and Methods

ALS GWAS Data

The main analysis utilized the most recent and largest ALS 
genome-wide association study by van Rheenen et al. [16]. 
Briefly, this is a cross-ancestry GWAS meta-analysis. This 

analysis included 29,612 ALS patients and 122,656 control indi-
viduals and consisted of 117 independent cohorts in European 
ancestries (27,205 ALS patients and 110,881 control individu-
als) [20, 21] and the summary GWAS statistics of ALS in Asian 
ancestries (2407 ALS patients and 11,775 control individuals) 
[22, 23]. All detailed information (e.g., studied subjects, geno-
typing, quality control, and statistical analyses) and data avail-
ability statements can be found in the original article [16].

Human Brain pQTL Data for Discovery PWAS

We obtained the protein abundance, referred to as protein 
weights, in the human brain from Wingo et al. [17], who esti-
mated the effects of genetic variants on protein weights and 
generated SNP-protein abundance weights (i.e., pQTL). In 
addition, 376 subjects with both proteomic and genetic data 
were included in their PWAS. These patients exhibited differ-
ent features in clinical diagnosis (including but not limited to 
dementia, stroke, and depression), cognitive performance, and 
neuropathologic traits. Furthermore, the proteomic reference 
dataset went through quality control procedures to identify 
and control the effects of clinical covariates (i.e., age, sex, and 
final clinical diagnosis of cognitive status) before estimating 
protein weights. Please refer to the original papers [17, 18] for 
further detailed information about proteomic profiling, protein 
quantification, and quality control.

Human Brain pQTL Data for Confirmation PWAS

The other human brain pQTL data were generated from 152 
subjects with both proteomic and genetic data. The human 
brain protein abundance included 8168 proteins after quality 
control. All the samples came from the dlPFC of European 
participants. It also passed the quality control procedures 
to remove the effects of clinical covariates. More detailed 
information can be found in the original papers [17, 24].

Proteome‑Wide Association Studies

In the discovery phase, we performed the PWAS by integrating 
ALS GWAS results with human brain proteomes profiled from 
the dlPFC (ROSMAP dataset [17]) using the FUSION pipe-
line. Confirmatory PWAS was performed using the same ALS 
GWAS and an independent set of 152 human brain proteomes 
profiled from the dlPFC (Banner dataset [17]). The PWAS was 
performed using FUSION [25] software with default settings.

Mendelian Randomization Analysis

We further used MR analysis to validate the causal asso-
ciation between the identified risk genes and ALS. The 
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brain protein abundance from the ROSMAP dataset was 
selected as the exposure. The SNPs included in the study 
robustly and independently (R2 < 0.001) predicted expo-
sures at a genome-wide level (5 × 10−8). The Wald ratio 
calculated the log odds change in ALS risk per standard 
deviation change in protein biomarker in relation to the 
instrumenting SNP’s risk allele. MR analysis was per-
formed using the “TwoSampleMR” package in R 4.1.02 
(https://​github.​com/​MRCIEU/​TwoSa​mpleMR).

Colocalization Analysis

We investigated colocalization using a Bayesian colocaliza-
tion method, COLOC. Colocalization was performed using 
the “coloc” R package [26] (http://​cran.r-​proje​ct.​org/​web/​
packa​ges/​coloc) and FUSION software [25]. The posterior 
probabilities for a shared causal variant between a pQTL 
and ALS significant genes in the discovery PWAS were cal-
culated, and a high PP4 probability indicates that there is a 

Fig. 1   We took a four-step 
approach to link the proteome 
and ALS. First, we integrated 
the large ALS GWAS dataset 
and two independent human 
brain pQTL datasets (ROSMAP 
dataset and Banner dataset) to 
conduct a two-stage PWAS. 
Next, we applied Mendelian 
randomization and Bayes-
ian colocalization analysis to 
validate the causal association 
between SARM1 and ALS 
via their cis-regulated brain 
protein abundance. Finally, we 
verified the dysregulation of 
susceptibility genes found in the 
PWAS stage using differential 
expression analysis in lower 
motor neurons, skeletal muscle, 
and whole blood. ALS, amyo-
trophic lateral sclerosis; GWAS, 
genome-wide association study; 
pQTL, protein quantitative trait 
locus; ROSMAP, Religious 
Orders Study and Rush Memory 
and Aging Project; PWAS, 
proteome-wide association 
study

https://github.com/MRCIEU/TwoSampleMR
http://cran.r-project.org/web/packages/coloc
http://cran.r-project.org/web/packages/coloc
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single variant that affects both the protein expression and 
ALS. To confirm that the risk proteins discovered in PWAS 
share a common causal variant with ALS, the evidence was 
defined as a posterior probability of hypothesis 4 (PPH4) of 
0.8 or greater [26].

Expression Analysis of Significant PWAS Genes

To further verify the dysregulation of the significant PWAS 
genes in other ALS-related tissues, we collected gene expres-
sion datasets from lower motor neurons [27], skeletal muscle 
[28], and whole blood [29]. The original studies carried out 
strict quality control of the sample sources, and the expression 
levels of genes were normalized during the analysis process. 
In this study, differential expression analysis was performed 
in R (http://​cran.r-​proje​ct.​org) using a two-sample t test. A p 
value < 0.05 was considered statistically significant.

Gene Expression Analysis from Lower Motor 
Neurons

The lower motor neuron dataset was obtained from Highley 
et al. [27]. In their study, RNA was extracted from lower motor 
neurons that were isolated from the anterior horns of the post-
mortem cervical spinal cord. In total, there were 6 sporadic ALS 
patients with a mean age of 60.2 years and 6 healthy control 
individuals with a mean age of 61.7 years. Samples were hybrid-
ized to GeneChip Human Exon 1.0 ST Arrays, and the Partek 
Genomics Suite was used for normalization [27].

Gene Expression Analysis from Skeletal Muscle

Bakay et al. [28] studied 125 human muscle biopsies from 13 
diagnostic groups, including ALS, fascioscapulohumeral mus-
cular dystrophy, Becker muscular dystrophy, and so on. Affym-
etrix Human Genome U133A and U133B Array were used for 
this gene expression analysis [28]. Here, the gene expression 
profile, including 9 ALS patients and 18 control individuals, 
and the annotation platform GPL97 were used in our analysis. 
Characteristics of the patient and normal volunteer samples used 
for mRNA profiling can be found in the original article [28].

Gene Expression Analysis in Whole Blood

Wouter et al. [29] conducted a two-stage transcriptome-
wide study, and with the corresponding whole blood gene 
expression profile, including 397 Netherlands ALS patients 
and 645 control subjects, they identified 2943 differentially 
expressed transcripts. The quality of isolated RNA was 
assessed using the Agilent 2100 Bioanalyzer system, and 
samples were hybridized to Illumina’s HumanHT-12 version 
3 and version 4 BeadChips according to the manufacturer’s 
protocol (Illumina, Inc., San Diego, CA, USA) [29]. All the 

probes were aligned to the NCBI reference genome build 36, 
and expression heterogeneity was eliminated by applying 
surrogate variable analysis (SVA) [29]. The last dataset we 
used in differential expression analysis included 233 ALS 
patients and 508 matched control individuals.

Results

PWAS Identified 6 Candidate Genes Associated 
with ALS Using Human Brain pQTL

In the discovery phase, we performed a PWAS by integrating 
ALS GWAS and ROSMAP pQTL data. As a result, 6 genes 
(SCFD1, SARM1, TMEM175, BCS1L, WIPI2, and DHRS11) 
whose brain protein levels were associated with ALS were 
identified. Next, to validate the results, we conducted a rep-
lication study using the Banner dataset, and 2 (SARM1 and 
BCS1L) of these 6 proteins were replicated (as shown in 
Table 1).

MR Verified 3 Genes Associated with ALS

Using the ROSMAP dataset, MR analysis of brain 
pQTL and ALS GWAS verified that SARM1 (OR = 0.33, 
p = 2.10 × 10−7), SCFD1 (OR = 4.54, p = 3.72 × 10−13), and 
DHRS11 (OR = 0.61, p = 7.40 × 10−5) provided evidence of 
a causal association with ALS.

Colocalization Between ALS Risk Genes and pQTL 
in Human Brain

To further explore the probability that there are the same 
shared causal variants driving the ALS GWAS and pQTL 
signals, we performed colocalization analysis. The ROS-
MAP dataset and Banner dataset were separately used in 
the analysis. Two (SCFD1 and SARM1) of six genes pro-
vided evidence based on PPH4 > 80% in the ROSMAP 
dataset, and only one gene (SARM1) passed replication 
analysis in the Banner dataset (as shown in Table 2). In 
particular, SARM1 showed the most causal association 
with ALS in two datasets (ROSMAP PP4 = 0.999, Banner 
PP4 = 0.999), which indicates the potential role SARM1 
plays in ALS risk.

Expression Analysis of PWAS Genes in Lower Motor 
Neurons, Skeletal Muscle, and Whole Blood

We conducted differential expression analysis using 3 data-
sets, and the tissue sources where RNA was extracted sepa-
rately came from lower motor neurons, skeletal muscle, and 

http://cran.r-project.org
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whole blood. According to the t test, SARM1 was downregu-
lated in ALS patients compared with control individuals and 
matched the directionality of PWAS associations in lower 
motor neurons, skeletal muscle, and whole blood (as shown 
in Fig. 2). In addition, TMEM175 (p = 6.42 × 10−12), BCS1L 
(p = 2.02 × 10−7), and DHRS11 (p = 2.60 × 10−10) were also 
downregulated in whole blood with the same directionality 
in PWAS. Table 3 displays the consolidated results for all 
six genes.

Discussion

In the present work, we used a two-stage approach of 
PWAS, MR, Bayesian colocalization, and differential 
expression analysis to thoroughly identify ALS risk genes. 
First, we identified 6 high-risk proteins (SCFD1, SARM1, 
TMEM175, BCS1L, WIPI2, and DHRS11) linked to ALS 
in the human brain. In two distinct PWAS, SARM1 and 
BCS1L were shown to be significant. Second, we veri-
fied the causal association of SARM1 with ALS via their 

cis-regulated brain protein abundance in MR analysis. 
Colocalization analysis also corroborated the clear causal 
relationship between SARM1 and ALS. Finally, we con-
firmed the dysregulation of SARM1 at the transcriptome 
level in three distinct tissues (lower motor neurons, skel-
etal muscle, and whole blood) with the same direction-
ality as in PWAS. In addition, BCS1L, TMEM175, and 
DHRS11 were verified in whole blood. Future research on 
ALS pathophysiology and treatment strategies could focus 
on these genes, particularly SARM1.

In the current work, we primarily focused on the ALS 
risk gene SARM1 [21, 30]. SARM1, Sterile Alpha and 
TIR Motif Containing 1, encodes a protein with critical 
NADase activity and has been shown to be a key mediator 
of axon degeneration in early animal experiments [31]. 
Axon degeneration can be caused by activated SARM1 
due to the depletion of the axon survival factor NMNAT2 
induced by injury or disease [32]. At present, preclinical 
studies of SARM1 inhibitors and gene therapies target-
ing SARM1 for neurodegenerative diseases are still being 
conducted [33, 34]. Recently, literature regarding the 

Table 1   Proteome-wide 
significant genes for 
amyotrophic lateral sclerosis in 
two datasets

This table shows the 6 significant genes identified in the ALS PWAS and the z scores with their corre-
sponding p values and FDR-adjusted p values. CHR, chromosome; PWAS, proteome-wide association 
study; ROSMAP, Religious Orders Study and Rush Memory and Aging Project

ROSMAP dataset Banner dataset

Gene CHR PWAS.z PWAS.p FDR.p PWAS.z PWAS.p FDR.p Replicated

SCFD1 14 7.32 2.56E-13 3.68E-10 - - - -
SARM1 17  − 5.20 2.00E-07 1.44E-04  − 5.20 2.00E-07 2.24E-04 Yes
TMEM175 4  − 4.75 1.99E-06 9.55E-04 - - - -
BCS1L 2  − 4.68 2.83E-06 1.02E-03  − 3.89 1.02E-04 4.86E-02 Yes
WIPI2 7  − 4.19 2.84E-05 8.17E-03 - - - -
DHRS11 17  − 3.97 7.28E-05 1.75E-02 - - - -

Table 2   Bayesian colocalization 
analysis of the 6 significant 
genes in the discovery ALS 
PWAS

This table provides the results of Bayesian colocalization analysis for 6 genes identified by PWAS. Bayes-
ian colocalization was separately conducted in the ROSMAP and Banner datasets. Based on PP4 > 0.8, 
only SARM1 overlapped in the two datasets. aNo association with GWAS trait and pQTL trait. b, cAssocia-
tion with either GWAS traits or pQTL traits. dAssociation with both GWAS traits and pQTL traits with dif-
ferent SNPs. eAssociation with both GWAS traits and pQTL traits with the same SNP. ALS, amyotrophic 
lateral sclerosis; PWAS, proteome-wide association study; CHR, chromosome; ROSMAP, Religious Orders 
Study and Rush Memory and Aging Project

Dataset Gene CHR PP0a PP1b PP2c PP3d PP4e

ROSMAP SCFD1 14 0 0 0 0.018 0.982
SARM1 17 0 0.001 0 0 0.999
TMEM175 4 0.240 0.044 0.055 0.009 0.652
BCS1L 2 0.579 0.060 0.125 0.013 0.225
WIPI2 7 0.950 0.024 0.010 0 0.016
DHRS11 17 0 0.105 0 0.428 0.467

Banner SARM1 17 0 0.001 0 0 0.999
BCS1L 2 0.867 0.006 0.110 0.001 0.016
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ALS PWAS-significant genes also indicated the abnormal 
expression of SARM1 in ALS [35]. We obtained the simi-
lar results utilizing a different comprehensive analytical 
framework, showing that the SARM1 risk gene has high 
confidence in populations of different origins. In addition, 
we further emphasized the tissue specificity of SARM1 
and verified its downregulation in lower motor neurons, 
skeletal muscle, and whole blood. Similarly, it has been 
shown that the loss of SARM1 cannot slow ALS disease 
progression or improve ALS-associated axon degenera-
tion in the SOD1 mouse model of ALS [36–38]. In addi-
tion, in the mutant TDP-43 mouse model of ALS, deleting 
SARM1 can significantly attenuate motor axon and motor 
neuron cell body degeneration [38, 39], which indicates 
that the downregulation of SARM1 could be a result of 
the body’s compensatory mechanisms to protect neurons 
from cell death. In addition to the brain and motor neu-
rons, our study first reported the dysregulation of SARM1 
in skeletal muscle and whole blood. The downregulation 
of SARM1 may affect energy metabolism by inhibiting 

the clearance of abnormal mitochondria in skeletal mus-
cle and promoting the clinical manifestation of muscle 
weakness in ALS patients. Maintenance of appropriate 
NAD + levels is known to be important for mitochondrial 
function [40]. Additionally, SARM1, encoding a protein 
with critical NADase activity, may impair mitochondrial 
function by affecting the level of NAD+ in skeletal muscle, 
causing muscle damage in ALS patients. Furthermore, the 
dysregulation of SARM1 in the peripheral circulation of 
ALS patients provided new evidence for its efficacy as a 
biomarker for disease monitoring. Our results suggested 
that SARM1 was dysregulated in a number of ALS core 
affected tissues and that it may be involved in a variety of 
pathophysiological events contributing to the development 
of ALS. These results at transcription level validated our 
PWAS findings, which prioritized proteins that were sta-
bly differentially expressed in multiple peripheral tissues, 
with important implications for the identification of future 
drug targets. Therefore, even in its early stages, SARM1 is 
very promising and has important ramifications for future 

Fig. 2   Differential expression analysis for SARM1 validated dys-
regulation of risk genes at transcription level in multiple tissues. The 
boxplot shows the differential expression analysis results of SARM1 
between ALS patients and healthy control individuals in lower motor 
neurons, skeletal muscle, and whole blood. The p value was obtained 
from the t test. a NALS = 6 and NControl = 6. SARM1 was downregulated 

in lower motor neurons (p = 7.64 × 10−3). b NALS = 9 and NControl = 18. 
SARM1 was downregulated in skeletal muscle (p = 9.34 × 10−3). c 
NALS = 233 and NControl = 508. SARM1 was downregulated in whole 
blood (p = 1.94 × 10−3). ALS, amyotrophic lateral sclerosis. #p > 0.05, 
*p < 0.05, **p < 0.01, ***p < 0.001

Table 3   Results of PWAS, 
Mendelian randomization, 
Bayesian colocalization, and 
differential expression analysis 
of the six genes

This table summarizes the results of the PWAS, Mendelian randomization, Bayesian colocalization, and 
differential expression analysis. PWAS, proteome-wide association study

Gene PWAS Mendelian 
randomization

Colocaliza-
tion analysis

Differential expression analysis

Lower motor 
neurons

Skeletal muscle Whole blood

SARM1 Yes Yes Yes Yes Yes Yes
SCFD1 Yes Yes Yes No No No
BCS1L Yes No No No No Yes
TMEM175 Yes No No No No Yes
DHRS11 Yes Yes No No No Yes
WIPI2 Yes No No No No No
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studies to determine the function of SARM1 in the onset 
of ALS.

The present study has several strengths. First, we used 
two datasets independently in each PWAS and colocalization 
analysis, which not only verified the preliminary outcomes 
but also shed light on the causal relationship through the 
latter analysis. The alteration of protein abundance in ALS 
patients’ brains implicated the involvement of novel proteins 
in pathological pathways as functional molecules, suggesting 
the effectiveness of PWAS. Second, we validated the risk 
genes in multiple tissues, which enhanced the reliability of 
our results. This provided several available tissues to identify 
future biomarkers and emphasized the tissue specificity of 
gene expression in ALS.

This study has several limitations. First, the relatively 
small sample size limited the output of protein abundance; 
thus, the pQTL data size in PWAS was limited, which 
explained the modest number of important PWAS genes 
revealed. Second, the sample size varied among the differ-
ent datasets utilized in the differential expression analysis. 
Third, tissue sources were restricted, which may lead to a 
one-sided view of disease mechanisms, with the causes man-
ifesting in multiple dimensions. (1) As a neurodegenerative 
illness, ALS affects the entire brain network, while the brain 
tissue used in PWAS only included the dlPFC. (2) We only 
used three peripheral tissues in the differential expression 
study, and other helpful tissues, such as higher motor neu-
rons, should be investigated further. Finally, future explora-
tion of the pathogenesis of ALS in SARM1 cell models and 
animal studies is still needed.

Conclusion

At the human brain proteome level, we discovered six ALS 
risk genes (SCFD1, SARM1, TMEM175, BCS1L, WIPI2, and 
DHRS11). Notably, SARM1 was the most promising bio-
marker for ALS and was verified in multiple ALS-related 
tissues (lower motor neurons, skeletal muscle, and whole 
blood). SARM1-mediated axon degeneration may serve as 
a therapeutically targeted pathway for ALS. However, more 
studies are needed to confirm our results in the future.
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