Skip to main content
. 2024 Jan 16;14:1345. doi: 10.1038/s41598-024-51472-2

Table 1.

State-of-art comparison.

Ref./year Dataset Technique used Performance parameters
12/2018 BRATS 2015 Cascaded CNN Dice coefficient = 0.89
13/2008 Vivo brain tumors Hybrid model Jaccard Index = 0.69
14/2012 Synthetic data from Utah + in vivo data from Harvard Cellular automata model Dice coefficient = 0.72
15/2013 Web data + in vivo brain tumors Lesion localization and segmentation model Accuracy = 83–95%
16/2016 MICCAI-BRATS 2013 SVM Dice coefficient = 0.86
17/2017 MICCAI-BRATS 2013 Wavelet-based features Dice coefficient = 0.88
18/2015 MICCAI-BRATS 2013 Random forest model Dice coefficient = 0.88
19/2015 MICCAI-BRATS 2013 Using appearance- and context-based features Dice coefficient = 0.83
20/2014 MICCAI-BRATS 2013 3D CNN with 3D convolutional kernels Dice coefficient = 0.87
39/2021 BraTs2020 U-Net with MobileNetV2 encoder Dice Coefficient = 0.88
Proposed

Brain MRI,

BraTs2020

LinkNet-34 semantic segmentation with EfficientNetB7 encoder

Brain MRI

Jaccard index = 0.89,

Dice coefficient = 0.92

BraTs2020

Jaccard index = 0.75,

Dice coefficient = 0.85