Skip to main content
Persoonia : Molecular Phylogeny and Evolution of Fungi logoLink to Persoonia : Molecular Phylogeny and Evolution of Fungi
. 2022 Feb 21;48:1–53. doi: 10.3767/persoonia.2023.48.01

Fusarium and allied genera from China: species diversity and distribution

MM Wang 1,2, PW Crous 3,4, M Sandoval-Denis 3, SL Han 1,2, F Liu 1, JM Liang 1, WJ Duan 5,6, L Cai 1,2
PMCID: PMC10792286  PMID: 38234691

Abstract

The genus Fusarium includes numerous important plant and human pathogens, as well as many industrially and commercially important species. During our investigation of fungal diversity in China, a total of 356 fusarioid isolates were obtained and identified from diverse diseased and healthy plants, or different environmental habitats, i.e., air, carbonatite, compost, faeces, soil and water, representing hitherto one of the most intensive sampling and identification efforts of fusarioid taxa in China. Combining morphology, multi-locus phylogeny and ecological preference, these isolates were identified as 72 species of Fusarium and allied genera, i.e., Bisifusarium (1), Fusarium (60), and Neocosmospora (11). A seven-locus dataset, comprising the 5.8S nuclear ribosomal RNA gene with the two flanking internal transcribed spacer (ITS) regions, the intergenic spacer region of the rDNA (IGS), partial translation elongation factor 1-alpha (tef1), partial calmodulin (cam), partial RNA polymerase largest subunit (rpb1), partial RNA polymerase second largest subunit (rpb2) gene regions, and partial β-tubulin (tub2), were sequenced and employed in phylogenetic analyses. A genus-level phylogenetic tree was constructed using combined tef1, rpb1, and rpb2 sequences, which confirmed the presence of four fusarioid genera among the isolates studied. Further phylogenetic analyses of two allied genera (Bisifusarium and Neocosmospora) and nine species complexes of Fusarium were separately conducted employing different multi-locus datasets, to determine relationships among closely related species. Twelve novel species were identified and described in this paper. The F. babinda species complex is herein renamed as the F. falsibabinda species complex, including descriptions of new species. Sixteen species were reported as new records from China.

Citation: Wang MM, Crous PW, Sandoval-Denis M, et al. 2022. Fusarium and allied genera from China: species diversity and distribution.

Persoonia 48: 1-53. https://doi.org/10.3767/persoonia.2022.48.01.

Keywords: Fusarium, multigene phylogeny, new taxa, species complex, systematics

INTRODUCTION

Fusarium and allied genera comprise a large number of destructive pathogens and mycotoxigenic fungi, threatening plant, animal, and human health, as well as food security (O’Donnell et al. 2013). Fusarioid species cause many notable plant diseases, such as Fusarium head blight or scab of cereals by members of the F. graminearum species complex (O’Donnell et al. 2000a, Cuomo et al. 2007), sudden death syndrome of soybeans (Aoki et al. 2005) and root rot of many diverse hosts (Coleman et al. 2009, Sandoval-Denis et al. 2018a) by members of Neocosmospora (Lombard et al. 2015, Sandoval-Denis et al. 2019), ear rot of maize by members of the F. fujikuroi species complex (Desjardins et al. 2002), and vascular wilts of many economically important crops by members of the F. oxysporum species complex (O’Donnell et al. 1998b, Skovgaard et al. 2001, Van der Does et al. 2008, Lombard et al. 2019a, Maryani et al. 2019a). Species within this complex are also well-known for their ability to produce a range of secondary metabolites, including some notorious mycotoxins produced by Fusarium spp. in cereals (Marasas et al. 1984, O’Donnell et al. 2018).

Since the establishment of Fusarium (Link 1809), the taxonomic framework of this genus has undergone several significant changes. Link (1809) determined the primary morphological character of Fusarium to be the distinctive canoe- or banana-shaped conidia. Wollenweber & Reinking (1935) surveyed the morphology of macro- and microconidia, and the presence of chlamydospores, sclerotia and sporodochia, and suggested that Fusarium should be divided into 16 morphological sections, including 65 species and 77 varieties and forms. In the next several decades, this system has largely influenced subsequent taxonomic studies. Despite the impact of this system, other several controversial viewpoints persisted. Snyder & Hansen (1940, 1941, 1945, 1954) reduced the number of species to nine with a number of formae speciales, and highlighted the importance of morphological observations based on cultures derived from single-spore isolates. Gordon (1944, 1952, 1954a, b, 1956a, b, 1959, 1960) developed a pragmatic approach that combined sexual morph morphology, incorporating some thoughts from Wollenweber & Reinking (1935) and Snyder & Hansen (1940, 1941, 1945, 1954), which accepted 26 species in the genus. Booth (1971) introduced the morphology of the conidiogenous cells as a species-level diagnostic character. Nelson et al. (1983) provided a detailed morphological identification manual for Fusarium. Nevertheless, the species identification in Fusarium, based on morphology was still confusing, because of the variable phenotypes in culture, intricate or too vague descriptions of species among different studies, and the historically complicated subspecies level ranks (Leslie & Summerell 2006, Lombard et al. 2019a, b, Wang et al. 2019).

During the last three decades, phylogenetic inference played an increasingly important role in Fusarium taxonomy (Lombard et al. 2019a, b). Many morphological sections in the system of Wollenweber & Reinking (1935), e.g., sections Discolor and Elegans, proved to be polyphyletic based on rpb1-rpb2 analyses (O’Donnell et al. 2013). Debates about the generic boundary of Fusarium also led to disagreement among taxonomists. Gräfenhan et al. (2011) and Schroers et al. (2011) introduced several genera in the basal Fusarium clade in the Nectriaceae, and indicated that several monophyletic clusters in the terminal Fusarium clade corresponded to other genera, including Neocosmospora. However, Geiser et al. (2013) insisted on a broader definition of Fusarium, to avoid the introduction of additional genera. By means of a 10-locus phylogenetic analysis, Lombard et al. (2015) delineated several genera in the terminal Fusarium clade, e.g., Bisifusarium (F. dimerum species complex), Rectifusarium (F. ventricosum species complex), and also resurrected some older generic names, e.g., Albonectria (F. decemcellulare species complex), and Neocosmospora (F. solani species complex). Based on the combined ITS-LSU-rpb1-rpb2-tef1 dataset, Crous et al. (2021) re-examined the fusarioid taxa in Nectriaceae and showed that the Wollenweber concept of Fusarium presently encompasses 20 distinct genera, including four new genera (Luteonectria, Nothofusarium, Scolecofusarium, and Setofusarium). Following the end of dual nomenclature, the genus Fusarium as currently circumscribed accommodates members that belong to the Gibberella clade (O’Donnell et al. 2013, Lombard et al. 2015), including 18 species complexes (Laurence et al. 2011, Aoki et al. 2014, O’Donnell et al. 2013, Zhou et al. 2016, Sandoval-Denis et al. 2018a, Lombard et al. 2019a, Crous et al. 2021). Numerous cryptic species have recently been uncovered based on multi-locus phylogeny, morphology, and ecological characteristics (Gordon & Martyn 1997, O’Donnell et al. 2000a, b, 2008, 2009a, b, Laurence et al. 2014, Lombard et al. 2019a, b, Sandoval-Denis et al. 2018a, b, 2019, Maryani et al. 2019a, b, Wang et al. 2019, Xia et al. 2019, Yilmaz et al. 2021).

Previous investigations on Fusarium in China were summarised by Yu (1955), in which 77 species, varieties and formae speciales of pathogenic Fusarium spp. from 55 plant hosts were listed. A wider sampling region included 103 species, varieties and formae speciales of Fusarium and Gibberella (sexual morph of Fusarium s.str.) obtained from at least 111 plant species, faeces, and soil (Tai 1979). Identifications in both studies employed the morphology-based taxonomic system of Wollenweber & Reinking (1935). According to the currently used taxonomic system, only 31 of the 77 names in Yu (1955), and 36 of the 103 names in Tai (1979) remain in Fusarium. Considering the importance of Fusarium and allied species, it is necessary to clarify the species diversity and distribution of Fusarium in China in a modern taxonomic framework.

In our continuous survey of phytopathogenic fungi from China, 356 fusarioid strains have been isolated from diverse plant materials and various environmental samples including air, carbonatite, compost, faeces, water, and soil. In this study through a combination of morphology, multi-locus phylogeny and ecological characteristics, we advanced our knowledge on the species diversity of fusarioid taxa from China, as well as their host range and distribution.

MATERIALS AND METHODS

Sample collection

Samples were collected from 15 provinces (Fujian, Guangdong, Guizhou, Hainan, Hebei, Hubei, Hunan, Jiangsu, Jiangxi, Qinghai, Shandong, Shanxi, Sichuan, Yunnan, and Zhejiang), three autonomous regions (Guangxi Zhuang, Neimenggu, and Tibet) and two municipalities (Beijing and Chongqing) in China, and isolated from agricultural products imported into China from 13 other countries (Argentina, Australia, Brazil, Canada, Italy, Japan, Netherlands, Philippines, Poland, Saudi Arabia, Spain, Ukraine, and USA). Diseased and healthy plant tissues were collected and placed in paper bags. Air samples were collected using the Koch sedimentation method (Zhang et al. 2017). Water samples were collected as 10 mL samples and kept in sterile 15 mL centrifuge tubes (Zhang et al. 2017). Compost, faeces, pollen, and soil samples were collected (10–100 g per sample) after removing the surface layer (Zhang et al. 2017). Carbonatite samples were collected as five pieces in different orientations at each sample site (Zhang et al. 2017).

Fungal isolation

Fungi were isolated from plant tissues using single spore isolation as outlined in Zhang et al. (2013). Fungal endophytes were isolated using a tissue isolation method. Briefly, plant tissue pieces (4–5 mm2) were taken from the margin of leaf or stem spots as well as healthy sections, consecutively immersed in 70 % ethanol for 1 min, 5 % NaClO for 3 min, 70 % ethanol for 1 min, and rinsed in sterile distilled water for 30 s. Tissue pieces were blotted dry in sterile paper towels and incubated on 1/4 strength potato dextrose agar (PDA; Crous et al. 2019) containing ampicillin and streptomycin (50 mg/L each) (Liu et al. 2015). Isolates were retrieved from compost, pollen, soil, and water using the plate dilution method. One gram of compost, faeces, pollen, soil, or water was suspended in 9 mL sterile water. The suspension was shaken on the Vortex vibration meter for 10 min. The extract was diluted to a series of concentrations, i.e., 10-2 to 10-5. For each concentration, 200 μL suspensions were spread onto the 1/4 strength potato dextrose agar (PDA) with three replicates. Carbonatite samples were treated following the protocol of Zhang et al. (2017).

All plates were incubated at room temperature and examined every 2 d for fungal hyphae. Individual colonies were picked up with a sterilised needle and transferred onto fresh PDA plates. All the cultures were then purified using an optimized protocol of single spore isolation (Zhang et al. 2013).

All isolates examined in this study were deposited in Lei Cai’s personal culture collection (LC), housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. Information of isolates including geographic distribution and host/habitat are listed in Table 1. Type specimens of new species were deposited in the Mycological Fungarium of the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (HMAS), and living ex-type cultures in the China General Microbiological Culture Collection Centre (CGMCC).

Table 1.

Details of examined isolates included in the phylogenetic analyses. Newly generated GenBank accessions are in bold

Species Isolate Country/Location Host/Habitat ITS cam tef1 rpb1 rpb2 tub2 IGS
Albonectria
A. rigidiuscula Bisifusarium LC13606 = F503 Japan unidentified plant MW016388 MW566255 MW580428 MW024420 MW474374 MW533715
B. aseptatum CGMCC 3.20816 = LC1075 T China, Guangdong Province, Guangzhou city Orchidaceae sp. MW016389 MW566256 MW580429 MW024421 MW474375 MW533716
LC13607 China, Guangdong Province, Guangzhou city Orchidaceae sp. MW016390 MW566257 MW580430 MW024422 MW474376 MW533717
LC13608 China, Guangdong Province, Guangzhou city Orchidaceae sp. MW016391 MW566258 MW580431 MW024423 MW474377 MW533718
Fusarium
F. concolor species complex
F. anguioides LC13612 = M0563 China, Guangdong Province, Shenzhen city Cordyline stricta MW016395 MW566262 MW580435 MW024426 MW474381 MW533721
LC13613 = M0568 China, Guangdong Province, Shenzhen city Alocasia odora MW016396 MW566263 MW580436 MW024427 MW474382 MW533722
LC7007 China, Jiangxi Province bamboo MW016397 MW566264 MW580437 MW024428 MW474383
LC7151 China, Jiangxi Province bamboo MW016398 MW566265 MW580438 MW024429 MW474384 MW533723
LC7178 China, Jiangxi Province bamboo MW016399 MW566266 MW580439 MW024430 MW474385 MW533724
LC7189 China, Guangdong Province, Guangzhou city bamboo MW016400 MW566267 MW580440 MW024431 MW474386 MW533725
LC7190 China, Guangdong Province, Guangzhou city bamboo MW016401 MW566268 MW580441 MW024432 MW474387
LC7240 China, Jiangxi Province, Ganzhou city bamboo MW016402 MW566269 MW580442 MW024433 MW474388 MW533726
F. bambusarum CGMCC 3.20820 = LC7180 T China, Jiangxi Province bamboo MW016403 MW566270 MW580443 MW024434 MW474389
LC7187 China, Guangdong Province, Guangzhou city bamboo MW016404 MW566271 MW580444 MW024435 MW474390
F. falsibabinda species complex
F. falsibabinda CGMCC 3.20823 = LC13610 = F015 T Japan Podocarpus macrophyllus MW016393 MW566260 MW580433 MW024424 MW474379 MW533719
LC13611 = F058 Japan Camellia sasanqua MW016394 MW566261 MW580434 MW024425 MW474380 MW533720
F. fujikuroi species complex
F. annulatum LC1105 China Lithocarpus glabra MW016472 MW566339 MW580512 MW024500 MW474458 MW533791
LC11490 = G2 China, Beijing Vitis sp. MW016473 MW566340 MW580513 MW024501 MW474459 MW533792
LC11527 = G358 China, Hebei Province Vitis sp. MW016474 MW566341 MW580514 MW024502 MW474460 MW533793
LC11584 = G373 China, Hebei Province Vitis sp. MW016475 MW566342 MW580515 MW024503 MW474461 MW533794
LC11650 = HM259-L09 China, Hainan Province Oryza sp. MW016476 MW566343 MW580516 MW024504 MW474462 MW533795
LC11670 = HM259-S07 China, Hainan Province Oryza sp. MW016477 MW566344 MW580517 MW024505 MW474463 MW533796
LC11672 = HM259-S12 China, Hainan Province Oryza sp. MW016478 MW566345 MW580518 MW024506 MW474464 MW533797
LC13658 = CF4 China, Neimenggu Province unidentified mushroom MW016479 MW566346 MW580519 MW024507 MW474465 MW533798
LC13659 = F007 USA Glycine max MW016480 MW566347 MW580520 MW024508 MW474466 MW533799
LC13660 = F023 Philippines Musa sp. MW016481 MW566348 MW580521 MW024509 MW474467 MW533800
LC13661 = F028 Italy Malus domestica MW016482 MW566349 MW580522 MW024510 MW474468 MW533801
LC13662 = F059 Spain Chamaerops humilis MW016483 MW566350 MW580523 MW024511 MW474469 MW533802
LC13663 = F100 Ukraine Zea mays MW016484 MW566351 MW580524 MW024512 MW474470 MW533803
LC13664 = F102 USA Sorghum bicolor MW016485 MW566352 MW580525 MW024513 MW474471 MW533804
LC13665 = F405 Spain Olea europaea MW016486 MW566353 MW580526 MW024514 MW474472 MW533805
LC13666 = GDBYL08-E1 China, Guangdong Province, Guangzhou city Musa nana MW016487 MW566354 MW580527 MW024515 MW474473 MW533806
LC13667 = GDBYL10-E1 China, Guangdong Province, Guangzhou city Musa nana MW016488 MW566355 MW580528 MW024516 MW474474 MW533807
LC13668 = GDGZSJL01E1 China, Guangdong Province, Guangzhou city Musa nana MW016489 MW566356 MW580529 MW024517 MW474475 MW533808
LC13669 = GXBSMAS2-E3 China, Guangxi Zhuang Autonomous Region, Baise city Musa nana MW016490 MW566357 MW580530 MW024518 MW474476 MW533809
LC13670 = GXCZMQS1-E2 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MW016491 MW566358 MW580531 MW024519 MW474477 MW533810
LC13671 = GXLBL15-3 China, Guangxi Zhuang Autonomous Region, Laibin city Musa nana MW016492 MW566359 MW580532 MW024520 MW474478 MW533811
LC13673 = HBF3-2 China, Hebei Province Oryza sp. MW016494 MW566361 MW580534 MW024522 MW474480 MW533813
LC13674 = JXF3-22 China, Jiangxi Province Oryza sp. MW016495 MW566362 MW580535 MW024523 MW474481 MW533814
LC13675 = JXN1-21 China, Jiangxi Province Oryza sp. MW016496 MW566363 MW580536 MW024524 MW474482 MW533815
LC2825 China, Beijing unidentified grass MW016497 MW566364 MW580537 MW024525 MW474483 MW533816
LC5984 China submerged wood MW016498 MW566365 MW580538 MW024526 MW474484 MW533817
LC6002 China submerged wood MW016499 MW566366 MW580539 MW024527 MW474485 MW533818
LC7208 China, Guangdong Province, Guangzhou city bamboo MW016500 MW566367 MW580540 MW024528 MW474486 MW533819
LC7924 China, Shandong Province Capsicum sp. MW016501 MW566368 MW580541 MW024529 MW474487 MW533820
F. aquaticum LC13615 China, Guizhou Province, Zunyi city water MW016406 MW566273 MW580446 MW024437 MW474392 MW533728
LC13616 China, Guizhou Province, Zunyi city water MW016407 MW566274 MW580447 MW024438 MW474393 MW533729
CGMCC 3.20819 = LC7502 T China, Guizhou Province, Zunyi city water MW016408 MW566275 MW580448 MW024439 MW474394 MW533730
F. concentricum LC1003 China, Guangdong Province, Guangzhou city Reineckia carnea MW016409 MW566276 MW580449 MW024440 MW474395 MW533731
LC11489 = G1 China, Beijing Vitis sp. MW016410 MW566277 MW580450 MW024441 MW474396 MW533732
LC11491 = G5 China, Beijing Vitis sp. MW016411 MW566278 MW580451 MW024442 MW474397 MW533733
LC11507 = G36 China, Beijing Vitis sp. MW016412 MW566279 MW580452 MW024443 MW474398 MW533734
LC13617 = CQ1128 China, Jiangsu Province, Changshu city unknown plant MW016413 MW566280 MW580453 MW024444 MW474399 MW533735
LC13618 = F409 Japan Podocarpus macrophyllus MW016414 MW566281 MW580454 MW024445 MW474400 MW533736
LC13619 = FJWYS10-3 China, Fujian Province, Wuyi Mountain Musa nana MW016415 MW566282 MW580455 MW024446 MZ399207 MW533737
LC13620 = FJWYS3-1 China, Fujian Province, Wuyi Mountain Musa nana MW016416 MW566283 MW580456 MW024447 MW474402 MW533738
LC13621 = GXLB9-1-1 China, Guangxi Zhuang Autonomous Region, Laibin city Musa nana MW016417 MW566284 MW580457 MW024448 MW474403 MW533739
LC13623 = LJM1471 China, Hainan Province, Haikou city Maianthemum sp. MW016419 MW566286 MW580459 MW024450 MW474405 MW533741
LC13624 = M0514 China, Fujian Province, Fuzhou city, Wuyi Mountain Lablab sp. MW016420 MW566287 MW580460 MW024451 MW474406 MW533742
LC13647 = M0155 China, Fujian Province, Fuzhou city Lablab sp. MW016457 MW566324 MW580497 MW024485 MW474443 MW533776
LC13648 = M0155.2 China, Fujian Province, Fuzhou city Lablab sp. MW016458 MW566325 MW580498 MW024486 MW474444 MW533777
LC13649 = M0155.3 China, Fujian Province, Fuzhou city Lablab sp. MW016459 MW566326 MW580499 MW024487 MW474445 MW533778
LC4326 China, Jiangxi Province Aglaonema modestum MW016421 MW566288 MW580461 MW024452 MW474407 MW533743
LC4359 China, Jiangxi Province Hedera nepalensis MW016422 MW566289 MW580462 MW024453 MW474408 MW533744
LC7032 China, Hainan Province Musa nana MW016423 MW566290 MW580463 MW024454 MW474409 MW533745
F. elaeagni CGMCC 3.20822 = LC13627 = CQ1053 T China, Jiangsu Province, Suzhou city Elaeagnus pungens MW016426 MW566293 MW580466 MW024457 MW474412 MW533748
LC13628 = CQ1053.2 China, Jiangsu Province, Suzhou city Elaeagnus pungens MW016427 MW566294 MW580467 MW024458 MW474413 MW533749
LC13629 = CQ1053.3 China, Jiangsu Province, Suzhou city Elaeagnus pungens MW016428 MW566295 MW580468 MW024459 MW474414 MW533750
F. fujikuroi LC13633 = F013 USA Glycine max MW016432 MW566299 MW580472 MW024460 MW474418 MW533751
LC13634 = F032 Japan Acer palmatum MW016433 MW566300 MW580473 MW024461 MW474419 MW533752
LC13635 = F063 USA Sorghum bicolor MW016434 MW566301 MW580474 MW024462 MW474420 MW533753
LC13636 = F402 Japan Rhododendron simsii MW016435 MW566302 MW580475 MW024463 MW474421 MW533754
LC13637 = FJWYS2-1 China, Fujian Province, Wuyi mountain Musa nana MW016436 MW566303 MW580476 MW024464 MW474422 MW533755
LC13638 = GDQY3-1 China, Guangdong Province, Qingyuan city Musa nana MW016437 MW566304 MW580477 MW024465 MW474423 MW533756
LC13639 = GXBSNXS01-E1 China, Guangxi Zhuang Autonomous Region, Baise city Musa nana MW016438 MW566305 MW580478 MW024466 MW474424 MW533757
LC13640 = GXLZBDL06-E2 China, Guangxi Zhuang Autonomous Region, Liuzhou city Musa nana MW016439 MW566306 MW580479 MW024467 MW474425 MW533758
LC13641 = HBF4-8 China, Hebei Province Oryza sp. MW016440 MW566307 MW580480 MW024468 MW474426 MW533759
LC13642 = LJM1535 China, Hainan Province, Wanning city Panicum sp. MW016441 MW566308 MW580481 MW024469 MW474427 MW533760
LC13643 = LJM1536 China, Hainan Province, Wanning city Panicum sp. MW016442 MW566309 MW580482 MW024470 MW474428 MW533761
LC5916 China, Jiangxi Province, Nanchang city submerged wood MW016443 MW566310 MW580483 MW024471 MW474429 MW533762
LC5927 China, Jiangxi Province, Nanchang city submerged wood MW016444 MW566311 MW580484 MW024472 MW474430 MW533763
LC5945 China, Jiangxi Province, Nanchang city submerged wood MW016445 MW566312 MW580485 MW024473 MW474431 MW533764
LC5955 China, Jiangxi Province, Nanchang city submerged wood MW016446 MW566313 MW580486 MW024474 MW474432 MW533765
LC5979 China, Jiangxi Province, Nanchang city submerged wood MW016447 MW566314 MW580487 MW024475 MW474433 MW533766
LC6014 China, Jiangxi Province, Nanchang city submerged wood MW016448 MW566315 MW580488 MW024476 MW474434 MW533767
LC6015 China, Jiangxi Province, Nanchang city submerged wood MW016449 MW566316 MW580489 MW024477 MW474435 MW533768
LC6024 China, Jiangxi Province, Nanchang city submerged wood MW016450 MW566317 MW580490 MW024478 MW474436 MW533769
LC6973 China, Jiangxi Province Citrus reticulata MW016451 MW566318 MW580491 MW024479 MW474437 MW533770
LC7147 China, Jiangxi Province bamboo MW016452 MW566319 MW580492 MW024480 MW474438 MW533771
LC7864 China, Guangxi Zhuang Autonomous Region Poaceae sp. MW016453 MW566320 MW580493 MW024481 MW474439 MW533772
F. hechiense CGMCC 3.20824 = LC13644 = GXHCSWL14-E1 T China, Guangxi Zhuang Autonomous Region, Hechi city Musa nana MW016454 MW566321 MW580494 MW024482 MW474440 MW533773
LC13645 = GXHCSWL14-E12 China, Guangxi Zhuang Autonomous Region, Hechi city, Musa nana MW016455 MW566322 MW580495 MW024483 MW474441 MW533774
LC13646 = GXHCSWL14-E13 China, Guangxi Zhuang Autonomous Region, Hechi city Musa nana MW016456 MW566323 MW580496 MW024484 MW474442 MW533775
F. lumajangense LC13650 = GXCZMQF02-1 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MW016461 MW566328 MW580501 MW024489 MW474447 MW533780
LC13651 = GXCZMQF02-2 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MW016462 MW566329 MW580502 MW024490 MW474448 MW533781
LC13652 = MH0493 China, Guangxi Zhuang Autonomous Region Arenga caudata MW016463 MW566330 MW580503 MW024491 MW474449 MW533782
F. madaense LC13614 = HBN5-22 China, Hebei Province Oryza sp. MW016405 MW566272 MW580445 MW024436 MW474391 MW533727
F. mundagurra LC13689 = LGS129 China, Hainan Province Paspalum vaginatum MW016516 MW566383 MW580556 MW024544 MW474502 MW533835
LGS129.2 China, Hainan Province Paspalum vaginatum MZ379241 MZ399201 MZ399211 MZ399204 MZ399208 MZ399214
LGS129.3 China, Hainan Province Paspalum vaginatum MZ379242 MZ399202 MZ399212 MZ399205 MZ399209 MZ399215
F. panlongense CGMCC 3.20825 = LC13656 = GXGLPLL15E2 T China, Guangxi Zhuang Autonomous Region, Guilin city Musa nana MW016470 MW566337 MW580510 MW024498 MW474456 MW533789
F. proliferatum F026 China, Zhejiang Province, Ningbo city Musa sp. MZ379243 MZ399203 MZ399213 MZ399206 MZ399210 MZ399216
F. pseudocircinatum LC13676 = F428 China, Taiwan Province Syzygium samarangense MW016502 MW566369 MW580542 MW024530 MW474488 MW533821
LC13677 = F429 China, Taiwan Province Syzygium samarangense MW016503 MW566370 MW580543 MW024531 MW474489 MW533822
F. sacchari LC1058 China, Guangdong Province, Guangzhou city Arundina graminifolia MW016504 MW566371 MW580544 MW024532 MW474490 MW533823
LC13625 = F162 Philippines Musa sp. MW016424 MW566291 MW580464 MW024455 MW474410 MW533746
LC13626 = GDGZTHL40-E4 China, Guangdong Province, Guangzhou city Musa nana MW016425 MW566292 MW580465 MW024456 MW474411 MW533747
LC13657 = GXBSCGS01-E2 China, Guangxi Zhuang Autonomous Region, Baise city Musa nana MW016471 MW566338 MW580511 MW024499 MW474457 MW533790
LC13678 = GDGZ2-2 China, Guangdong Province, Guangzhou city Musa nana MW016505 MW566372 MW580545 MW024533 MW474491 MW533824
LC13679 = GXQZPSL01-E1 China, Guangxi Zhuang Autonomous Region, Qinzhou city Musa nana MW016506 MW566373 MW580546 MW024534 MW474492 MW533825
LC13680 = GXQZPSL01-E2 China, Guangxi Zhuang Autonomous Region, Qinzhou city Musa nana MW016507 MW566374 MW580547 MW024535 MW474493 MW533826
LC13681 = LJM1180 China, Beijing Poa annua MW016508 MW566375 MW580548 MW024536 MW474494 MW533827
F. subglutinans LC13682 = F055 USA Glycine max MW016509 MW566376 MW580549 MW024537 MW474495 MW533828
LC13683 = F057 USA Zea mays MW016510 MW566377 MW580550 MW024538 MW474496 MW533829
LC13684 = F154 Canada Glycine max MW016511 MW566378 MW580551 MW024539 MW474497 MW533830
LC13685 = F154-2 Canada Glycine max MW016512 MW566379 MW580552 MW024540 MW474498 MW533831
LC13686 = F154-3 Canada Glycine max MW016513 MW566380 MW580553 MW024541 MW474499 MW533832
F. temperatum LC5848 China, Guizhou Province unidentified lichen MW016460 MW566327 MW580500 MW024488 MW474446 MW533779
F. thapsinum LC13687 = F103 USA Sorghum bicolor MW016514 MW566381 MW580554 MW024542 MW474500 MW533833
LC13688 = F411 USA Glycine max MW016515 MW566382 MW580555 MW024543 MW474501 MW533834
F. verticillioides LC13653 = F410 Brazil Glycine max MW016464 MW566331 MW580504 MW024492 MW474450 MW533783
LC13654 = F412 USA Glycine max MW016465 MW566332 MW580505 MW024493 MW474451 MW533784
LC13655 = GDGZP4-1-1 China, Guangdong Province, Guangzhou city Musa nana MW016466 MW566333 MW580506 MW024494 MW474452 MW533785
LC2810 China, Sichuan Province, Zhangjiajie bamboo MW016467 MW566334 MW580507 MW024495 MW474453 MW533786
LC2818 China, Beijing Physosfegia virginiana MW016468 MW566335 MW580508 MW024496 MW474454 MW533787
LC5896 China, Jiangxi Province, Nanchang city submerged wood MW016469 MW566336 MW580509 MW024497 MW474455 MW533788
F. incarnatum-equiseti species complex
F. arcuatisporum LC11639 = HA5-S04 China, Hainan Province Oryza sp. MK280840 MK289658 MK289586 MK289798 MK289736 MW533836
CGMCC 3.19493 = LC12147 = LF1502 T China, Hubei Province Brassica campestris MK280802 MK289697 MK289584 MK289799 MK289739 MW533837
LC13690 = LGS034 China, Beijing soil MW016517 MW574182 MW594360 MW024545 MW474503 MW533838
LC13691 = LGS119 China, Hainan Province Paspalum vaginatum MW016518 MW574183 MW594361 MW024546 MW474504 MW533839
LC13692 = LJM0900 China, Beijing Poa annua MW016519 MW574184 MW594362 MW024547 MW474505 MW533840
LC13693 = LJM0939 China, Beijing unidentified grass MW016520 MW574185 MW594363 MW024548 MW474506 MW533841
LC13694 = LJM1441 China, Hainan Province, Sanya city Panicum sp. MW016521 MW574186 MW594364 MW024549 MW474507 MW533842
LC6026 China, Jiangxi Province, Nanchang city Nelumbo nucifera bloom MK280792 MK289667 MK289585 MK289800 MK289770 MW533843
F. citri LC13695 = MH0430 China, Guangxi Zhuang Autonomous Region Castanopsis boisii MW016522 MW574187 MW594365 MW024550 MW474508 MW533844
LC13696 = MH0439 China, Guangxi Zhuang Autonomous Region Castanopsis boisii MW016523 MW574188 MW594366 MW024551 MW474509 MW533845
LC13697 = MH0446 China, Guangxi Zhuang Autonomous Region Smilax corbularia MW016524 MW574189 MW594367 MW024552 MW474510 MW533846
LC13698 = YNTBL08E1 China, Yunnan Province, Xishuangbanna Musa nana MW016525 MW574190 MW594368 MW024553 MW474511 MW533847
LC4879 China, Beijing Amygdalus triloba MK280820 MK289665 MK289615 MK289827 MK289768 MW533848
CGMCC 3.19467 = LC6896 T China, Hunan Province Citrus reticulata MK280803 MK289668 MK289617 MK289828 MK289771
LC7922 China, Shandong Province Capsicum sp. MK280817 MK289687 MK289634 MK289829 MK289788
LC7937 China, Shandong Province Capsicum sp. MK280797 MK289693 MK289640 MK289830 MK289794 MW533849
F. compactum LC13699 = LGS085 China, Beijing soil MW016526 MW574191 MW594369 MW024554 MW474512
LC13700 = LJM1181 China, Beijing Poa annua MW016527 MW574192 MW594370 MW024555 MW474513 MW533850
F. guilinense CGMCC 3.19495 = LC12160 = GXGL9-3 T China, Guangxi Zhuang Autonomous Region Musa nana MK280837 MK289652 MK289594 MK289831 MK289747 MW533851
F. hainanense CGMCC 3.19478 = LC11638 = HA5-S03 T China, Hainan Province Oryza sp. MK280836 MK289657 MK289581 MK289833 MK289735 MW533852
LC12161 = GXCZ-9-1 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MK280793 MK289648 MK289595 MK289832 MK289748 MW533853
LC13701 = YNTBL31E2 China, Yunnan Province, Xishuangbanna Musa nana MW016528 MW574193 MW594371 MW024556 MW474514 MW533854
F. humuli CQ1027 China, Jiangsu Province Ligustrum lucidum MK280843 MK289709 MK289567 MK289838 MK289721 MW533855
CQ1032 China, Jiangsu Province Cedrela sp. MK280844 MK289710 MK289568 MK289839 MK289722 MW533856
CGMCC 3.19374 = CQ1039T China, Jiangsu Province Humulus scandens MK280845 MK289712 MK289570 MK289840 MK289724 MW533857
CQ1048 China, Jiangsu Province Viburnum sp. MK280850 MK289713 MK289571 MK289841 MK289725 MW533858
CQ1073 China, Jiangsu Province Liquidambar formosana MK280848 MK289714 MK289572 MK289842 MK289726 MW533859
CQ1133 China, Jiangsu Province Vinca major MK280847 MK289717 MK289575 MK289843 MK289729 MW533860
CQ969 China, Jiangsu Province Rosa sempervirens MK280851 MK289718 MK289576 MK289844 MK289730 MW533861
CQ970 China, Jiangsu Province Rosa sempervirens MK280849 MK289719 MK289577 MK289845 MK289731 MW533862
CQ975 China, Jiangsu Province Paederia foetida MK280846 MK289720 MK289578 MK289846 MK289732 MW533863
LC12158 = GDBYL14-E1 China, Guangdong Province, Guangzhou city Musa nana MK280823 MK289645 MK289592 MK289834 MK289745 MW533864
LC12159 = GDGZLHL14-E1 China, Guangdong Province, Guangzhou city Musa nana MK280827 MK289646 MK289593 MK289835 MK289746 MW533865
LC13702 = LJM1412 China, Hainan Province, Haikou city Megathyrsus sp. MW016529 MW574194 MW594372 MW024557 MW474515 MW533866
LC13703 = MH0134 China, Guangxi Zhuang Autonomous Region Coriaria nepalensis MW016530 MW574195 MW594373 MW024558 MW474516 MW533867
LC13704 = MH0240 China, Guangxi Zhuang Autonomous Region Chimonanthus praecox MW016531 MW574196 MW594374 MW024559 MW474517 MW533868
LC4490 China, Jiangxi Province Osmanthus sp. MK280826 MK289664 MK289614 MK289836 MK289767 MW533869
LC7003 China, Hainan Province Musa paradisiaca MK280833 MK289674 MK289623 MK289837 MK289777 MW533870
F. incarnatum LC13705 = LGS051 China, Beijing soil MW016532 MW574197 MW594375 MW024560 MW474518 MW533871
F. ipomoeae CQ1099 China, Jiangsu Province Rhododendron pulchrum MK280853 MK289715 MK289573 MK289861 MK289727 MW533872
CQ1132 China, Jiangsu Province Vinca major MK280854 MK289716 MK289574 MK289862 MK289728 MW533873
LC0166 China, Beijing Solanum lycopersicum MK280780 MK289659 MK289579 MK289848 MK289733
LC0455 China, Beijing Hosta sp. MK280819 MK289660 MK289580 MK289849 MK289734 MW533874
LC12162 = GXLZCJL05-E2 China, Guangxi Zhuang Autonomous Region, Liuzhou city Musa nana MK280795 MK289655 MK289596 MK289847 MK289749 MW533875
LC12163 = M0027 China, Fujian Province, Fuzhou city Hibiscus syriacus MK280790 MK289700 MK289597 MK289857 MK289750 MW533876
LC12164 = M0028 China, Fujian Province, Fuzhou city Hibiscus syriacus MK280822 MK289701 MK289598 MK289858 MK289751 MW533877
CGMCC 3.19496 = LC12165 = M0111 T China, Fujian Province Ipomoea aquatica MK280832 MK289704 MK289599 MK289859 MK289752 MW533878
LC12166 = M0138 China, Fujian Province, Fuzhou city Lagenaria siceraria MK280791 MK289706 MK289600 MK289860 MK289753
LC13706 = JXN4-3 China, Jiangxi Province Oryza sp. MW016533 MW574198 MW594376 MW024561 MW474519
LC13707 = LGS036 China, Beijing soil MW016534 MW574199 MW594377 MW024562 MW474520 MW533879
LC13708 = LGS052 China, Beijing soil MW016535 MW574200 MW594378 MW024563 MW474521
LC13709 = LGS071 China, Beijing soil MW016536 MW574201 MW594379 MW024564 MW474522 MW533880
LC13710 = LJM0958 China, Beijing Agrostis matsumurae MW016537 MW574202 MW594380 MW024565 MW474523 MW533881
LC5912 China, Jiangxi Province submerged wood MK280821 MK289666 MK289616 MK289850 MK289769 MW533882
LC6926 China, Hubei Province Oryza sativa MK280799 MK289670 MK289619 MK289851 MK289773
LC7150 China, Jiangxi Province bamboo MK280818 MK289678 MK289627 MK289852 MK289781 MW533883
LC7923 China, Shandong Province Capsicum sp. MK280800 MK289688 MK289635 MK289853 MK289789 MW533884
LC7925 China, Shandong Province Capsicum sp. MK280796 MK289689 MK289636 MK289854 MK289790
LC7936 China, Shandong Province Capsicum sp. MK280785 MK289692 MK289639 MK289855 MK289793
LC7940 China, Shandong province Capsicum sp. MK280798 MK289695 MK289642 MK289856 MK289796 MW533885
F. irregulare LC12145 China, Guangdong Province bamboo MK280830 MK289681 MK289582 MK289864 MK289737
LC12146 China, Guangdong Province bamboo MK280831 MK289682 MK289583 MK289865 MK289738
LC13711 = LJM1544 China, Hainan Province, Wanning city Digitaria sp. MW016538 MW574203 MW594381 MW024566 MW474524 MW533886
LC13712 = LJM1545 China, Hainan Province, Wanning city Digitaria sp. MW016539 MW574204 MW594382 MW024567 MW474525 MW533887
LC13713 = MH0410 China, Guangxi Zhuang Autonomous Region Vigna unguiculata MW016540 MW574205 MW594383 MW024568 MW474526 MW533888
CGMCC 3.19489 = LC7188 T China, Guangdong Province bamboo MK280829 MK289680 MK289629 MK289863 MK289783
F. lacertarum LC7927 China, Shandong Province Capsicum sp. MK280838 MK289690 MK289637 MK289866 MK289791
LC7931 China, Shandong Province Capsicum sp. MK280801 MK289691 MK289638 MK289867 MK289792
LC7942 China, Shandong Province Capsicum sp. MK280834 MK289696 MK289643 MK289868 MK289797
F. luffae CQ1038 China, Jiangsu Province Humulus scandens MK280852 MK289711 MK289569 MK289870 MK289723 MW533889
CGMCC 3.19497 = LC12167 T China, Fujian Province Luffa aegyptiaca MK280807 MK289698 MK289601 MK289869 MK289754
LC13714 = JXN4-19 China, Jiangxi Province Oryza sp. MW016541 MW574206 MW594384 MW024569 MW474527
F. nanum CGMCC 3.19498 = LC12168 = GXGL14-2 T China, Guangxi Zhuang Autonomous Region Musa nana MK280794 MK289651 MK289602 MK289871 MK289755
LC1384 Saudi Arabia Solanum lycopersicum MK280842 MK289661 MK289611 MK289872 MK289764 MW533890
LC1385 Saudi Arabia Solanum lycopersicum MK280781 MK289662 MK289612 MK289873 MK289765 MW533891
LC1516 Saudi Arabia Solanum lycopersicum MK280782 MK289663 MK289613 MK289874 MK289766 MW533892
F. pernambucanum LC12148 = GDBYL12-E1 China, Guangdong Province, Guangzhou city Musa nana MK280778 MK289644 MK289587 MK289801 MK289740 MW533893
LC12149 = GDGZP2-3 China, Guangdong Province, Guangzhou city Musa nana MK280783 MK289647 MK289588 MK289802 MK289741 MW533894
LC12151 = GXCZMQF01-3 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MK280825 MK289649 MK289589 MK289803 MK289742 MW533895
LC12152 = GXCZMQF01-4 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MK280824 MK289650 MK289590 MK289804 MK289743 MW533896
LC13715 = LJM1300 China, Hainan Province, Haikou city Heteropogon sp. MW016542 MW574207 MW594385 MW024570 MW474528 MW533897
LC13716 = LJM1312 China, Hainan Province Gerbera jamesonii MW016543 MW574208 MW594386 MW024571 MW474529 MW533898
LC13717 = LJM1438 China, Hainan Province, Sanya city Cyperus sp. MW016544 MW574209 MW594387 MW024572 MW474530 MW533899
LC13718 = LJM1523 China, Hainan Province, Haikou city Chamaedorea sp. MW016545 MW574210 MW594388 MW024573 MW474531 MW533900
LC13719 = LJM1529 China, Hainan Province, Sanya city Panicum sp. MW016546 MW574211 MW594389 MW024574 MW474532 MW533901
LC7014 China, Hainan Province Musa paradisiaca MK280786 MK289675 MK289624 MK289812 MK289778
LC7019 China, Hainan Province Musa paradisiaca MK280816 MK289676 MK289625 MK289813 MK289779
LC7040 China, Hainan Province Musa paradisiaca MK280787 MK289677 MK289626 MK289814 MK289780 MW533902
LC7157 China, Jiangxi Province, Nanchang city bamboo MK280804 MK289679 MK289628 MK289815 MK289782
LC7842 China, Hainan Province Zea sp. MK280813 MK289684 MK289631 MK289817 MK289785 MW533903
LC7920 China, Shandong Province Capsicum sp. MK280805 MK289686 MK289633 MK289819 MK289787
F. sulawesiense LC12170 = GXNN-6 China, Guangxi Zhuang Autonomous Region, Nanning city Musa nana MK280841 MK289656 MK289604 MK289807 MK289757 MW533908
LC12173 = M0010 China, Fujian Province, Fuzhou city Luffa aegyptiaca MK280788 MK289699 MK289605 MK289821 MK289758
LC12174 = M0079 China, Fujian Province, Fuzhou city Ipomoea batatas MK280815 MK289702 MK289606 MK289822 MK289759
LC12175 = M0110 China, Fujian Province, Fuzhou city Ipomoea aquatica MK280808 MK289703 MK289607 MK289823 MK289760 MW533909
LC12176 = M0117 China, Fujian Province, Fuzhou city Luffa aegyptiaca MK280839 MK289705 MK289608 MK289824 MK289761
LC12177 = M0204 China, Fujian Province, Fuzhou city Colocasia esculenta MK280809 MK289707 MK289609 MK289825 MK289762
LC12178 = M0751 China, Fujian Province, Fuzhou city Syngonium auritum MK280789 MK289708 MK289610 MK289826 MK289763
LC13720 = JXN4-20 China, Jiangxi Province Oryza sp. MW016547 MW574212 MW594390 MW024575 MW474533
LC13721 = MH0409 China, Guangxi Zhuang Autonomous Region Alocasia odora MW016548 MW574213 MW594391 MW024576 MW474534 MW533904
LC13722 = MH0423 China, Guangxi Zhuang Autonomous Region Acalypha insulana MW016549 MW574214 MW594392 MW024577 MW474535 MW533905
LC13723 = MH0447 China, Guangxi Zhuang Autonomous Region Smilax corbularia MW016550 MW574215 MW594393 MW024578 MW474536 MW533906
LC6897 China, Hunan Province Citrus reticulata MK280810 MK289669 MK289618 MK289808 MK289772
LC6928 China, Hubei Province Oryza sativa MK280835 MK289671 MK289620 MK289809 MK289774
LC6936 China, Hubei Province Oryza sativa MK280835 MK289620 MK289671 MK289809 MK289774
LC6990 China, Hainan Province Musa paradisiaca MK280814 MK289673 MK289622 MK289811 MK289776
LC7210 China, Jiangxi Province, Nanchang city bamboo MK280804 MK289679 MK289628 MK289815 MK289782
LC7919 China, Shandong Province Capsicum sp. MK280811 MK289685 MK289632 MK289818 MK289786
LC7939 China, Shandong Province Capsicum sp. MK280806 MK289694 MK289641 MK289820 MK289795
F. tanahbumbuense LC13724 = HBF4-12 China, Hebei Province Oryza sp. MW016551 MW574216 MW594394 MW024579 MW474537
LC13725 = HBN4-19 China, Hebei Province Oryza sp. MW016552 MW574217 MW594395 MW024580 MW474538
LC13726 = LJM1369 China, Hainan Province, Wanning city Digitaria sp. MW016553 MW574218 MW594396 MW024581 MW474539 MW533910
F. lateritium species complex
F. cassiae LC13727 = F092 China, Yunnan Province Coffea sp. MW016554 MW594307 MW024582 MW474540 MW533911
F. stilboides LC13728 = CQ1109 China, Jiangsu Province, Changshu city Forsythia sp. MW016555 MW594308 MW024583 MW474541 MW533912
LC13729 = CQ993 China, Jiangsu Province, Suzhou city Hedera nepalensis var. sinensis MW016556 MW594309 MW024584 MW474542 MW533913
LC13730 = F004 Japan Acer palmatum MW016557 MW594310 MW024585 MW474543 MW533914
LC13731 = M0759 China, Guangdong Province, Shenzhen city Schima noronhae MW016558 MW594311 MW024586 MW474544 MW533915
Fusarium sp. LC13732 = F085 China, Yunnan Province Coffea sp. MW016559 MW594312 MW024587 MW474545 MW533916
LC13733 = F088 China, Yunnan Province Coffea sp. MW016560 MW594313 MW024588 MW474546 MW533917
F. nisikadoi species complex
F. commune LC11660 = HM259-R03 China, Hainan Province Oryza sp. MW016699 MW620160 MW024727 MW474685 MW534045
LC13823 = GDGZP2-2 China, Guangdong Province, Guangzhou city Musa nana MW016700 MW620161 MW024728 MW474686 MW534046
LC13824 = GXQZPSRDE4 China, Guangxi Zhuang Autonomous Region, Qinzhou city Musa nana MW016701 MW620162 MW024729 MW474687
F. miscanthi LC7503 China, Guizhou Province, Zunyi city water MW016565 MW594318 MW024593 MW474551 MW533922
F. paranisikadoi CGMCC 3.20826 = LC2800 T China, Beijing unidentified grass MW016561 MW594314 MW024589 MW474547 MW533918
LC2819 China, Beijing unidentified grass MW016562 MW594315 MW024590 MW474548 MW533919
LC2823 China, Beijing Pennisetum alopecuroides MW016563 MW594316 MW024591 MW474549 MW533920
LC2824 China, Beijing unidentified grass MW016564 MW594317 MW024592 MW474550 MW533921
F. oxysporum species complex
F. cugenangense LC13734 = F001 Japan Acer palmatum MW016566 MW594319 MW024594 MW474552 MW533923 MW024379
LC13735 = F080 Brazil Hordeum vulgare MW016567 MW594320 MW024595 MW474553 MW533924 MW024380
LC13736 = F422 China, Zhejiang Province, Ningbo city Solanum tuberosum MW016568 MW594321 MW024596 MW474554 MW533925 MW024381
LC4496 China, Jiangxi Province Smilax sp. MW016571 MW594324 MW024599 MW474557 MW533928 MW024384
F. curvatum LC13739 = F155 Netherlands Tulipa gesneriana MW016572 MW594325 MW024600 MW474558 MW533929 MW024385
F. duoseptatum LC13740 = GXHCFoc1 China, Guangxi Zhuang Autonomous Region, Hechi city Musa nana MW016573 MW594326 MW024601 MW474559 MW533930 MW024386
LC13741 = GXQZPSRDE3 China, Guangxi Zhuang Autonomous Region, Qinzhou city Musa nana MW016574 MW594327 MW024602 MW474560 MW533931 MW024387
F. elaeidis LC13742 = M0765 China, Guangdong Province, Shenzhen city Caryota mitis MW016575 MW594328 MW024603 MW474561 MW533932 MW024388
F. grosmichelii GDGZP11-2-2 China, Guangdong Province, Guangzhou city Musa nana OL744448 OL771389 OL771373 OL771381 OL771397 OL780783
GDZJLZ11-2-1 China, Guangdong Province, Zhanjiang city Musa nana OL744449 OL771390 OL771374 OL771382 OL771398 OL780784
GXCZMQS03E1 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana OL744450 OL771391 OL771375 OL771383 OL771399 OL780785
GXCZMQS03E2 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana OL744451 OL771392 OL771376 OL771384 OL771400 OL780786
JXF4-32 China, Jiangxi Province Oryza sp. OL744452 OL771393 OL771377 OL771385 OL771401 OL780787
JXF4-6 China, Jiangxi Province Oryza sp. OL744453 OL771394 OL771378 OL771386 OL771402 OL780788
JXN4-10 China, Jiangxi Province Oryza sp. OL744454 OL771395 OL771379 OL771387 OL771403 OL780789
M0676 China, Guangdong Province, Shenzhen Chamaerops humilis OL744455 OL771396 OL771380 OL771388 OL771404 OL780790
F. nirenbergiae LC13752 = F014 Italy Hydrangea macrophylla MW016585 MW594338 MW024613 MW474571 MW533942 MW024398
LC13753 = F051 USA Glycine max MW016586 MW594339 MW024614 MW474572 MW533943 MW024399
LC13754 = F077 Italy Olea europaea MW016587 MW594340 MW024615 MW474573 MW533944 MW024400
LC13755 = F153 Canada Glycine max MW016588 MW594341 MW024616 MW474574 MW533945 MW024401
LC13756 = F161 Netherlands Hippeastrum rutilum MW016589 MW594342 MW024617 MW474575 MW533946 MW024402
LC13757 = F418 USA Allium sativum MW016590 MW594343 MW024618 MW474576 MW533947 MW024403
LC13758 = GDZJLZ16-1 China, Guangdong Province, Zhanjiang city Musa nana MW016591 MW594344 MW024619 MW474577 MW533948 MW024404
LC13760 = M0579 China, Guangdong Province Caryota mitis MW016593 MW594346 MW024621 MW474579 MW533950 MW024406
LC2804 China, Beijing Setaria viridis MW016594 MW594347 MW024622 MW474580 MW533951 MW024407
F. odoratissimum LC13761 = Foc4-6 China, Guangxi Zhuang Autonomous Region Musa sp. MW016595 MW594348 MW024623 MW474581 MW533952 MW024408
LC13762 = Foc4-7 China, Guangxi Zhuang Autonomous Region Musa sp. MW016596 MW594349 MW024624 MW474582 MW024409
LC13763 = Foc4-8 China, Guangxi Zhuang Autonomous Region Musa sp. MW016597 MW594350 MW024625 MW474583 MW024410
LC13764 = GXLZCJL02-E5 China, Guangxi Zhuang Autonomous Region, Liuzhou city Musa nana MW016598 MW594351 MW024626 MW474584 MW533953 MW024411
LC13765 = GXNNS2 China, Guangxi Zhuang Autonomous Region, Nanning city Musa sp. MW016599 MW594352 MW024627 MW474585 MW533954 MW024412
F. oxysporum LC13766 = F065 China, Zhejiang Province, Ningbo city Malus spectabilis MW016600 MW594353 MW024628 MW474586 MW533955 MW024413
Fusarium sp. LC13737 = J1BS1 China, Shandong Province, Weifang city Zingiber officinale MW016569 MW594322 MW024597 MW474555 MW533926 MW024382
LC13743 = F163 Brazil Glycine max MW016576 MW594329 MW024604 MW474562 MW533933 MW024389
LC13744 = F416 Brazil Glycine max MW016577 MW594330 MW024605 MW474563 MW533934 MW024390
LC13745 = F151 Australia Hordeum vulgare MW016578 MW594331 MW024606 MW474564 MW533935 MW024391
LC13746 = F151-2 Australia Hordeum vulgare MW016579 MW594332 MW024607 MW474565 MW533936 MW024392
LC13747 = F151-3 Australia Hordeum vulgare MW016580 MW594333 MW024608 MW474566 MW533937 MW024393
LC13748 = F050 Netherlands Tulipa gesneriana MW016581 MW594334 MW024609 MW474567 MW533938 MW024394
LC13749 = F156 Netherlands Muscari botryoides MW016582 MW594335 MW024610 MW474568 MW533939 MW024395
LC13750 = GDZJLZ16-2 China, Guangdong Province, Zhanjiang city Musa nana MW016583 MW594336 MW024611 MW474569 MW533940 MW024396
LC13751 = GXCZ-4-1 China, Guangxi Zhuang Autonomous Region, Chongzuo city Musa nana MW016584 MW594337 MW024612 MW474570 MW533941 MW024397
LC13767 = LJM1259 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016601 MW594354 MW024629 MW474587 MW533956 MW024414
LC13768 = LJM1259-2 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016602 MW594355 MW024630 MW474588 MW533957 MW024415
LC13769 = LJM1259-3 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016603 MW594356 MW024631 MW474589 MW533958 MW024416
F. sambucinum species complex
F. acaciae-mearnsii LC13786 = FJWYS2-3 China, Fujian Province, Fuzhou city Musa nana MW016630 MW620091 MW024658 MW474616 MW533978
F. armeniacum LC2797 China, Beijing unidentified grass MW016608 MW620069 MW024636 MW474594 MW533963
LC2809 China, Beijing unidentified grass MW016609 MW620070 MW024637 MW474595 MW533964
F. asiaticum LC13773 = CQ974 China, Jiangsu Province, Suzhou city Paederia foetida MW016607 MW620068 MW024635 MW474593 MW533962
LC13774 = GXGLYSL08-1 China, Guangxi Zhuang Autonomous Region, Guilin city Musa nana MW016610 MW620071 MW024638 MW474596 MW533965
LC13785 = F408 China, Zhejiang Province, Ningbo city Podocarpus macrophyllus MW016629 MW620090 MW024657 MW474615 MW533977
LC13787 = GDBYL11-E1 China, Guangdong Province, Guangzhou city Musa nana MW016631 MW620092 MW024659 MW474617 MW533979
LC13788 = GXGLPLL07E2 China, Guangxi Zhuang Autonomous Region, Guilin city Musa nana MW016632 MW620093 MW024660 MW474618 MW533980
LC13789 = JXN5 China, Jiangxi Province Oryza sp. MW016633 MW620094 MW024661 MW474619 MW533981
LC5153 China, Jiangxi Province, Ganzhou city Prunus persica MW016635 MW620096 MW024663 MW474621 MW533982
LC5308 China, Guizhou Province air MW016636 MW620097 MW024664 MW474622 MW533983
LC7143 China, Jiangxi Province, Nanchang city bamboo MW016637 MW620098 MW024665 MW474623 MW533984
LC7494 China, Guizhou Province, Zunyi city carbonatite MW016638 MW620099 MW024666 MW474624 MW533985
LC7495 China, Guizhou Province, Zunyi city carbonatite MW016639 MW620100 MW024667 MW474625 MW533986
LC7500 China, Guizhou Province, Zunyi city carbonatite MW016640 MW620101 MW024668 MW474626 MW533987
LC7501 China, Guizhou Province, Zunyi city soil MW016641 MW620102 MW024669 MW474627 MW533988
F. graminearum LC13775 = F056 USA Zea mays MW016611 MW620072 MW024639 MW474597 MW533966
LC13776 = F110 Italy Pennisetum orientale MW016612 MW620073 MW024640 MW474598
F. kyushuense LC0725 China, Zhejiang Province, Quzhou city Chamaedaphne calyculata MW016613 MW620074 MW024641 MW474599 MW533967
LC1114 China Lithocarpus glabra MW016614 MW620075 MW024642 MW474600 MW533968
LC13777 = F179 Philippines unidentified plant MW016615 MW620076 MW024643 MW474601 MW533969
LC13778 = GXLZ6-1 China, Guangxi Zhuang Autonomous Region, Liuzhou city Musa nana MW016616 MW620077 MW024644 MW474602 MW533970
LC5936 China, Jiangxi Province, Nanchang city submerged wood MW016617 MW620078 MW024645 MW474603 MW533971
LC7000 China, Hainan Province Musa paradisiaca MW016618 MW620079 MW024646 MW474604 MW533972
F. longipes LC13779 = LGS185 China, Hainan Province Paspalum vaginatum MW016619 MW620080 MW024647 MW474605
F. meridionale LC13780 = F087 China, Yunnan Province Coffea sp. MW016620 MW620081 MW024648 MW474606
LC7067 China, Yunnan Province Musa basjoo MW016621 MW620082 MW024649 MW474607 MW533973
LC7496 China, Guizhou Province, Zunyi city carbonatite MW016622 MW620083 MW024650 MW474608 MW533974
F. nepalense LC13781 = GDBYL14-E3 China, Guangdong Province, Guangzhou city Musa nana MW016623 MW620084 MW024651 MW474609 MW533975
LC13782 = GXGLPLL14-1 China, Guangxi Zhuang Autonomous Region, Guilin city Musa nana MW016624 MW620085 MW024652 MW474610
LC6678 China, Yunnan Province, Xishuangbanna Camellia sinensis MW016625 MW620086 MW024653 MW474611 MW533976
F. poae LC13783 = F150 Canada Hordeum vulgare MW016626 MW620087 MW024654 MW474612
LC6917 China, Hubei Province Oryza sativa MW016627 MW620088 MW024655 MW474613
F. transvaalense LC13784 = F157 USA Medicago sativa MW016628 MW620089 MW024656 MW474614
F. ussurianum LC13790 = LJM1343 China, Hainan Province, Wanning city Rhynchospora sp. MW016634 MW620095 MW024662 MW474620
LC7573 China, Tibet Autonomous Region Poaceae sp. MW016642 MW620103 MW024670 MW474628
LC7574 China, Tibet Autonomous Region Poaceae sp. MW016643 MW620104 MW024671 MW474629 MW533989
F. tricinctum species complex
F. acuminatum LC13791 = F034 Argentina Glycine max MW016644 MW620105 MW024672 MW474630 MW533990
LC13794 = F111 Italy Feijoa sellowiana MW016647 MW620108 MW024675 MW474633 MW533993
LC13795 = GM18 China, Qinghai Province Hylotelephium erythrostictum MW016648 MW620109 MW024676 MW474634 MW533994
LC13796 = GM80 China, Qinghai Province Hylotelephium erythrostictum MW016649 MW620110 MW024677 MW474635 MW533995
LC13797 = LF1633 China, Hubei Province, Xiangyang city Brassica sp. MW016650 MW620111 MW024678 MW474636 MW533996
LC13798 = LF1636 China, Hubei Province, Xiangyang city Brassica sp. MW016651 MW620112 MW024679 MW474637 MW533997
LC13799 = LGS021 China, Beijing soil MW016652 MW620113 MW024680 MW474638 MW533998
LC5227 China, Neimenggu Province, Huhehaote city Prunus sp. MW016654 MW620115 MW024682 MW474640 MW534000
F. alpinum LC2853 China, Yunnan Province unidentified plant MW016684 MW620145 MW024712 MW474670 MW534030
LC2854 China, Yunnan Province unidentified plant MW016685 MW620146 MW024713 MW474671 MW534031
LC6034 China, Tibet Autonomous Region Fabaceae sp. MW016686 MW620147 MW024714 MW474672 MW534032
LC6037 China, Tibet Autonomous Region Fabaceae sp. MW016687 MW620148 MW024715 MW474673 MW534033
LC6043 China, Tibet Autonomous Region Fabaceae sp. MW016688 MW620149 MW024716 MW474674 MW534034
CGMCC 3.20818 = LC6045 T China, Tibet Autonomous Region Fabaceae sp. MW016689 MW620150 MW024717 MW474675 MW534035
F. avenaceum LC13801 = F010 Italy Hydrangea macrophylla MW016655 MW620116 MW024683 MW474641 MW534001
LC13802 = F038 Australia Trifolium repens MW016656 MW620117 MW024684 MW474642 MW534002
LC13803 = F039 Australia Trifolium repens MW016657 MW620118 MW024685 MW474643 MW534003
LC13804 = F071 USA Acer saccharum MW016658 MW620119 MW024686 MW474644 MW534004
LC13805 = F403 USA Acer truncatum MW016659 MW620120 MW024687 MW474645 MW534005
LC13806 = F404 USA Acer truncatum MW016660 MW620121 MW024688 MW474646 MW534006
LC13808 = GM149 China, Qinghai Province Halenia sibirica MW016662 MW620123 MW024690 MW474648 MW534008
LC13809 = GM30 China, Qinghai Province Bidens bipinnata MW016663 MW620124 MW024691 MW474649 MW534009
LC13811 = GM71 China, Qinghai Province Halenia sibirica MW016665 MW620126 MW024693 MW474651 MW534011
LC6044 China, Tibet Autonomous Region Fabaceae sp. MW016667 MW620128 MW024695 MW474653 MW534013
LC6321 China, Guizhou Province Camellia sinensis MW016668 MW620129 MW024696 MW474654 MW534014
LC6328 China, Guizhou Province Camellia sinensis MW016669 MW620130 MW024697 MW474655 MW534015
LC6376 China, Guizhou Province Camellia sinensis MW016670 MW620131 MW024698 MW474656 MW534016
LC6387 China, Guizhou Province Camellia sinensis MW016671 MW620132 MW024699 MW474657 MW534017
LC6388 China, Guizhou Province Camellia sinensis MW016672 MW620133 MW024700 MW474658 MW534018
LC6389 China, Guizhou Province Camellia sinensis MW016673 MW620134 MW024701 MW474659 MW534019
LC7584 China, Tibet Autonomous Region Poaceae sp. MW016674 MW620135 MW024702 MW474660 MW534020
F. chongqingense LC13813 China, Chongqing Bothrocaryum controversum MW016675 MW620136 MW024703 MW474661 MW534021
LC13814 China, Chongqing Bothrocaryum controversum MW016676 MW620137 MW024704 MW474662 MW534022
CGMCC 3.20821 = LC4957 T China, Chongqing Bothrocaryum controversum MW016677 MW620138 MW024705 MW474663 MW534023
F. iranicum LC1112 China Lithocarpus glabra MW016678 MW620139 MW024706 MW474664 MW534024
F. paeoniae LC13807 = GM123 China, Qinghai Province Plantago sp. MW016661 MW620122 MW024689 MW474647 MW534007
LC13810 = GM65 China, Qinghai Province Gentiana scabra MW016664 MW620125 MW024692 MW474650 MW534010
LC13812 = GM85 China, Qinghai Province Gentiana scabra MW016666 MW620127 MW024694 MW474652 MW534012
LC13815 = GM56 China, Qinghai Province Elymus dahuricus MW016679 MW620140 MW024707 MW474665 MW534025
LC13816 = YZG10-2 China, Qinghai Province Populus sp. MW016680 MW620141 MW024708 MW474666 MW534026
CGMCC 3.20817 = LC13817 = YZG12-2 T China, Qinghai Province Paeonia lactiflora MW016681 MW620142 MW024709 MW474667 MW534027
LC5166 China, Qinghai Province Crataegus monogyna MW016682 MW620143 MW024710 MW474668 MW534028
LC7358 China, Tibet Autonomous Region Poaceae sp. MW016683 MW620144 MW024711 MW474669 MW534029
F. tricinctum LC0453 China, Beijing Hosta sp. MW016690 MW620151 MW024718 MW474676 MW534036
LC0459 China, Beijing Zamia pumila MW016691 MW620152 MW024719 MW474677 MW534037
LC13818 = F005 Japan Acer palmatum MW016692 MW620153 MW024720 MW474678 MW534038
LC13819 = F020 Poland Clematis sp. MW016693 MW620154 MW024721 MW474679 MW534039
LC13820 = F033 Japan Acer palmatum MW016694 MW620155 MW024722 MW474680 MW534040
LC13821 = F400 Japan Chaenomeles japonica MW016695 MW620156 MW024723 MW474681 MW534041
LC13822 = PH53 China, Zhejiang Province, Ningbo city unidentified plant MW016696 MW620157 MW024724 MW474682 MW534042
LC5032 China, Jiangxi Province, Ganzhou city Litsea sp. MW016697 MW620158 MW024725 MW474683 MW534043
LC5034 China, Jiangxi Province, Ganzhou city Litsea sp. MW016698 MW620159 MW024726 MW474684 MW534044
Neocosmospora
N. brevis LC2116 China, Jiangxi Province, Ganzhou city submerged wood MW016702 MW620163 MW024730 MW474688
N. diminuta LC13825 = F009 Japan Acer palmatum MW016703 MW620164 MW024731 MW474689 MW534047
N. falciformis LC11569 = G649 China Vitis sp. MW016704 MW620165 MW024732 MW474690 MW534048
LC11572 = G694 China Vitis sp. MW016705 MW620166 MW024733 MW474691 MW534049
LC13826 = LGS175 China, Hainan Province Paspalum vaginatum MW016706 MW620167 MW024734 MW474692
LC13827 = LGS230 China, Hainan Province Paspalum vaginatum MW016707 MW620168 MW024735 MW474693
LC13828 = LJM1271 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016708 MW620169 MW024736 MW474694 MW534050
LC13829 = LJM1289 China, Hainan Province Paspalum vaginatum MW016709 MW620170 MW024737 MW474695
LC13830 = LJM1295 China, Hainan Province Paspalum vaginatum MW016710 MW620171 MW024738 MW474696
N. lithocarpi CGMCC 3.20827 = LC1113 T China Lithocarpus glabra MW016711 MW620172 MW024739 MW474697 MW534051
LC13831 China Lithocarpus glabra MW016712 MW620173 MW024740 MW474698 MW534052
LC13832 China Lithocarpus glabra MW016713 MW620174 MW024741 MW474699 MW534053
N. longissima LC13833 = F301 Japan Armeniaca mume MW016714 MW620175 MW024742 MW474700 MW534054
LC13834 = F303 Japan Armeniaca mume MW016715 MW620176 MW024743 MW474701 MW534055
N. metavorans LC5930 China, Jiangxi Province, Nanchang city submerged wood MW016716 MW620177 MW024744 MW474702 MW534056
LC5933 China, Jiangxi Province, Nanchang city submerged wood MW016717 MW620178 MW024745 MW474703 MW534057
N. oblonga LC7499 China, Guizhou Province, Zunyi city carbonatite MW016718 MW620179 MW024746 MW474704 MW534058
N. paraeumartii LC13835 = F066 Japan Acer sp. MW016719 MW620180 MW024747 MW474705 MW534059
LC13836 = M0478 China, Fujian Province, Fuzhou city Castanopsis fargesii MW016720 MW620181 MW024748 MW474706 MW534060
N. petroliphila LC1120 China Lithocarpus glabra MW016721 MW620182 MW024749 MW474707
N. pisi LC13837 = F073 USA Acer platanoides MW016722 MW620183 MW024750 MW474708
N. pseudensiformis LC13838 = LJM1257 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016723 MW620184 MW024751 MW474709 MW534061
LC13839 = LJM1263 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016724 MW620185 MW024752 MW474710 MW534062
LC13840 = LJM1273 China, Guangxi Zhuang Autonomous Region Passiflora edulis MW016725 MW620186 MW024753 MW474711 MW534063
N. silvicola LC5482 China, Guizhou Province faeces MW016726 MW620187 MW024756 MW474712 MW534066
N. solani LC13841 = 6S1 China, Shandong Province, Weifang city Capsicum annuum MW016727 MW620188 MW024757 MW474713 MW534067
LC13842 = F002 Japan Acer palmatum MW016728 MW620189 MW024758 MW474714 MW534068
LC13843 = F016 Italy Syringa vulgaris MW016729 MW620190 MW024759 MW474715 MW534069
LC13844 = HBN6-5 China, Hebei Province Oryza sp. MW016730 MW620191 MW024760 MW474716
LC13845 = J3R1 China, Shandong Province, Weifang city Zingiber officinale MW016731 MW620192 MW024761 MW474717 MW534070
LC13846 = J3R2 China, Shandong Province, Weifang city Zingiber officinale MW016732 MW620193 MW024762 MW474718 MW534071
LC13847 = LGS032 China, Beijing soil MW016733 MW620194 MW024763 MW474719 MW534072
LC13848 = LGS033 China, Beijing soil MW016734 MW620195 MW024764 MW474720
LC13849 = LGS054 China, Beijing soil MW016735 MW620196 MW024765 MW474721 MW534073
LC3717 China, Guangxi Zhuang Autonomous Region, Nanning city soil MW016736 MW620197 MW024766 MW474722 MW534074
LC3785 China, Shanxi Province, Baode city soil MW016737 MW620198 MW024767 MW474723 MW534075
LC3932 China, Shanxi Province, Baode city compost MW016738 MW620199 MW024768 MW474724 MW534076
LC5548 China, Guizhou Province soil MW016739 MW620200 MW024769 MW474725
N. stercicola LC5387 China, Guizhou Province soil MW016740 MW620201 MW024770 MW474726 MW534077

Note: T = Ex-type specimen of new species; A. = Albonectria, B. = Bisifusarium, F. = Fusarium, N. = Neocosmospora.

Morphological observation

Examined isolates were incubated on synthetic nutrient poor agar plates (SNA; Nirenberg 1976) for 7 d at 25 °C. Agar pieces of approximately 5 × 5 mm were cut from the edge of colonies and transferred onto media for morphological characterisation. Culture characteristics, including colony morphology, pigmentation and odour, were observed after 7 d incubation in the dark on PDA, oatmeal agar (OA; Crous et al. 2019), and SNA. Colours were rated according to the colour charts of Kornerup & Wanscher (1978). Sporodochia were induced by incubating under a 12/12 h near-ultraviolet light/dark cycle, on SNA and water agar amended with sterilised pieces of carnation leaves (CLA; Snyder & Hansen 1947, Fisher et al. 1982) at 25 °C, respectively. Micromorphological characteristics were examined and photo-documented with water as mounting medium under a Nikon 80i microscope with Differential Interference Contrast (DIC) optics, and a Nikon SMZ1500 dissecting microscope. For each species, respectively 30 conidiophores, conidiogenous cells and chlamydospores, 50 micro- and macroconidia were mounted and randomly measured to calculate the mean size and standard deviation (SD).

DNA extraction and amplification

Genomic DNA was extracted from fungal mycelia grown on PDA, using a modified CTAB protocol as described in Guo et al. (2000). Seven loci, including the 5.8S nuclear ribosomal RNA gene with the two flanking internal transcribed spacer (ITS) re gions, intergenic spacer region of the rDNA (IGS), partial trans lation elongation factor (tef1), partial calmodulin (cam), partial RNA polymerase largest subunit (rpb1), partial RNA polymerase second largest subunit (rpb2) gene regions, and partial β-tubulin (tub2), were amplified and sequenced, respectively. The primer pairs and PCR amplification procedures following protocols described by O’Donnell et al. (1998a, b, 2008, 2009a, b, 2010), Crous et al. (2009, 2021), and Lombard et al. (2015), are listed in Table 2. PCR amplifications were performed in a reaction mixture consisting of 12.5 μL 2 × Taq PCR Master Mix (Vazyme Biotech Co., Ltd, Nanjing, China), 1 μL each of 10 μM primers, 1 μL of the undiluted genomic DNA, adjusted to a final volume of 25 μL with distilled deionized water. The PCR products were visualised on 1 % agarose electrophoresis gel. Sequencing was done bi-directionally, conducted by the Tianyi Huiyuan Company (Beijing, China). Consensus sequences were obtained using SeqMan of the Lasergene software package v. 14.1 (DNAstar, Madison, Wisconsin, USA).

Table 2.

rimers information of PCR amplification of the seven loci.

Locus Primer Sequence of Primer (5’-3’) Annealing temperature (°C) References
ITS ITS5 GGAAGTAAAAGTCGTAACAAGG 55 White et al. (1990)
ITS4 TCCTCCGCTTATTGATATGC
IGS iNL11 AGGCTTCGGCTTAGCGTCTTAG 55 O’Donnell et al. (2009a)
iCNS1 TTTCGCAGTGAGGTCGGCAG
tef1 EF1 ATGGGTAAGGARGACAAGAC 55 O’Donnell et al. (1998b)
EF2 GGARGTACCAGTSATCATG
cam CL1 GARTWCAAGGAGGCCTTCTC 55 O’Donnell et al. (2000a)
CL2A TTTTTGCATCATGAGTTGGAC
rpb1 RPB1-Fa CAYAARGARTCYATGATGGGWC 58 (5 cycles)?57 (5)?56 (35) O’Donnell et al. (2010)
RPB1-G2R GTCATYTGDGTDGCDGGYTCDCC
rpb2 RPB2-5f2 GGGGWGAYCAGAAGAAGGC 57 Reeb et al. (2004)
RPB2-11ar GCRTGGATCTTRTCRTCSACC Liu et al. (1999)
tub2 T1 AACATGCGTGAGATTGTAAGT 54 O’Donnell & Cigelnik (1997)
T2 TAGTGACCCTTGGCCCAGTTG

Phylogenetic analyses

Sequences of the 425 fusarioid strains studied in this study (356 from China, 69 intercepted from 13 other countries) are listed in Table 1. For each locus, sequences were aligned us ing MAFFT v. 7 (Katoh et al. 2017), and the alignments were manually adjusted where necessary. The best-fit nucleotide substitution models under the Akaike Information Criterion (AIC) were selected using jModelTest v. 2.1.7 (Posada 2008, Darriba et al. 2012). Alignments derived from this study were deposited in TreeBASE (submission ID 29103), taxonomic novelties in MycoBank, and new sequences in NCBIs GenBank database (https://www.ncbi.nlm.nih.gov/; assession numbers shown in Table 1). Phylogenetic analyses of both individual and combined datasets were performed using Bayesian inference (BI) and Maximum- likelihood (ML) methods. The BI analyses were conducted using MrBayes v. 3.2.1 (Huelsenbeck & Ronquist 2001) following the protocol of Wang et al. (2019), with optimisation of each locus treated as partitions in combined analyses, based on the Markov Chain Monte Carlo (MCMC) approach (Ronquist et al. 2012). All characters were equally weighted, and gaps were treated as missing data. Stationarity of analysis was determined by examining the standard deviation of split frequencies (< 0.01) and –ln likelihood plots in AWTY (Nylander et al. 2008). The ML analyses were conducted using PhyML v. 3.0 (Guindon et al. 2010), with 1000 bootstrap replicates. The general time reversible model was applied with an invariable gamma-distributed rate variation (GTR+I+G).

RESULTS

Phylogenetic analyses

Analyses of the generic level phylogeny of fusarioid fungi were conducted by using a combined tef1, rpb1, and rpb2 dataset that included 643 bp for tef1, 1583 bp of rpb1, and 1311 bp for rpb2. For the BI and ML analyses, a GTR+I+G model was selected for the combined tef1-rpb1-rpb2 dataset. The combined tef1, rpb1, and rpb2 phylogeny (Fig. 1) revealed that the Chinese isolates clustered into nine species complexes in Fusarium, and two allied genera (Bisifusarium and Neocosmospora). Isolate LC13606 from Podocarpus macrophyllus imported from Japan was closest to Albonectria rigidiuscula CBS 122570 (Fig. 1).

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

Fifty percent majority rule consensus tree from a Bayesian analysis based on a three-locus combined dataset (tef1, rpb1, and rpb2) showing the phylogenetic relationships of Fusarium and allied genera. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Fusicolla violacea (CBS 634.76 T). Ex-type cultures are indicated with ‘T’, epi-type with ‘ET’, neotype with ‘NT’.

Phylogenetic analyses of different Fusarium species complexes and allied genera were conducted using different multi-locus datasets following O’Donnell et al. (2009b), Jacobs-Venter et al. (2018), Sandoval-Denis et al. (2018a, b, 2019), Lombard et al. (2019a, b), Xia et al. (2019), Crous et al. (2021), and Yilmaz et al. (2021). Briefly, phylogenetic analyses of the F. concolor, F. falsibabinda, and F. nisikadoi species complexes were performed by using the tef1-rpb1-rpb2 dataset, and rooted with F. humuli CQ1039 (Fig. 2), and single gene trees were performed respectively (Supplementary Fig. S1). Phylogenetic analyses of the F. fujikuroi species complex was performed by using the tef1-cam-rpb1-rpb2-tub2 dataset and rooted with F. nirenbergiae CBS 744.97 (Fig. 3), and single gene trees were performed respectively (Supplementary Fig. S2). A tef1-cam-rpb2 dataset was constructed for phylogenetic analyses of the F. incarnatum-equiseti species complex and rooted with F. concolor NRRL 13994 (Fig. 4). Phylogeny of the F. lateritium species complex was performed using the tef1-rpb1-rpb2-tub2 dataset, and rooted with F. sublunatum NRRL 13384 (Fig. 5). Phylogenetic analyses of the F. oxysporum species complex was performed by using the tef1-cam-rpb1-rpb2-tub2 dataset and rooted with F. globosum NRRL 26131 (Fig. 6). Phylogenetic analyses of the F. sambucinum species complex was performed using tef1-rpb1-rpb dataset and rooted with F. lactis CBS 411.97 (Fig. 7). Phylogenetic analyses of the F. tricinctum species complex was performed by using a combined ITS-tef1-rpb1-rpb2 dataset and rooted with F. concolor NRRL 13994 (Fig. 8), and single gene trees were performed respectively (Supplementary Fig. S3). Phylogenetic analyses of the genus Bisifusarium were performed by using the ITS-tef1-cam-rpb2-tub2 dataset and rooted by Rectifusarium robinianum CBS 430.91 (Fig. 9), and single gene trees were performed respectively (Supplementary Fig. S4). Phylogenetic analyses of Neocosmospora were performed using ITS-tef1-rpb2 dataset, and rooted by Geejayessia cicatricum CBS 125552 and G. atrofusca NRRL 22316 (Fig. 10), and single gene trees were performed respectively (Supplementary Fig. S5). Composition of the multi-locus datasets, outgroup taxa and character numbers and the best model of each locus were listed in Table 3.

Fig. 2.

Fig. 2

Fifty percent majority rule consensus tree from a Bayesian analysis based on a three-locus combined dataset (tef1, rpb1, and rpb2) showing the phylogenetic relationships of five species complexes within the Fusarium, namely F. concolor (FCOSC), F. falsibabinda (FFBSC), and F. nisikadoi (FNISSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Fusarium humuli (CQ1039). New species are indicated in bold, ex-type cultures in bold with ‘T’.

Fig. 3.

Fig. 3

Fig. 3

Fig. 3

Fifty percent majority rule consensus tree from a Bayesian analysis based on a five-locus combined dataset (tef1, cam, rpb1, rpb2, and tub2) showing the phylogenetic relationships of species within the Fusarium fujikuroi species complex (FFSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. nirenbergiae (CBS 744.97). New species are indicated in bold, ex-type cultures with ‘T’, epi-type with ‘ET’, neotype with ‘NT’.

Fig. 4.

Fig. 4

Fig. 4

Fig. 4

Fig. 4

Fifty percent majority rule consensus tree from a Bayesian analysis based on a three-locus combined dataset (tef1, cam, and rpb2) showing the phylogenetic relationships of species within the Fusarium incarnatum-equiseti species complex (FIESC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. concolor (NRRL 13994 T). Ex-type cultures are indicated with ‘T’, neotype with ‘NT’.

Fig. 5.

Fig. 5

Fig. 5

Fifty percent majority rule consensus tree from a Bayesian analysis based on a four-locus combined dataset (tef1, rpb1, rpb2, and tub2) showing the phylogenetic relationships of species within the Fusarium lateritium species complex (FLSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. sublunatum (NRRL 13384 T). Ex-type culture are indicated with ‘T’, epitype with ‘ET’, and neotype with ‘NT’.

Fig. 6.

Fig. 6

Fifty percent majority rule consensus tree from a Bayesian analysis based on a five-locus combined dataset (tef1, cam, rpb1, rpb2, and tub2) showing the phylogenetic relationships of species within the Fusarium oxysporum species complex (FOSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. globosum (NRRL 26131). Ex-type cultures are indicated with ‘T’, epitype with ‘ET’.

Fig. 7.

Fig. 7

Fifty percent majority rule consensus tree from a Bayesian analysis based on a three-locus combined dataset (tef1, rpb1, and rpb2) showing the phylogenetic relationships of species within the Fusarium sambucinum species complex (FSAMSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. lactis (CBS 411.97 T). Ex-type cultures are indicated with ‘T’, epitype with ‘ET’.

Fig. 8.

Fig. 8

Fifty percent majority rule consensus tree from a Bayesian analysis based on a four-locus combined dataset (ITS, tef1, rpb1, and rpb2) showing the phylogenetic relationships of species within the Fusarium tricinctum species complex (FTSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. concolor (NRRL 13994 T). New species are indicated in bold, ex-type cultures are indicated with ‘T’, epitype with ‘ET’, neotype with ‘NT’.

Fig. 9.

Fig. 9

Fifty percent majority rule consensus tree from a Bayesian analysis based on a five-locus combined dataset (ITS, tef1, cam, rpb2, and tub2) showing the phylogenetic relationships of species within the Bisifusarium. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Rectifusarium robinianum (CBS 430.91 T). New species are indicated in bold, ex-type cultures with ‘T’.

Fig. 10.

Fig. 10

Fig. 10

Fifty percent majority rule consensus tree from a Bayesian analysis based on a three-locus combined dataset (ITS, tef1, and rpb2) showing the phylogenetic relationships of species within the genus Neocosmospora. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Geejayessia cicatricum (CBS 125552) and G. atrofusca (NRRL 22316). Ex-type cultures are indicated with ‘T’, epitype with ‘ET’.

Table 3.

Number of characters/model for BI analysis of each locus in phylogenetic analyses of different Fusarium species complexes and two other genera.

Genus/Species complex ITS tef1 cam rpb1 rpb2 tub2 Outgroup taxon
Bisifusarium 480/SYM+I+G 660/GTR+G 565/SYM+G 1455/SYM+G 528/HKY+I+G F. concolor
Fusarium concolor 627/GTR+G 1585/SYM+G 1601/GTR+G F. humuli
F. falsibabinda 627/GTR+G 1585/SYM+G 1601/GTR+G F. humuli
F. fujikuroi 666/GTR+I+G 673/SYM+I 1549/SYM+G 1455/SYM+I+G 573/SYM+G F. nirenbergiae
F. incarnatum-equiseti 592/GTR+I+G 547/SYM+G 816/GTR+I+G F. concolor
F. lateritium 645/HKY+G 1586/SYM+G 1716/GTR+I+G 555/HKY+G F. sublunatum
F. nisikadoi 627/GTR+G 1585/SYM+G 1601/GTR+G F. humuli
F. oxysporum 544/HKY+G 552/K80 1455/SYM+G 1704/GTR+G 505/SYM+G F. udum
F. sambucinum 621/GTR+G 1492/SYM+G 1293/SYM+I F. lactis
F. tricinctum 491/SYM+I 613/GTR+G 1575/SYM+G 1270/SYM+G F. concolor
Neocosmospora 333/GTR+I+G 606/GTR+G 1202/SYM+I+G Geejayessia atrofusca and G. cicatricum

Taxonomy

In total 425 strains were isolated. Of these, 356 isolated from China and were identified to 72 species, including 61 known and 11 novel species (Table 1). Sixty-nine isolates from diverse plants imported from 13 countries were identified as 26 species including one new species, namely F. falsibabinda. New species in Fusarium are treated alphabetically based on their respective species complexes.

FUSARIUM

Fusarium concolor species complex

Fusarium bambusarum M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842152; Fig. 11

Fig. 11.

Fig. 11

Fusarium bambusarum (ex-type culture LC7180). a, b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA: e–f. colony on SNA; e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochia on carnation leaves; h–i. conidiophores and phialides on sporodochia; j–o. sporodochial conidia (macroconidia); p. conidiophores and phialides on aerial mycelium; q. chlamydospores. — Scale bars: g = 50 μm; h = 20 μm; i–q = 10 μm.

Etymology. Named after the host of the type specimen, bamboo.

Typus. China, Jiangxi Province, from bamboo, July 2016, J.E. Huang (HMAS 351575, holotype designated here, dried culture on SNA with carnation leaves, culture ex-type CGMCC 3.20820 = LC7180).

Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin erose to entire, surface and reverse white. Colonies on OA grown in the dark reaching 5.9–6.1 cm diam after 7 d at 25 °C, raise, aerial mycelia dense, colony margin entire, surface and reverse white. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, surface and reverse white. Pigment and odour absent. Sporodochia orange grey (5B2), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, consisting of a short, smooth- and thin-walled stipe, 4–7 × 3–5 μm, bearing an apical pair or whorls of 3 monophialides; sporodochial phialides subulate to subcylindrical, 12–15 × 3–5 μm, smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, slender, slightly curved with almost parallel sides tapering slightly towards both ends, with a papillate to hooked, curved apical cell and a foot-like basal cell, 3–6-septate, hyaline, smooth- and thin-walled; 3-septate conidia: (39.4–)41.2–50(–51.3) × 3.4–5.6 μm (av. ± sd. 45.7 ± 2.4 × 4.3 ± 0.6 μm); 4-septate conidia: (50.3–)51–59.6(–59.7) × 3.1–5.9 μm (av. ± sd. 56 ± 2.7 × 4.4 ± 0.8 μm); 5–6-septate conidia: (62.9–)63.3–85.2(–85.7) × 3.6–6.2 μm (av. ± sd. 73.2 ± 5.5 × 4.9 ± 0.7 μm). Conidiophores borne on aerial mycelia 30–110 μm tall, unbranched or sparingly branched, bearing terminal or intercalary monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 23–30 × 3–4 μm; aerial microconidia forming small false heads on the tips of the monophialides, hyaline, oval, smooth- and thin-walled, aseptate, (5–)5.5–11(–12) × 1.6–3.5 μm (av. ± sd. 7.9 ± 1.4 × 2.8 ± 0.4 μm). Chlamydospores terminal, almost globose, rough, thick-walled, hyaline, aseptate, 6.3–12.8 μm diam (av. ± sd. 10.4 ± 2.1).

Additional material examined. China, Guangdong Province, Guangzhou city, from bamboo, July 2016, L. Cai, LC7187.

Notes The two isolates were resolved as a strongly supported genealogically exclusive lineage in the combined tef1, rpb1, and rpb2 phylogeny (Fig. 2). Phylogenetically, F. bambusarum is closely related to F. austroafricanum and F. concolor, but differs by 152 bp and 136 bp in the three loci dataset, respectively. Morphologically, this species is distinguished based on the number of septa in sporodochial macroconidia (3–6-septate in F. bambusarum vs 0–11-septate in F. austroafricanum) and in the type of aerial phialides (monophialides in F. bambusarum vs polyphialides in F. concolor) (Marasas et al. 1986).

Fusarium falsibabinda species complex

Fusarium falsibabinda M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842153; Fig. 12

Fig. 12.

Fig. 12

Fusarium falsibabinda (ex-type culture LC13610). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochium on carnation leaves; h–i. conidiophores and phialides on sporodochia; j. sporodochial conidia (macroconidia); k–l. phialides on aerial mycelium; m. aerial conidia (microconidia); n. chlamydospores. — Scale bars: g = 50 μm; h = 20 μm; i–n = 10 μm.

Etymology. Named after species of this newly introduced clade, F. babinda.

Typus. Japan, intercepted and isolated at Ningbo Customs, from Podocarpus macrophyllus imported to China, Oct. 2012, W.J. Duan (HMAS 351576, holotype designated here, dried culture on SNA with carnation leaves, culture ex-type CGMCC 3.20823 = LC13610 = F015).

Colonies on PDA grown in the dark reaching 3.7–4.2 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin erose, surface white; reverse pale yellow in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.9– 6.1 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface and reverse white. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, surface and reverse white. Pigment and odour absent. Sporodochia golden yellow (5B7), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, consisting of a smooth- and thin-walled stipe, 14–17 × 5–6 μm, bearing apical pairs or whorls of 3 monophialides; sporodochial phialides subulate to subcylindrical, 15–21 × 3–5 μm, smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, slender, slightly curved with almost parallel sides tapering slightly towards both ends, with a papillate to hooked apical cell and a barely notched to distinctly notched basal cell, 3–5-septate, hyaline, smooth- and thin-walled; 3-septate conidia: (39.4–) 41.2–47(–49.3) × 3.4–4.5 μm (av. ± sd. 44.6 ± 2.4 × 3.9 ± 0.6 μm); 4-septate conidia: (42.3–)44–49.6(–51.7) × 3.6–4.5 μm (av. ± sd. 47 ± 1.7 × 4.1 ± 0.4 μm); 5-septate conidia: (50.9–) 51.3–53.2(–53.5) × 3.7–4.5 μm (av. ± sd. 52.2 ± 0.8 × 4.2 ± 0.3 μm). Conidiophores borne on aerial mycelia 30–50 μm tall, unbranched, polyphialides or monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 30–40 × 3–5 μm; aerial microconidia forming small false heads on tips of mono- and polyphialides, hyaline, oval or obovoid with a truncate base, smooth- and thin-walled, aseptate, (6–)6.5–11(–12) × 2.6–3.5 μm (av. ± sd. 7.9 ± 1.4 × 3.1 ± 0.4 μm). Chlamydospores intercalary, almost globose, slight rough, thick-walled, hyaline, aseptate, 4.3–5.1 μm diam (av. ± sd. 4.7 ± 0.3).

Additional material examined. Japan, intercepted and isolated at Ningbo Customs, from Camellia sasanqua imported to China, Mar. 2014, W.J. Duan, LC13611 (= F058).

Notes Several strains isolated from soil in China (NRRL 25539, NRRL 53467, and NRRL 53470), and Camellia sasanqua and Podocarpus macrophyllus from Japan (LC13610 and LC13611), clustered as a distinct clade near the F. concolor complex (Fig. 2). This clade was recognised as F. babinda by Jacobs-Venter et al. (2018) and Sandoval-Denis et al. (2018a), with NRRL 25539 (= CBS 396.96) as the representative isolate. However, based on the ex-type isolate of F. babinda (BBA 69872 = F11217 = NRRL 25807) designated in Summerell et al. (1995), Crous et al. (2021) confirmed that F. babinda clustered in the F. fujikuroi complex, distant from the clade encompassing NRRL 25539. In this paper, we introduce a new species, F. falsibabinda, to represent this previously incorrectly named clade (Fig. 2). Based on morphology, F. falsibabinda is distinct from F. babinda in the sporodochia colour (golden yellow in F. falsibabinda vs pale orange in F. babinda), macroconidial size (39.4–53.5 × 3.4–4.5 μm in F. falsibabinda vs 32–72 × 4–6 μm in F. babinda), type of conidiophores (polyphialides or monophialides in F. falsibabinda vs monophialides in F. babinda), and shape and septation of microconidia (oval or obovoid with a truncate base, aseptate in F. falsibabinda vs fusiform, 0–1-septate in F. babinda) (Summerell et al. 1995, Leslie & Summerell 2006). Phylogenetically, F. falsibabinda is closest to an undescribed Fusarium species (represented by NRRL 25533), with both taxa residing in the F. falsibabinda species complex (Fig. 2).

Fusarium fujikuroi species complex

Fusarium aquaticum M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842154; Fig. 13

Fig. 13.

Fig. 13

Fusarium aquaticum (ex-type culture LC7502). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g–j. conidiophores and phialides on aerial mycelium; k. aerial conidia. — Scale bars: g–k = 10 μm.

Etymology. Refers to its habitat, water, from which the holotype was isolated.

Typus. China, Guizhou Province, Zunyi city, from water, May 2015, L. Cai, Z.F. Zhang, X. Zhou & J.R. Jiang (HMAS 351577, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20819 = LC7502). Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin filamentous to erose, filiform, surface pastel yellow (2A4) in the centre, white at the margin; reverse pastel yellow (2A4). Colonies on OA grown in the dark reaching 5.8–6.2 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin entire, surface and reverse pastel yellow (3A4). Colonies on SNA grown in the dark reaching 5.4–5.7 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia not observed. Conidiophores borne on aerial mycelia 30–50 μm tall, unbranched or rarely branched, bearing terminal or intercalary mono- or polyphialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 2–23 × 2.5–3 μm, periclinal thickening inconspicuous or absent; aerial microconidia single, forming short chains or small false heads on tips of mono- and polyphialides, hyaline, ovoid, ellipsoid to reniform, smooth- and thin-walled, aseptate, (4–)4.1–11.9(–12.7) × 1.6–3.7 μm (av. ± sd. 6.9 ± 2 × 2.6 ± 0.5 μm). Chlamydospores not observed.

Additional material examined. China, Guizhou Province, Zunyi city, from water, May 2015, L. Cai, Z.F. Zhang, X. Zhou & J.R. Jiang, LC13615; ibid., LC13616.

Notes — Fusarium aquaticum is phylogenetically closely related to F. udum (Fig. 3), but differs by 68 bp in the five loci dataset. Morphologically, F. aquaticum is distinct from F. udum in the type of aerial phialides (polyphialides or monophialides in F. aquaticum vs monophialides in F. udum), shape and septation of aerial microconidia (ovoid, ellipsoid to reniform, aseptate in F. aquaticum vs fusoid to reniform or ovoid 0–1-septate in F. udum) (Leslie & Summerell 2006).

Fusarium elaeagni M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842155; Fig. 14

Fig. 14.

Fig. 14

Fusarium elaeagni (ex-type culture LC13627). a–b. Colony on PDA; a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochium on carnation leaves; h–i. conidiophores and phialides on sporodochia; j–n. sporodochial conidia (macroconidia); o. conidiophores and phialides on aerial mycelium; p. aerial conidia. — Scale bars: g = 50 μm; h = 20 μm; i–q = 10 μm.

Etymology. Named after the host genus of the type specimen, Elaeagnus.

Typus. China, Jiangsu Province, Suzhou city, from Elaeagnus pungens, Nov. 2017, Q. Chen (HMAS 351578, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20822 = LC13627 = CQ1053).

Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin erose, surface and reverse white. Colonies on OA grown in the dark, reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface and reverse white. Colonies on SNA grown in the dark reaching 5.5–5.8 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, surface and reverse white. Pigment and odour absent. Sporodochia greyish orange (2C3), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed; sporodochial phialides subulate to subcylindrical, 13–17 × 3–4 μm, smooth- and thin-walled. Sporodochial macroconidia slender, falcate, slightly curved with almost parallel sides tapering slightly towards both ends, with a papillate to hooked, curved apical cell and a blunt to foot-like basal cell, 3–4-septate, hyaline, smooth- and thin-walled, (21–)23.5–35.8(–37) × 2.5–3.7 μm (av. ± sd. 30.7 ± 4.1 × 3.1 ± 0.9 μm). Conidiophores borne on aerial mycelia 20–40 μm tall, often reduced to single mono- or polyphialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 20–29 × 2–3 μm; aerial microconidia forming small false heads on tips of mono- and polyphialides, hyaline, ellipsoid to falcate, rarely club-shaped, smooth- and thin-walled, 0–1-septate; aseptate conidia: (5–)6–9(–11) × 1.7–4.2 μm (av. ± sd. 6.9 ± 1.1 × 2.4 ± 0.5 μm); 1-septate conidia: (8–)9–17.5(–20) × 2.1–4.2 μm (av. ± sd. 13.5 ± 2.8 × 2.8 ± 0.5 μm). Chlamydospores not observed.

Additional material examined. China, Jiangsu Province, Suzhou city, from Elaeagnus pungens, Nov. 2017, Q. Chen, LC13628 (= CQ1053.2); ibid., LC13629 (= CQ1053.3).

Notes This species is phylogenetically closely related to F. fujikuroi, but differs by 112 bp in the five loci dataset (Fig. 3). Morphologically, F. elaeagni is distinguished in sporodochial colour (greyish orange in F. elaeagni vs orange in F. fujikuroi), macroconidial septa (3–4-septate in F. elaeagni vs 3–5-septate in F. fujikuroi), microconidial shape (ellipsoidal to falcate, rarely club-shaped in F. elaeagni vs ovoid or club-shaped in F. fujikuroi ), and the type of aerial phialides (mono- or polyphialides in F. elaeagni vs polyphialides commonly in F. fujikuroi) (Nirenberg 1976, Leslie & Summerell 2006).

>Fusarium hechiense M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842156; Fig. 15

Fig. 15.

Fig. 15

Fusarium hechiense (ex-type culture LC13644). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g–j. conidiophores and phialides on aerial mycelium; k. aerial conidia. — Scale bars: g–k = 10 μm.

Etymology. Named after the location of the type specimen, Hechi city.

Typus. China, Guangxi ZhuangAutonomous Region, Hechi city, Sanwang country, from Musa nana, June 2017, M.M. Wang (HMAS 351579, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20824 = LC13644 = GXHCSWL14-E1).

Colonies on PDA grown in the dark reaching 5.3–5.6 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin erose, surface white; reverse yellowish white (4A2) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface and reverse white. Colonies on SNA grown in the dark reaching 5.5–5.8 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia not observed. Conidiophores borne on aerial mycelia 15–90 μm tall, unbranched or sparingly branched, bearing terminal or intercalary monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 15–21 × 2–4 μm, periclinal thickening inconspicuous or absent; aerial microconidia forming small false heads or chains on tips of monophialides, hyaline, subglobose, oval, reniform or obovoid with a truncate base, ellipsoidal, smooth- and thin-walled, 0–1-septate, (5–)5.2–10 × 1.8–3.5 μm (av. ± sd. 6.9 ± 1.2 × 2.6 ± 0.4 μm). Chlamydospores not observed.

Additional material examined. China, Guangxi Zhuang Autonomous Region, Hechi city, Sanwang country, from Musa nana, June 2017, M.M. Wang, LC13645 (= GXHCSWL14-E12; ibid., LC13646 (= GXHCSWL14-E13).

Notes — Fusarium hechiense is phylogenetically closely related to F. annulatum (Fig. 3), but differs by 143 bp in the five loci dataset. Morphologically, the two species are distinguished in the number of microconidial septa (0–1-septate in F. hechiense vs aseptate in F. annulatum) (Leslie & Summerell 2006).

Fusarium panlongense M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842157; Fig. 16

Fig. 16.

Fig. 16

Fusarium panlongense (ex-type culture LC13656). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at

Etymology. Name refers to the location of the type specimen, Panlong country.

Typus. China, Guangxi Zhuang Autonomous Region, Guilin city, Panlong country, from Musa nana, June 2017, M.M. Wang (HMAS 351580, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20825 = LC13656 = GXGLPLL15E2).

Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin filamentous, erose to filiform, surface white; reverse grey (3B1) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.0–5.5 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface white; reverse orange grey (6B2) to brownish grey (6C2) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia brownish orange (5C4), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed; sporodochial phialides subulate to subcylindrical, 9–17 × 3–4 μm, smooth- and thin-walled. Sporodochial macroconidia slender, falcate, slightly curved with almost parallel sides tapering slightly towards both ends, with a papillate to hooked, curved apical cell and a blunt to foot-like basal cell, (3–)4–5-septate, hyaline, smooth- and thin-walled; 3-septate conidia: (35–)37.4–49.7(–50.1) × 2.7–4.4 μm (av. ± sd. 41.7 ± 3.7 × 3.6 ± 0.5 μm); 4-septate conidia: (39.3–)40.3–53(–53.9) × 2.5–5.9 μm (av. ± sd. 48.4 ± 3.7 × 4 ± 0.6 μm); 5-septate conidia: (42.9–)46.1–57.5(–59.4) × 2.6–5.1 μm (av. ± sd. 51.4 ± 3.9 × 4 ± 0.6 μm). Conidiophores borne on aerial mycelia often reduced to single monophialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 10–50 × 2–4 μm, periclinal thickening inconspicuous or absent; aerial microconidia forming small false heads on tips of monophialides, hyaline, ovoid, reniform, ellipsoid, smooth- and thin-walled, 0–1-septate; aseptate conidia: (4.3–)4.8–7.6(–8) × 25 °C; f. reverse of colony on SNA; g. sporodochia on carnation leaves; h–i. conidiophores and phialides on sporodochia; j–k. sporodochial conidia (macroconidia); l–m. phialides on aerial mycelium; n. aerial conidia (microconidia). — Scale bars: g = 50 μm; h–i = 20 μm; j–n = 10 μm. 1.5–2.7 μm (av. ± sd. 6 ± 0.7 × 2.1 ± 0.3 μm); 1-septate conidia: (7.3–)8.2–14(–16.5) × 2–3.4 μm (av. ± sd. 10.7 ± 2 × 2.7 ± 0.3 μm). Chlamydospores not observed.

Notes Phylogenetically, F. panlongense is well separated from known species in the FFSC, and clustered basally to several species in the Asian clade of the FFSC (Fig. 3). To date all known isolates of this species were isolated from Musa spp. in China (isolates MUCL 55954, MUCL 55958, and MUCL 55950 from Hainan Province), suggesting a possible preference in host and geography. Species in the FFSC are common in Musa spp. hosts, e.g., F. concentricum, F. lumajangense, F. musae, F. sacchari, and F. verticillioides were recovered from Musa spp. from Costa Rica, Guatemala, Honduras, Indonesia, Mexico (Yilmaz et al. 2021). Fusarium panlongense was distinguished from F. concentricum in the width of macroconidia, type of aerial phialides and shape of aerial microconidia (macroconidia width 2.7–5.9 μm, monophialides, microconidia oval, reniform, ellipsoidal in F. panlongense vs macroconidia width 3.5–4 μm mono- and polyphialides, microconidia obovoid or ovoid to allantoid in F. concentricum) (Nirenberg & O’Donnell 1998), from F. lumajangense in the size of microconidia (4.3–14 × 1.5–3.4 μm in F. panlongense vs 6–23 × 2–5 μm in F. lumajangense) (Maryani et al. 2019b), from F. musae in the presence of sporodochia and macroconidia (absent in F. musae) and shape and size of aerial microconidia (ovoid, reniform, ellipsoid, 4.3–14 × 1.5–3.4 μm in F. panlongense vs claviform or ellipsoid, often truncated, 5–17 × 1.5–4 μm in F. musae) (Van Hove et al. 2011), from F. sacchari in the septation of conidia (macroconidia 3–5-septate, microconidia 0–1-septate in F. panlongense vs macroconidia usually 3-septate, microconidia 0–2-septate in F. sacchari) (Leslie & Summerell 2006), and from F. verticillioides in the shape and septation of microconidia (oval, reniform, ellipsoidal, 0–1-septate in F. panlongense vs ovoid to club-shaped with a flattened base, usually aseptate in F. sacchari) (Leslie & Summerell 2006).

Fusarium nisikadoi species complex

Fusarium paranisikadoi M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842158; Fig. 17

Fig. 17.

Fig. 17

Fusarium paranisikadoi (ex-type culture LC2800). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g–h. sporodochia on carnation leaves; i. conidiophores and phialides on sporodochia; j. aerial conidia (macroconidia); k–m. phialides on aerial mycelium (microconidia); n. aerial conidia (napiform microconidia); o. aerial conidia (ovoid microconidia). — Scale bars: g–h = 50 μm; i = 20 μm; j–o = 10 μm.

Etymology. Named after its morphological similarity to Fusarium nisikadoi.

Typus. China, Beijing, Beijing Botanical Garden, from unidentified grass, July 2010, W. Sun (HMAS 351581, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20826 = LC2800).

Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin erose, surface greyish orange (5B3) in the centre, white at the margin; reverse greyish orange (5B4) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.9–6.2 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin entire, surface orange grey (5B2) in the centre, white at the margin; reverse greyish orange (5B4) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia greyish orange (5B3), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, consisting of a short, smooth- and thin-walled stipe, 11–17 × 2–5 μm, bearing an apical pair or whorls of three monophialides; sporodochial phialides subulate to subcylindrical, 9.2–14.6 × 2.4–3.8 μm, smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, slightly curved with almost parallel sides tapering slightly towards both ends, with a blunt to papillate, slightly curved apical cell and a blunt to distinctly notched basal cell, 3–4-septate, hyaline, smooth- and thin-walled; 3-septate conidia: (36.7–)39.4–50.3(–51.6) × 2.3–4.1 μm (av. ± sd. 45.7 ± 3.5 × 3.1 ± 0.4 μm); 4-septate conidia: (42.8–)43.1–56.3(–57.6) × 2.5–5.2 μm (av. ± sd. 50.2 ± 3.5 × 3.8 ± 0.6 μm). Conidiophores borne on aerial mycelia, 15–80 μm tall, unbranched or sparingly branched, bearing terminal or intercalary monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 15–25 × 2–4 μm, periclinal thickening inconspicuous or absent; aerial microconidia forming chains on the tips of the monophialides, hyaline, oval, pyriform to napiform, smooth- and thin-walled, aseptate; ovoid conidia: (3.5–)4.5–7.2(–7.7) × 1.5–3.2 μm (av. ± sd. 5.8 ± 0.9 × 2.2 ± 0.4 μm); pyriform to napiform conidia: (4.7–)5.2–8(–8.1) × 3.4–6.3 μm (av. ± sd. 6.4 ± 0.8 × 4.5 ± 0.6 μm). Chlamydospores not observed.

Additional material examined. China, Beijing, Beijing Botanical Garden, from unidentified grass, July 2010, Dimuthu, LC2819; ibid., LC2824; Beijing, Beijing Botanical Garden, from Pennisetum alopecuroides, July 2010, W. Sun, LC2823.

Notes — Fusarium paranisikadoi is phylogenetically closest to F. miscanthi and F. nisikadoi (Fig. 2), but differs from the latter by 45 bp and 71 bp in the combined tef1, rpb1, and rpb2 data-set, respectively. Morphologically, F. paranisikadoi differs from F. miscanthi in shape, septation, and size of their sporodochial macroconidia (slender, with a slightly foot-shaped basal cell and a curved and gradually tapering apical cell, 3–5-septate, 40–65(–75) × 2.5–4.5 μm in F. miscanthi vs falcate, slightly curved with almost parallel sides tapering slightly towards both ends, with a blunt to papillate, slightly curved apical cell and a blunt to distinctly notched basal cell, 3–4-septate, 36.7–57.6 × 2.3–5.2 μm in F. paranisikadoi) (Gams et al. 1999), and from F. nisikadoi in the size of their sporodochial macroconidia (56–92 × 3.5–4 μm in F. nisikadoi vs 36.7–57.6 × 2.3–5.2 μm in F. paranisikadoi) (Nirenberg & Aoki 1997).

Fusarium tricinctum species complex

Fusarium alpinum M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842159; Fig. 18

Fig. 18.

Fig. 18

Fusarium alpinum (ex-type culture LC6045). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochia on carnation leaves; h–i. conidiophores and phialides on sporodochia; j. sporodochial conidia (macroconidia); k. phialides on aerial mycelium; l. aerial conidia (microconidia). — Scale bars: g = 50 μm; h = 20 μm; i–l = 10 μm.

Etymology. Named after the special geographical reference of this species, ‘alp’.

Typus. China, TibetAutonomous Region, from species of Fabaceae, June 2015, L. Cai (HMAS 351582, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20818 = LC6045).

Colonies on PDA grown in the dark reaching 5.9–6.2 cm diam after 7 d at 25 °C, raised, punctiform, aerial mycelia dense, colony margin undulate, surface purplish grey (14C2) in the centre, white at the margin; reverse reddish lilac (14C5) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface white; reverse dull red (9B3) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia greyish yellow (4B4), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, consisting of a short, smooth- and thin-walled stipe, 9–11 × 3–4 μm, bearing apical whorls of 3 or more monophialides or rarely as single lateral monophialides; sporodochial phialides subulate to subcylindrical, 9.3–19.7 × 2–4 μm (av. ± sd. 13.9 ± 2.2 × 3.3 ± 0.4 μm), smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, curved slightly to dorsiventrally with almost parallel sides tapering slightly towards both ends, with a blunt to hooked, curved apical cell and a blunt to distinctly notched basal cell, 1- or 3-septate, hyaline, smooth- and thin-walled; 1-septate conidia: (15.6–)15.7–34.9(–35) × 2.4–4.6 μm (av. ± sd. 26.1 ± 6.3 × 3.3 ± 0.5 μm); 3-septate conidia: (29.2–) 30.5–46.3(–48.2) × 2.7–5.1 μm (av. ± sd. 37.8 ± 4.8 × 3.7 ± 0.6 μm). Conidiophores borne on aerial mycelia 20–70 μm tall, unbranched or sparingly branched, bearing terminal or intercalary monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 16–23 × 2–3 μm, periclinal thickening inconspicuous or absent; aerial microconidia forming single on the tips of the monophialides, hyaline, ellipsoidal to falcate, smooth- and thin-walled, 0–1-septate; aseptate conidia: (6.8–)7.8–12.6(–12.8) × 2.2–4.7 μm (av. ± sd. 10.3 ± 1.2 × 3.9 ± 0.4 μm); 1-septate conidia: (12.7–)13.3–19.1(–20.8) × 3.1–5.5 μm (av. ± sd. 16.6 ± 1.8 × 4.4 ± 0.5 μm). Chlamydospores not observed.

Additional material examined. China, Yunnan Province, from unidentified plant, Sept. 2011, F. Liu, LC2853; ibid., LC2854; Tibet Autonomous Region, from species of Fabaceae, June 2015, L. Cai, LC6034; ibid., LC6037; ibid., LC6043.

Notes — Fusarium alpinum was collected from high altitude areas of Yunnan province and the Tibet Autonomous Region in this study. Phylogenetically, F. alpinum is closely related to F. paeoniae (Fig. 8), but differs by 44 bp in the three loci dataset. Morphologically, the two species are distinguished in the number of conidial septa (0–1(–3)-septate microconidia, 3–5-septate macroconidia in F. paeoniae vs 0–1-septate microconidia, 1- or 3-septate macroconidia in F. alpinum).

Fusarium chongqingense M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842160; Fig. 19

Fig. 19.

Fig. 19

Fusarium chongqingense (ex-type culture LC4957). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochium on carnation leaves; h–i. conidiophores and phialides on sporodochia; j. sporodochial conidia (macroconidia). — Scale bars: g = 50 μm; h–i = 20 μm; j = 10 μm.

Etymology. Named after the location of the type specimen, Chongqing.

Typus. China, Chongqing, Jinfo Mountain, from Bothrocaryum controversum, Oct. 2012, L. Cai (HMAS 351583, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20821 = LC4957).

Colonies on PDA grown in the dark reaching 4.6–5.1 cm diam after 7 d at 25 °C, umbonate, aerial mycelia dense, colony margin erose, surface pale yellow (4A3) to dull red (8B3) in the centre, white at the margin; reverse brownish red (10C6) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin entire, surface white to greyish yellow (4C3) in the centre, white at the margin; reverse brownish orange (5C4) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia greyish orange (5B3), formed on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, bearing apical pairs or whorls of three monophialides or single terminal monophialides; sporodochial phialides subulate to subcylindrical, 8–11 × 2–4 μm, smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, curved slightly with almost parallel sides tapering slightly towards both ends, with a blunt apical cell and a blunt basal cell, 1- or 3-septate, hyaline, smooth- and thin-walled; 1-septate conidia: (5.8–)8.7–18.8(–19) × 1.5–4.4 μm (av. ± sd. 13.9 ± 3 × 3.1 ± 0.4 μm); 3-septate conidia: (21–) 21.8–31.6(–31.8) × 2.6–5 μm (av. ± sd. 25.7 ± 2.5 × 4 ± 0.4 μm). Conidiophores borne on aerial mycelia not observed. Chlamydospores not observed.

Additional material examined. China, Chongqing, Jinfo Mountain, from Bothrocaryum controversum, Oct. 2012, L. Cai, LC13813; ibid., LC13814.

Notes — Fusarium chongqingense is phylogenetically closely related to F. avenaceum, F. paeoniae, and F. alpinum (Fig. 8). However, F. chongqingense differs by 67 bp from F. paeoniae, and 59 bp from F. alpinum in the three loci dataset, respectively. Morphologically, F. chongqingense is distinct based on the type of apical and basal cells of its macroconidia (blunt apical and basal cell in F. chongqingense vs long and tapering to a point to somewhat bent apical cell, and poorly to well-developed foot-shaped basal cell in F. avenaceum, blunt to papillate, curved apical cell and a blunt to foot-like basal cell in F. paeoniae; and blunt to hooked, curved apical cell and a blunt to distinctly notched basal cell in F. alpinum) (Wollenweber & Reinking 1935, Leslie & Summerell 2006).

Fusarium paeoniae M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842161; Fig. 20

Fig. 20.

Fig. 20

Fusarium paeoniae (ex-type culture LC13817). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g–h. sporodochia on carnation leaves; i–j. conidiophores and phialides on sporodochia; k–o. sporodochial conidia (macroconidia); p. phialides on aerial mycelium; q. aerial conidia (microconidia). — Scale bars: g–h = 50 μm; i–j = 20 μm; k–q = 10 μm.

Etymology. Named after the host genus of the type specimen, Paeonia.

Typus. China, Qinghai Province, from Paeonia lactiflora, Aug. 2019, M.M. Wang (HMAS 351584, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20817 = LC13817 = YZG12-2).

Colonies on PDA grown in the dark reaching 5.3–5.5 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface greyish yellow (3B4) to bluish red (12A3) in the centre, white at the margin; reverse greyish ruby (12E4) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5–5.3 cm diam after 7 d at 25 °C, raised, aerial mycelia dense, colony margin entire, surface greyish yellow (3B4) in the centre, white at the margin; reverse golden brown (5D7) to greyish yellow (3B4) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 4.8–5.3 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia pale orange (5A3) to brownish orange (5C4), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed, consisting of a short, smooth- and thin-walled stipe, 8–10 × 6–8 μm, bearing apical pairs or whorls of three monophialides, or as single lateral monophialides; sporodochial phialides subulate to subcylindrical, 6.9–13.3 × 2.2–4.5 μm (av. ± sd. 9.6 ± 1.7 × 3.6 ± 0.5 μm), smooth- and thin-walled, sometimes showing a reduced and flared collarette. Sporodochial macroconidia falcate, slightly curved, with a blunt to papillate, curved apical cell and a blunt to foot-like basal cell, 3–5-septate, hyaline, smooth- and thin- walled; 3-septate conidia: (27.6–)28.4–39(–39.4) × 3.8–5.8 μm (av. ± sd. 32.1 ± 3.3 × 4.5 ± 0.5 μm); 4-septate conidia: (30.3–) 32.1–41.7(–43) × 3.6–7.1 μm (av. ± sd. 37.9 ± 2.7 × 5 ± 0.8 μm); 5-septate conidia: (39.5–)39.8–50.2(–52.2) × 3.2–5.8 μm (av. ± sd. 45.2 ± 2.8 × 4.7 ± 0.7 μm). Conidiophores borne on aerial mycelia often reduced to single phialides, mono- or polyphialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 5–20 × 3–5 μm, periclinal thickening inconspicuous or absent; aerial microconidia forming small false heads on the tips of the mono- and polyphialides, hyaline, ellipsoid to falcate, smooth- and thin-walled, 0–1(–3)-septate; aseptate conidia: (6–)7–10(–11) × 2.2–3.6 μm (av. ± sd. 8.6 ± 0.9 × 2.9 ± 0.4 μm); 1-septate conidia: (12.7–)13–15.8(–16.2) × 3.5–4.7 μm (av. ± sd. 14.2 ± 0.8 × 4.1 ± 0.3 μm); 3-septate conidia: (20.2–)21.3–25.2(–25.4) × 3.6–5.7 μm (av. ± sd. 23.4 ± 1.5 × 4.8 ± 0.6 μm). Chlamydospores not observed.

Additional material examined. China, Qinghai Province, from Crataegus monogyna, Sept. 2013, Q. Chen, LC5166; Qinghai Province, from Elymus dahuricus, Aug. 2019, M. Gao, LC13815 (= GM56); ibid., from Plantago sp., LC13807 (= GM123); ibid., from Gentiana scabra, LC13810 (= GM65); ibid., LC13812 (= GM85); Qinghai Province, from Populus sp., Aug. 2019. M.M. Wang, LC13816 (= YZG10-2); Tibet Autonomous Region, from species of Poaceae, June 2015, F. Liu, LC7358.

Notes Phylogenetically F. paeoniae is closely related to F. alpinum (Fig. 8), but differs by 44 bp in the three loci dataset. Morphologically, the two species differ in the number of conidial septa (0–1(–3)-septate microconidia, 3–5-septate macroconidia in F. paeoniae vs 0–1-septate microconidia, 1- or 3-septate macroconidia in F. alpinum).

Bisifusarium L. Lombard et al., Stud. Mycol. 80: 223. 2015

Bisifusarium aseptatum M.M. Wang & L. Cai, sp. nov. — Myco-Bank MB 842162; Fig. 21

Fig. 21.

Fig. 21

Bisifusarium aseptatum (ex-type culture LC1075). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g–h. sporodochia on carnation leaves; i. conidiophores and phialides on sporodochia; j. sporodochial conidia (macroconidia); k–l. phialides on aerial mycelium; m. aerial conidia (microconidia). — Scale bars: g–h = 50 μm; i–j, m = 10 μm; k–l = 20 μm.

Etymology. Refers to the aseptate sporodochial conidia.

Typus. China, Guangdong Province, Guangzhou city, from species of Orchidaceae, Mar. 2011, Y.Y. Su (HMAS 351585, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20816 = LC1075).

Colonies on PDA grown in the dark reaching 1.7–2.1 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin erose, surface and reverse white. Colonies on OA grown in the dark reaching 0.9–1.1 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin entire, surface and reverse white. Colonies on SNA grown in the dark reaching 1.2–1.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin filamentous, white; reverse white. Pigment and odour absent. Sporodochia white to yellowish white (4A3), formed on carnation leaves. Conidiophores in sporodochia forming a smooth- and thin-walled stipe, bearing apical whorls of mostly 3 monophialides; sporodochial phialides subulate to subcylindrical, 8–10 × 3–4 μm, smooth- and thin-walled. Sporodochial macroconidia oval, reniform, aseptate, hyaline, smooth- and thin-walled; (4.4–) 4.5–7(–7.1) × 2.6–4.1 μm (av. ± sd. 5.7 ± 0.7 × 3.3 ± 0.3 μm). Conidiophores borne on aerial mycelia, 50–80 μm tall, unbranched, bearing terminal monophialides, sometimes reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 30–35 × 3–5 μm, periclinal thickening inconspicuous or absent; aerial microconidia single or forming small false heads on the tips of the monophialides, hyaline, ovoid, reniform, or obovoid with a truncate base, smooth- and thin-walled, aseptate, (5.2–)5.7–8.8(–9.7) × 2.1–3.8 μm (av. ± sd. 7 ± 0.9 × 2.7 ± 0.3 μm). Chlamydospores not observed.

Additional material examined. China, Guangdong Province, Guangzhou city, from species of Orchidaceae, Mar. 2011, Y.Y. Su, LC13607; ibid., LC13608.

Notes The genus Bisifusarium was established to accommodate several fusarioid species previously included in the F. dimerum species complex, with B. dimerum as type species (Lombard et al. 2015). Prior to this study eight species were known from the genus (Lombard et al. 2015, Sun et al. 2017). Bisifusarium aseptatum is distinct from other Bisifusarium species in producing unicellular sporodochial conidia (Lombard et al. 2015).

Neocosmospora E.F. Sm., U.S.D.A. Div. Veg. Pathol. Bull. 17: 45. 1899

Neocosmospora lithocarpi M.M. Wang & L. Cai, sp. nov. — MycoBank MB 842163; Fig. 22

Fig. 22.

Fig. 22

Neocosmospora lithocarpi (ex-type culture LC1113). a–b. Colony on PDA: a. surface of colony on PDA after 7 d at 25 °C; b. reverse of colony on PDA; c–d. colony on OA: c. surface of colony on OA after 7 d at 25 °C; d. reverse of colony on OA; e–f. colony on SNA: e. surface of colony on SNA after 7 d at 25 °C; f. reverse of colony on SNA; g. sporodochium on carnation leaves; h–i. conidiophores and phialides on sporodochia; j. phialide on sporodochia; k. sporodochial conidia (macroconidia); l. phialides on aerial mycelium; m. aerial conidia (microconidia); n. chlamydospores. — Scale bars: g = 50 μm; h = 20 μm; i–n = 10 μm.

Etymology. Named after the host genus Lithocarpus, from which the holotype was isolated.

Typus. China, from Lithocarpus glabra, May 2011, W. Sun (HMAS 351586, holotype designated here, dried culture on SNA with carnation leaves; culture ex-type CGMCC 3.20827 = LC1113).

Colonies on PDA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin filamentous to erose, filiform, surface white to greyish yellow (4B3) in the centre, white at the margin; reverse greyish orange (5B3) in the centre, white at the margin. Colonies on OA grown in the dark reaching 5.7–5.9 cm diam after 7 d at 25 °C, flat, aerial mycelia dense, colony margin entire, surface white to yellowish grey (4B2) in the centre, white at the margin; reverse yellowish grey (4B2) in the centre, white at the margin. Colonies on SNA grown in the dark reaching 5.2–5.5 cm diam after 7 d at 25 °C, flat, aerial mycelia scant, colony margin erose, white; reverse white. Pigment and odour absent. Sporodochia opaline green (25C6), formed abundantly on carnation leaves. Conidiophores in sporodochia verticillately branched and densely packed; sporodochial phialides subulate to subcylindrical, 9.9–23.3 × 2.8–6.3 μm (av. ± sd. 14.4 ± 2.7 × 4.0 ± 0.8 μm), smooth- and thin-walled, showing a reduced and flared collarette. Sporodochial macroconidia falcate, with a blunt apical and basal cell, 5-septate, hyaline, smooth- and thin-walled, 32.1–57.8 × 3.9–8.1 μm (av. ± sd. 49.6 ± 4.8 × 5.3 ± 0.9 μm). Conidiophores borne on aerial mycelia, 20–60 μm tall, unbranched or sparingly branched, bearing terminal or intercalary monophialides, often reduced to single phialides; aerial phialides subulate to subcylindrical, smooth- and thin-walled, 20–45 × 2–3 μm; aerial microconidia forming small false heads on the tips of the monophialides, hyaline, ellipsoid to falcate, smooth- and thin-walled, 0–1-septate; aseptate conidia: (7–)8.8–11.1(–12) × 3.5–3.9 μm (av. ± sd. 9.9 ± 1 × 3.7 ± 0.2 μm); 1-septate conidia: (12–)12.5–23.8(–24) × 3.6–7 μm (av. ± sd. 16.3 ± 2.8 × 5 ± 0.7 μm). Chlamydospores abundant, terminal, ellipsoid, rough, thick-walled, hyaline, aseptate, 6.1–8.7 × 5.3–7.3 μm (av. ± sd. 6.8 ± 0.9 × 5.8 ± 0.7 μm).

Additional material examined. China, from Lithocarpus glabra, May 2011, W. Sun, LC13831; ibid., LC13832.

Notes — Neocosmospora lithocarpi is phylogenetically closely related to N. ambrosia, N. euwallaceae, N. kuroshio, N. oligoseptata, and N. pseudensiformis (Fig. 10). Morphologically, this species is distinguished in the shape, septum number and length of its sporodochial macroconidia (falcate, 5-septate in N. lithocarpi, vs irregularly clavate and swollen conidia present, 3- or 5-septate in N. ambrosia, N. euwallaceae, N. kuroshio, N. oligoseptata; 5-septate, 32.1–57.8 μm in N. lithocarpi, vs 2–8-septate, 49–63 μm in N. pseudensiformis) (Nalim et al. 2011, Aoki et al. 2018, Na et al. 2018, Sandoval-Denis et al. 2019).

DISCUSSION

In this study, 259 species belonging to four well-supported genera, including 12 new species were analysed using a combined tef1-rpb1-rpb2 multi-locus phylogeny (Fig. 1). Within Fusarium, 196 species are categorised in nine species complexes, one of these complexes here renamed as the F. falsibabinda complex (previously incorrectly recognised as the F. babinda species complex) (Fig. 1, 2). One and four distinct clades in the FLSC (Fig. 5) and FOSC (Fig.6), respectively, were not described, awaiting more data for species delimitation. Seven loci were employed in this study, i.e., ITS, IGS, tef1, cam, rpb1, rpb2 and tub2 (Table 1).Among these seven loci, ITS failed to resolve any species in Fusarium, but recognized B. aseptatum, B. penzigii and B. tonghuanum from other known species in Bisifusarium. The IGS locus was amplified for the FOSC members, but its phylogenetic topology showed significant conflict with other loci. The rpb2 locus appeared to be most effective in species recognition in several Fusarium complexes, e.g., the FFSC (Supplementary Fig. S2d), the FTSC (Supplementary Fig. S3d), and Neocosmospora (Supplementary Fig. S5c), followed by tef1 (effective in the FOSC). The rpb1 locus showed the best species recognition in the FNISSC (Supplementary Fig. S1b).

Employing morphological characters, multi-locus phylogenies and ecological preferences, 356 fusarioid isolates from China were identified to 72 species belonging to three genera (1 species with 3 isolates in Bisifusarium, 60 species with 321 isolates in Fusarium and 11 species with 32 isolates in Neocosmospora). Most of the previous studies on Fusarium in China focused on species associated with agricultural and cash crops, e.g., maize, rice, wheat, pepper, and tobacco (Yu 1955, Tai 1979, Wang et al. 2013a, b, Zhang et al. 2014a, b), and insects (Bai & Chen 1991), with more than 250 species, subspecies, varieties, and formae specialis hitherto reported. Based on the current taxonomy, these records correlate to 87 species, as summarised in Table 4. Our results present a significant step towards understanding the species diversity and distribution of Fusarium in China (Table 1), which increased the number of species to 114 (11 new species and 16 new records from China (23.7 % increase)).

Table 4.

Species of fusarioid genera occurring in China, with information of their habitats, hosts and references.

Current name Name of taxon Host genera/habitats Recorded reference/database
A. rigidiuscula F. decemcellulare, F. rigidiusculum Coccids; Dianthus, Garuga, Idiocerus, Passiflora, Salix, Oxytropis Bai & Chen (1991); https://nmdc.cn/fungarium/fungi/chinadirectories
B. aseptatum B. aseptatum Orchidaceae this study
B. delphinoides F. delphinoides Human https://nmdc.cn/fungarium/fungi/chinadirectories
B. dimerum F. dimerum Soil; Citrus, Musa Yu (1955), Tai (1979); https://nmdc.cn/fungarium/fungi/chinadirectories
C. cavisperma F. cavispermum Pinus Yu (1955)
F. acaciae-mearnsii F. acaciae-mearnsii Paederia this study
F. acuminatum F. acuminatum, F. caudatum, F. scirpi var. acuminatum Soil; Acer, Brassica, Capsicum, Crotalaria, Cucumis, Eleocharis, Feijoa, Fritillaria, Glycine, Gossypium, Hordeum, Hylotelephium, Ipomoea, Prunus, Solanum, Triticum Yu (1955), Tai (1979), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. acutatum F. acutatum Triticum https://nmdc.cn/fungarium/fungi/chinadirectories
F. alpinum F. alpinum Fabaceae this study
F. ananatum F. ananatum Ananas https://nmdc.cn/fungarium/fungi/chinadirectories
F. anguioides F. anguioides Alocasia, Cordyline, Gossypium, Ipomoea, Pisum, Solanum, Vicia Malus, Musa, Olea, Oryza, Sorghum, Vitis, Zea; unidentified mushroom Yu (1955), this study
F. annulatum F. annulatum Submerged wood; human; bamboo, Capsicum, Chamaerops, Glycine, Lithocarpus, https://nmdc.cn/fungarium/fungi/chinadirectories
F. annuum F. annuum Capsicum Yu (1955); https://nmdc.cn/fungarium/fungi/chinadirectories
F. anthophilum F. anthophilum, F. moniliforme var. anthophilum Soil; Gossypium, Oryza, Vicia Tai (1979); https://nmdc.cn/fungarium/fungi/chinadirectories
F. aquatilium F. aquatilium Water this study
F. arcuatisporum F. arcuatisporum Soil; Brassica, Nelumbo, Oryza, Panicum, Paspalum, Poa Wang et al. (2019), this study
F. armeniacum F. armeniacum Unidentified grass this study
F. arthrosporioides F. arthrosporioides Soil; Oryza, Vicia Yu (1955); https://nmdc.cn/fungarium/fungi/chinadirectories
F. asiaticum F. asiaticum Musa, Triticum this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. avenaceum F. avenaceum, F. avenaceum var. fabae, F. avenaceum var. herbarum, F. avenaceum f. fabae, F. avenaceum f. fabalis, F. avenaceum f. fabarum Air, faeces, soil; Allium, Atractylodes, Avena, Bidens, Brassica, Camellia, Chrysanthemum, Cicer, Citrus, Codonopsis, Coix, Cucumis, Cucurbita, Daucus, Dianthus, Dolichus, Equisetum, Fritillaria, Gentiana, Glycine, Gossypium, Halenia, Hordeum, Juglans, Lathyrus, Lycopersicum, Malus, Oryza, Panax, Papaver, Paspalum, Pinus, Pisum, Plantago, Prunus, Rosa, Salvia, Setaria, Solanum, Sorghum, Trifolium, Triticum, Vicia, Vitis, Zea Yu (1955), Tai (1979), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. bactridioides F. bactridioides Cucumis, Narcissus, Pinus Yu (1955)
F. bambusacearum F. bambusacearum Bamboo this study
F. bambusicola F. bambusicola Sinocalamus Tai (1979)
F. brachygibbosum F. brachygibbosum Zea https://nmdc.cn/fungarium/fungi/chinadirectories
F. caeruleum F. coeruleum, F. solani var. caeruleum, F. solani var. coeruleum Soil; Abies, Aconitum, Actinidia, Aloe, Amorphopha, Arachis, Artocarpus, Astragalus, Atrachylis, Atractylodes, Brassica, Camellia, Canna, Capsicum, Castanea, Chrysomphalus, Citrus, Cucumis, Cuminum, Cyamopsis, Cymbidium, Dendrobium, Dianthus, Dioscorea, Ditylenchus, Eleocharis, Ephedra, Epiphyllum, Eria, Fragaria, Fritillaria, Glycine, Gossypium, Haloxylon, Hcarites, Heleocharis, Helianthus, Heliothis,Helwingia, Heterodera, Hevea, Ipomoea, Jatropha, Juglans, Lablab, Lentinus, Ligusticum, Lilium, Lotus, Luffa, Lycium, Malus, Mangifera, Medicago, Momordica, Morus, Musa, Nicotiana, Nopalxochia, Onobrychis, Oryza, Paeonia, Panax, Paphiopedilum, Passiflora, Persica, Phaius, Phalaenopsis, Phaseolus, Phyllostachys, Pinus, Pisum, Pittosporum, Punica, Rabdosia, Ricinus, Robinia, Salvia, Schisandra, Simmondsia, Solanum, Triticum, Vicia, Vigna, Zanthoxylum, Zea; coccids, human Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. camptoceras F. camptoceras Soil; Cinnamomum, Clerodentron, Hordeum, Malus, Momordica, Musa, Phaseolus, Triticum, Vigna, Zea this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. cassiae F. cassiae Coffea this study
F. chlamydosporum F. chlamydosporum, F. fusarioides Aspidiotus, Auricularia, Glycine, Hordeum, Jacaranda, Juglans, Musa, Parlatoria, Triticum, Zea https://nmdc.cn/fungarium/fungi/chinadirectories
F. chongqingense F. chongqingense Bothrocaryum this study
F. citri F. citri Amygdalus, Capsicum, Castanopsis, Citrus, Musa, Smilax Wang et al. (2019), this study
F. commune F. commune Eleocharis, Musa, Oryza, Vigna this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. compactum F. compactum, F. scirpi var. compactum Soil; Poa, Setaria this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. concentricum F. concentricum Aglaonema, Hedera, Lablab, Maianthemum, Musa, Reineckia, Vitis this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. concolor F. concolor, F. polyphialidicum Soil; Anacardium, Carica, Citrus, Ehretia, Gossypium, Hemerocallis, Hordeum, Lycium, Lygodium, Malva, Rhynchites, Setaria, Triticum, Vicia, Zea Yu (1955), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. cugenangense F. cugenangense Poa, Smilax, Solanum, Zingiber this study
F. culmorum F. culmorum Asparagus, Avena, Beta, Camellia, Cucumis, Cucurbita, Daucus, Dianthu, Diaphorina, Glycine, Helianthus, Hordeum, Ipomoea, Linum, Lycopersicum, Oryza, Pinus, Secale, Setaria, Solanum, Sorghum, Triticum, Vicia, Zea Yu (1955), Tai (1979); https://nmdc.cn/fungarium/fungi/chinadirectories
F. diversisporum F. diversisporum Setaria, Zea Yu (1955)
F. duoseptatum F. duoseptatum Musa this study
F. elaeagni F. elaeagni Elaeagnus this study
F. elaeidis F. elaeidis Caryota this study
F. equiseti F. equiseti Faeces, soil; aphids, cicadas, coccids; Aphis, Atractylodes, Beta, Calotropis, Capsicum, Castanea, Citrus, Coix, Cucumis, Cucurbita, Cyamopsis, Cymbidium, Dendrobium, Dendrolimus, Eleocharis, Glycine, Gossypium, Helianthus, Henosepilachua, Hordeum, Icerya, Laccifer, Medicago, Momordica, Nicotiana, Oryza, Phaseolus, Pieris, Populus, Prunus, Pseudostellaria, Raphanus, Rhynchites, Rosa, Schisandra, Setaria, Simmondsia, Solanum, Spinacia, Triticum, Vicia, Vigna, Zea Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. flocciferum F. flocciferum Soil https://nmdc.cn/fungarium/fungi/chinadirectories
F. fujikuroi F. fujikuroi, F. fujikuroi var. subglutinans, F. moniliforme, F. moniliforme f. subglutinans, F. moniliforme var. hangzhouense, F. moniliforme var. intermedium, F. moniliforme var. minus, F. moniliforme var. minus, F. moniliforme var. subglutinans, F. moniliforme var. subglutinans Faeces, putty, slug moths, soil, submerged wood; human, aphids, arachids, cicadas, coccids; Aleurocanthus, Allium, Amygdalus, Anoplophora, Areca, Asparagus, Avena, Bamboo, Bombyx, Brassica, Camellia, Capsicum, Cedus, Celosia, Ceroplastes, Chilo, Chlorops, Citrullus, Citrus, Cnaphalocrocis, Cocos, Coffea, Coix, Cucumis, Cucurbita, Cymbidium, Dianthus, Dolichos Elaeis, Eleocharis, Ephedra, Erigeron, Ficus, Gladiolus, Glycine, Gossypium, Helianthus, Hisbiscus, Hordeum, Hyphantria, Icerya, Inazuma, Ipomoea, Jasminum, Jatropha, Juglans, Laccifer, Lilium, Lycium, Lycopersicon, Lycopersicum, Lygodium, Malus, Mangifera, Melia, Musa, Mythimna, Nephotettix, Nilaparvata, Oryza, Ostrinia, Paeonia, Panax, Panicum, Papilio, Parlatoria, Parnara, Paulowine, Phaseolus, Phragmites, Pieris, Pinus, Pleurotus, Populus, Procera, Pseudaonidia, Raphanus, Rhododendron, Rhynchites, Ricinus, Rosa, Saccharum, Sanseviera, Saperda, Scirpophaga, Sesamia, Setaria, Simmondsia, Solanum, Sorghum, Spinacia, Taiwania, Taxus, Trifolium, Triticum, Tulipa, Unaspis, Vicia, Vigna, Zanthoxylum, Zea Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. graminearum F. graminearum, F. zeae Air, faeces, soil; coccids, psyllids; Agropyron, Allium, Astragalus, Avena, Brassica, Capsicum, Carthamus, Castanea, Coix, Coriolus, Coronilla, Cucumis, Dactylis, Eleocharis, Glycine, Gossypium, Helianthus, Hordeum, Linum, Lolium, Lotus, Lycopersicum, Malus, Medicago, Melilotus, Melissitus, Onobrychis, Oryza, Phalaenopsis, Phaseolus, Pisum, S Populus, Roegneria, ecale, Setaria, Solanum, Sorghum, Spiraea, Triticum, Vicia, Vigna, Zea Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. graminum F. graminum Paspalum, Vicia Yu (1955); https://nmdc.cn/fungarium/fungi/chinadirectories
F. grosmichelii F. grosmichelii Chamaerops, Musa, Oryza this study
F. guilinense F. guilinense Musa Wang et al. (2019), this study
F. hainanense F. hainanense Musa, Oryza Wang et al. (2019), this study
F. hechiense F. hechiense Musa this study
F. heterosporum F. heterosporum Soil; Phyllostachys https://nmdc.cn/fungarium/fungi/chinadirectories
F. humuli F. humuli Cedrela, Chimonanthus, Coriaria, Humulus, Ligustrum, Liquidambar, Megathyrsus, Musa, Osmanthus, Paederia, Rosa, Viburnum, Vinca Wang et al. (2019), this study
F. incarnatum F. incarnatum, F. semitectum Soil; Juglans, Lycopersicum, Miscanthus, Pennisetum, Phragmites, Schoenoplectus, Solanum Tai (1979), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. ipomoeae F. ipomoeae Soil, submerged wood; Agrostis, bamboo, Capsicum, Hibiscus, Hosta, Ipomoea, Lagenaria, Musa, Oryza, Rhododendron, Solanum, Vinca Wang et al. (2019), this study
F. iranicum F. iranicum Lithocarpus this study
F. irregulare F. irregulare Bamboo, Digitaria, Lithocarpus, Vigna Wang et al. (2019), this study
F. kyushuense F. kyushuense Submerged wood; Chamaedaphne, Lithocarpus, Musa this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. lacertarum F. lacertarum Capsicum Wang et al. (2019), this study
F. lactis F. lactis Pisum Yu (1955)
F. langsethiae F. langsethiae Unknown https://nmdc.cn/fungarium/fungi/chinadirectories
F. lateritium F. baccata, F. baccata var. moricola, F. lateritium, F. lateritium f. sp. celosiae, F. lateritium f. mori, F. lateritium var. mori Soil, wood; coccids; Allium, Aralia, Brevicoryne, Callistephus, Capsicum, Celosia, Chlorops, Chrysomphalus, Cicadella, Citrus, Dendrobium, Diaspiaiotus, Eleutherococcus, Garuga, Ginkgo, Heterodera, Hordeum, Ilex, Laccifer, lcerya, Malus, Malva, Morus, Musa, Phynchites, Pinus, Prinsepia, Prunus, Pulvinaria, Pyrus, Taxus, Triticum Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. longipes F. equiseti var. longipes, F. longipes Paspalum, Phaseolus this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. luffae F. luffae Humulus, Luffa, Oryza Wang et al. (2019), this study
F. lumajangense F. lumajangense Arenga, Musa this study
F. madaense F. madaense Oryza this study
F. mangiferae F. mangiferae Mangifera https://nmdc.cn/fungarium/fungi/chinadirectories
F. meridionale F. meridionale Carbonatite; Coffea, Musa this study
F. miscanthi F. miscanthi Water this study
F. mundagurra F. mundagurra Paspalum this study
F. nanum F. nanum Musa this study
F. napiforme F. napiforme Juglans https://nmdc.cn/fungarium/fungi/chinadirectories
F. nepalense F. nepalense Camellia, Musa this study
F. nirenbergiae F. nirenbergiae Caryota, Musa, Setaria this study
F. odoratissimum F. odoratissimum Musa this study
F. oxysporum F. bulbigenum, F. bulbigenum var. batatas, F. bulbigenum var. lycopersici, F. bulbigenum var. niveam, F. bulbigenum var. tracheiphilum, F. conglutinans, F. conglutinans var. batae F. conglutinans var. callistephi, F. dianthi, F. lini, F. orthoceras, F. orthoceras var. longius, F. orthoceras var. longius, F. orthoceras var. pisi, F. oxysporum, F. oxysporum f. apii, F. oxysporum f. betae, F. oxysporum f. callistephi, F. oxysporum f. ciceris, F. oxysporum f. conglutinans, F. oxysporum f. cubense, F. oxysporum f. cucumerinum, F. oxysporum f. cyclaminis, F. oxysporum f. dianthi, F. oxysporum f. gladioli, F. oxysporum f. lini, F. oxysporum f. lupini, F. oxysporum f. lycopersici, F. oxysporum f. medicaginis, F. oxysporum f. melonis, F. oxysporum f. niveum, F. oxysporum f. perniciosum, F. oxysporum f. phaseoli, F. oxysporum f. pisi, F. oxysporum f. spinaciae, F. oxysporum f. tracheiphilum, F. oxysporum f. tuberosi, F. oxysporum f. vasinfectum, F. oxysporum f.sp. batatas, F. oxysporum f.sp. benincasae, F. oxysporum f.sp. betae, F. oxysporum f.sp. conglutinans, F. oxysporum f.sp. cubense, F. oxysporum f.sp. cucumerinum, F. oxysporum f.sp. cumini, F. oxysporum f.sp. dioscoreae, F. oxysporum f.sp. fabae, F. oxysporum f.sp. glycines, F. oxysporum f.sp. lagenariae, F. oxysporum f.sp. lini, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. magnoliae, F. oxysporum f.sp. melonis, F. oxysporum f.sp. momordicae, F. oxysporum f.sp. mormodicae, F. oxysporum f.sp. narcissi, F. oxysporum f.sp. nelumbicola, F. oxysporum f.sp. niveum, F. oxysporum f.sp. phaseoli, F. oxysporum f.sp. pisi, F. oxysporum f.sp. vasinfectum, F. oxysporum f. fabae, F. oxysporum var. aurantiacum, F. oxysporum var. cubense, F. oxysporum var. gladioli, F. oxysporum var. orthoceras, F. vasinfectum, F. vasinfectum var. sesami Faeces, gluten, soil, wood; Acacia, Allium, Amygdalus, Apium, Apocynum, Arachis, Asparagus, Atractylodes, Avena, Benincasa, Beta, Brassica, Callistephus, Camptotheca, Capsicum, Cicer, Citrullus, Citrus, Coriolus, Cucumis, Cucurbita, Cyclamen, Datura, Delonix, Dendranthema, Dianthus, Dioscorea, Fragaria, Gladiolus, Glycine, Gossypium, Helianthus, Hibiscus, Iphigenia, Ipomoea, Iris, Jasminum, Larix, Lilium, Linum, Lupinus, Lycium, Lycopersici, Lycopersicon, Lycopersicum, Magnolia, Malus, Medicago, Momordica, Musa, Narcissus, Nelumbo, Onobrychis, Phascolus, Phaseolus, Pinus, Piper, Pisum, Sechium, Sesamum, Setaria, Solanum, Spinacia, Tamarix, Trifolium, Triticum, Vanilla, Vicia, Vitrullus, Zea Yu (1955), Tai (1979), Bai & Chen (1991), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. paeoniae F. paeoniae Crataegus, Elymus, Paeonia, Populus this study
F. panlongense F. panlongense Musa this study
F. paranisikadoi F. paranisikadoi Unidentified grass this study
F. pernambucanum F. pernambucanum Bamboo, Capsicum, Chamaedorea, Cyperus, Gerbera, Heteropogon, Musa, Panicum, Zea this study
F. poae F. poae Soil; Avena, Cucumis, Dianthus, Oryza, Setaria, Triticum, Zea Yu (1955), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. proliferatum F. proliferatum Human; Celastrus, Citrullus, Cucumis, Dendrobium, Eleocharis, Glycyrrhiza, Juglans, Musa, Oryza, Oxytropis, Solanum, Vitis Yu (1955), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. pseudocircinatum F. pseudocircinatum Syzygium this study
F. pseudograminearum F. pseudograminearum Triticum https://nmdc.cn/fungarium/fungi/chinadirectories
F. redolens F. oxysporum var. redolens, F. redolens Soil; arachnids, cicadas, coccids, scarabs, white flies; Acaeia, Alaugium, Aleurocanthus, Allium, Ananas, Anthurium, Arachis, Astragalus, Atractylodes, Auricularia, Avicennia, Bambusoideae, Bauhinia, Benincasa, Brassica, Brevicoryne, Bupleurum, Callistephus, Camellia, Cannabis, Capsicum, Castanea, Catharanthus, Citrullus, Citrus, Coronilla, Cucumis, Cuminum, Cyamopsis, Cymbidium, Dendrobium, Dianthus, Dimocarpus, Ditylenchus, Dracaena, Elacis, Eleocharis, Ephedra, Excoecaria, Fragaria, Fritillaria, Gerbera, Ginkgo, Gladiolus, Glycine, Glycyrrhiza, Gossypium, Gymnospermae, Gynotemma, Haloxylon, Helianthus, Hevea, Hordeum, Jacaranda, Juglans, Juniporus, Lablab, Laccifer, Lagenaria, Larix, Lcerya, Lentinus, Ligusticum, Lilium, Linum, Llgusticum, Luffa, Lycium, Lycoperdon, Lycopersicon, Magnolia, Medicago, Melilotus, Momordica, Murraya, Musa, Myrica, Nelumbo, Nicotiana, Nopalxochia, Onobrychis, Oryza, Oxytropis, Paeonia, Panax, Parlatoria, Pennisetum, Phalaenopsis, Phaseolus, Pinus, Piper, Pisum, Pocockia, Populus, Rabdosia, Raphanus, Rheum, Rhodiola, Rhynchites, Robinia, Saccharum, Saperda, Schisandra, Simmondsia, Solanum, Sorghum, Spinacia, Spiraea, Stevia, Taxus, Trifolium, Triticum, Unaspis, Ustilago, Vernicia, Vicia, Vigna, Vitis, Zea, Zingiber Yu (1955), Tai (1979), Bai & Chen (1991); https://nmdc.cn/fungarium/fungi/chinadirectories
F. reticulatum F. pallidoroseum, F. semitectum var. majus Beta, Cucumis, Cucurbita Yu (1955)
F. sacchari F. sacchari Arundina, Musa, Poa this study
F. sambucinum F. pulicaris, F. roseum, F. sambucinum Soil; bamboo, Ceroplastes, Citrug, Citrus, Dendrobium, Panax, Ricinus, Saccharum, Solanum, Triticum, Zanthoxylum, Zea Yu (1955), Tai (1979); https://nmdc.cn/fungarium/fungi/chinadirectories
F. sarcochroum F. sarcochroum Populus https://nmdc.cn/fungarium/fungi/chinadirectories
F. scirpi F. scirpi Soil; Avena, Citrus, Gladiolus, Gossypium, Hordeum, Panax, Pinus, Setaria Yu (1955), Tai (1979); https://nmdc.cn/fungarium/fungi/chinadirectories
F. sinense F. sinense Triticum https://nmdc.cn/fungarium/fungi/chinadirectories
F. sporotrichioides F. solani var. martii forma 3, F. sporotrichioides, F. sporotrichiella var. sporotrichioides, F. sporotrichioides var. chlamydosporum Soil; Arachis, Gossypium, Helianthus, Juglans, Phaseolus, Pisum, Pseudaonidia, Solanum, Zea Yu (1955); https://nmdc.cn/fungarium/fungi/chinadirectories
F. stilboides F. stilboides Clausena, Coffea this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. subglutinans F. subglutinans Chilo, Dianthus, Ephedra, Erigeron, Raphanus, Zea https://nmdc.cn/fungarium/fungi/chinadirectories
F. sulawense F. sulawense Acalypha, Alocasia, bamboo, Capsicum, Citrus, Colocasia, Ipomoea, Luffa, Musa, Oryza, Smilax, Syngonium Wang et al. (2019), this study
F. tanahbumbuense F. tanahbumbuense Digitaria, Oryza Wang et al. (2019), this study
F. temperatum F. temperatum Unidentified lichen this study
F. thapsinum F. thapsinum Human https://nmdc.cn/fungarium/fungi/chinadirectories
F. tricinctum F. tricinctum Dendrobium, Glycine, Hordeum, Hosta, Litsea, Pisum, Setaria, Solanum, Sophora, Triticum, Vicia, Zamia, Zea Yu (1955), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
F. udum F. udum, F. udum f.sp. crotalariae Soil, wood; Amygdalus, Asarum, Citrullus, Coriolus, Gossypium, Salix, Schisandra, Solanum https://nmdc.cn/fungarium/fungi/chinadirectories
F. ussurianum F. ussurianum Air, carbonatite, soil; bamboo, Musa, Oryza, Podocarpus, Prunus, Rhynchospora this study
F. verticillioides F. verticillioides Soil, submerged wood; Anoplophora, bamboo, Brassica, Citrullus, Cucumis, Glycine, human, Hyphantria, Musa, Phaseolus, Physosfegia, Saperda, Solanum, Vigna, Zea this study; https://nmdc.cn/fungarium/fungi/chinadirectories
N. brevis N. brevis Submerged wood this study
N. falciformis N. falciformis Paspalum, Passiflora, Vitis this study
N. lithocarpus N. lithocarpus Lithocarpus this study
N. metavorans N. metavorans Submerged wood this study
N. oblonga N. oblonga Carbonatite this study
N. paraeumartii N. paraeumartii Castanopsis this study
N. petroliphila N. petroliphila Lithocarpus this study
N. phaseoli N. phaseoli Brassica, Vigna https://nmdc.cn/fungarium/fungi/chinadirectories
N. pseudensiformis N. pseudensiformis Passiflora this study
N. silvicola N. silvicola Faeces this study
N. solani F. eumartii, F. javanicum, F. javanicum var. radicicola, F. martii, F. solani, F. solani f. batatus, F. solani f.sp. aleuritidis, F. solani f.sp. fabae, F. solani f.sp. lilii, >F. solani f.sp. pisi, F. solani var. eumartii, F. solani var. javanicum, F. solani var. martii, F. solani var. solani Compost, faeces, soil; coccids; Allium, Amomum, Amygdalus, Benincasa, Callistephus, Capsicum, Chrysanthemum, Citrullus, Citrus, Colocasia, Cucumis, Dimocarpus, Dioscorea, Glycine, Gossypium, Ipomoea, Lilium, Lycopersicum, Musa, Oryza, Panax, Phaseolus, Pinus, Pisum, Polygatum, Polygonatum, Rehmannia, Robinia, Santalum, Solanum, Vernicia, Vicia, Zingiber Yu (1955), Tai (1979), this study; https://nmdc.cn/fungarium/fungi/chinadirectories
N. stercicola N. stercicola Soil this study
R. ventricosum F. ventricosum Soil; sawfly pupae; Camellia, Icerya Bai & Chen (1991); https://nmdc.cn/fungarium/fungi/chinadirectories
S. ciliatum F. ciliatum Populus Yu (1955)

Note: A. = Albonectria, B. = Bisifusarium, C. = Cosmospora, F. = Fusarium, N. = Neocosmospora, R. = Rectifusarium, S. = Scolecofusarium.

In this study, 321 isolates from China were characterised belonging to eight species complexes in Fusarium. The F. fujikuroi complex (FFSC) presented the widest geographic distribution (30 locations) and the second highest number of hosts/ habitats (28 types; 20 plant genera). Members in this complex were well-known for their worldwide distribution, with wide host ranges, diverse habitats, and pathogenicity to many cereals and economically relevant plants (O’Donnell et al. 1998a, 2000b, Leslie & Summerell 2006). Hitherto about 73 species were accepted in this complex, and 17 of them (15 from China, two from the USA), including four novel species and four newly recorded species in China, were reported in this study. The

F. incarnatum-equiseti complex (FIESC) presented the second widest geographic distribution (21 locations) and the highest number of hosts/habitats (50 types; 44 plant genera). This complex is well-known as pathogens of plants and animals, endophytes, and saprobes of various host substrates (Leslie & Summerell 2006, O’Donnell et al. 2009b, Villani et al. 2016). Currently about 38 species have been introduced in the FIESC (O’Donnell et al. 2009b, Wang et al. 2019, Xia et al. 2019). In this study, 15 species in the complex were reported from environmental habitats and 44 plant genera (29 families) in China (Table 1), suggesting a very wide host range of this complex. The F. tricinctum species complex (FTSC) is an important group in Fusarium which encompasses mycotoxin producing species (Leslie & Summerell 2006). Members of this complex are well-known as cereal grain inhabitants (Kulik 2008), smut and mushroom endophytes (Torbati et al. 2019), and saprobes in soil and other environmental habitats (Leslie & Summerell 2006). Previously four species in this complex were recorded from China, i.e., F. acuminatum, F. avenaceum, F. flocciferum, and F. tricinctum from cereals, pumpkin, and winter squash (Yu 1955, Tai 1979, Zhuang 2005, Zhang et al. 2015, Chang et al. 2018, Li et al. 2019). In this study, seven species were identified, including three new species and one species newly recorded from China (F. iranicum).

This study also investigated 66 strains isolated and intercepted at Ningbo Customs from various economically important plants of 12 countries over six years (2012–2017), e.g., cereals, ornamental plants, and fruits (Table 1). These strains were identified as 26 species, including 25 known and one new species (Table 1). Six known species were hereto undetected in China, and two of them, F. curvatum and N. pisi, were previously reported as pathogens of Brassicaceae and Rubiaceae plants and Pisum sativum, respectively (Lombard et al. 2019a, Sandoval-Denis et al. 2019). Interception of these species implies potential threats to biosafety and ecosystem stability of China in international trade.

The taxonomic framework of Fusarium and allied genera has undergone several significant changes since establishment. Despite controversial opinions that exist on the generic boundaries of Fusarium and allied genera, we favour separating Fusarium s.lat. into multiple genera including Albonectria, Bisifusarium, Fusarium, Neocosmospora, and Rectifusarium as proposed by Gräfenhan et al. (2011), Nalim et al. (2011), Schroers et al. (2011), Lombard et al. (2015), and Crous et al. (2021). Approximately 1800 Fusarium and allied species epithets are recorded in the Index Fungorum and MycoBank databases (accessed December 2021). However, presently less than 400 species are accepted and have been studied using multi-locus DNA data from type specimens (Aoki et al. 2014, O’Donnell et al. 2009a, b, Sandoval-Denis et al. 2018a, b, Lombard et al. 2019a, b, Wang et al. 2019, Xia et al. 2019, Crous et al. 2021, Yilmaz et al. 2021). The taxonomic status of many names remains unresolved because of the lack of type specimens and derived sequences, e.g., F. caeruleum. It is noteworthy that there is still an incredibly high number of undescribed Fusarium species, e.g., 256 phylogenetic clades recorded in Fusarium-ID database (http://isolate.fusariumdb.org/blast.php) vs hitherto only about 31 species introduced in the FOSC (Lombard et al. 2019a). Considering the huge number of fusarioid strains/specimens from diverse fungaria around the world, there are undoubtedly many as yet resolved new species. Significant effort is thus required to fully discern the complexity of such a diverse and important fungal group. It is hoped that with the epitypification and neotypification of old names, and description of cryptic species, the classification system of this fungal group would be more stable and less artificial and serve the needs of the users and community impacted by this fungal group in future.

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (NSFC 32100005, NSFC 31770009, NSFC 31725001), the China Postdoctoral Science Foundation (2020M680721), and Biological Resources Programme, Chinese Academy of Sciences (KFJBRP-009).

Supplementary material

Fig. S1

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the tef1 (a), rpb1 (b), and rpb2 (c), showing the phylogenetic relationships of five species complexes within the Fusarium, namely F. concolor (FCOSC), F. falsibabinda (FFBSC), and F. nisikadoi (FNISSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Fusarium humuli (CQ1039). Ex-type cultures are indicated with ‘T’.

per-2023-48-1-SF1.jpg (223.9KB, jpg)
Fig. S2

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the tef1 (a), cam (b), rpb1 (c), rpb2 (d), and tub2 (e), showing the phylogenetic relationships of species within the Fusarium fujikuroi species complex (FFSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). All the trees were rooted to F. nirenbergiae (CBS 744.97). Ex-type cultures are indicated with ‘T’, epi-type with ‘ET’, neotype with ‘NT’.

per-2023-48-1-SF2.jpg (593.2KB, jpg)
Fig. S3

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), rpb1 (c), and rpb2 (d) showing the phylogenetic relationships of species within the Fusarium tricinctum species complex (FTSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. concolor (NRRL 13994 T). Ex-type cultures are indicated with ‘T’, neotype with ‘NT’.

per-2023-48-1-SF3.jpg (212.4KB, jpg)
Fig. S4

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), rpb2 (c), cam (d), and tub2 (e), showing the phylogenetic relationships of species within the Bisifusarium. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). All the trees were rooted to Rectifusarium robinianum (CBS 430.91 T). Ex-type cultures are indicated with ‘T’.

per-2023-48-1-SF4.jpg (247.2KB, jpg)
Fig. S5

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), and rpb2 (c), showing the phylogenetic relationships of species within the genus Neocosmospora. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Geejayessia cicatricum (CBS 125552) and G. atrofusca (NRRL 22316). Ex-type cultures are indicated with ‘T’, neo-type with ‘NT’.

per-2023-48-1-SF5.jpg (561.6KB, jpg)

REFERENCES

  1. Aoki T, Kasson MT, Berger MC, et al. 2018. Fusarium oligoseptatum sp. nov., a mycosymbiont of the ambrosia beetle Euwallacea validus in the Eastern U.S. and typification of F. ambrosium. Fungal Systematics and Evolution 1: 23–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoki T, O’Donnell K, Geiser DM. 2014. Systematics of key phytopathogenic Fusarium species: current status and future challenges. Journal of General Plant Pathology 80: 189–201. [Google Scholar]
  3. Aoki T, O’Donnell K, Scandiani M. 2005. Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliense sp. nov., F. cuneirostrum sp. nov., F. tucumaniae and F. virguliforme. Mycoscience 46: 162–183. [Google Scholar]
  4. Bai FY, Chen QT. 1991. Fusarium species on some insects from China. Acta Mycologica Sinica 10: 120–128. [Google Scholar]
  5. Booth C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, UK. [Google Scholar]
  6. Chang X, Dai H, Wang D, et al. 2018. Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. European Journal of Plant Pathology 151: 563–577. [Google Scholar]
  7. Coleman JJ, Rounsley SD, Rodriguez-Carres M, et al. 2009. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genetics 5: e1000618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crous PW, Groenewald JZ, Summerell BA, et al. 2009. Co-occurring species of Teratosphaeria on Eucalyptus. Persoonia 22: 38–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crous PW, Lombard L, Sandoval-Denis M, et al. 2021. Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology 98: 100116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crous PW, Verkley GJM, Groenewald JZ, et al. 2019. Fungal Biodiversity. In: Westerdijk Laboratory Manual Series 1. Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. [Google Scholar]
  11. Cuomo CA, Guldener U, Xu J-R, et al. 2007. The genome sequence of Fusarium graminearum reveals localized diversity and pathogen specialization. Science 317: 1400–1402. [DOI] [PubMed] [Google Scholar]
  12. Darriba D, Taboada GL, Doallo R, et al. 2012. jModelTest 2: more models new heuristics and parallel computing. Nature Methods 9: 772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Desjardins AE, Munkvold GP, Plattner RD, et al. 2002. FUM1 – a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Molecular Plant-Microbe Interactions 15: 1157–1164. [DOI] [PubMed] [Google Scholar]
  14. Fisher NL, Burgess LW, Toussoun TA, et al. 1982. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72: 151–153. [Google Scholar]
  15. Gams W, Klamer M, O’Donnell K. 1999. Fusarium miscanthi sp. nov. from Miscanthus litter. Mycologia 91: 263–268. [Google Scholar]
  16. Geiser DM, Aoki T, Bacon CW, et al. 2013. One fungus, one name: Defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103: 400–408. [DOI] [PubMed] [Google Scholar]
  17. Gordon TR, Martyn RD. 1997. The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35: 111–128. [DOI] [PubMed] [Google Scholar]
  18. Gordon WL. 1944. The occurrence of Fusarium species in Canada. I. Species of Fusarium isolated from farm samples of cereal seed in Manitoba. Canadian Journal of Research, C 22: 282–286. [Google Scholar]
  19. Gordon WL. 1952. The occurrence of Fusarium species in Canada. II. Prevalence and taxonomy of Fusarium species in cereal seed. Canadian Journal of Botany 30: 209–251. [Google Scholar]
  20. Gordon WL. 1954a. The occurrence of Fusarium species in Canada. III. Taxonomy of Fusarium species in the seed of vegetable, forage, and miscellaneous crops. Canadian Journal of Botany 32: 576–590. [Google Scholar]
  21. Gordon WL. 1954b. The occurrence of Fusarium species in Canada. IV. Taxonomy and prevalence of Fusarium species in the soil of cereal plots. Canadian Journal of Botany 32: 622–629. [Google Scholar]
  22. Gordon WL. 1956a. The occurrence of Fusarium species in Canada. V. Taxonomy and geographic distribution of Fusarium species in soil. Canadian Journal of Botany 34: 833–846. [Google Scholar]
  23. Gordon WL. 1956b. The taxonomy and habitats of the Fusarium species in Trinidad, B.W.I. Canadian Journal of Botany 34: 847–864. [Google Scholar]
  24. Gordon WL. 1959. The occurrence of Fusarium species in Canada. VI. Taxonomy and geographic distribution of Fusarium species on plants, insects, and fungi. Canadian Journal of Botany 37: 257–290. [Google Scholar]
  25. Gordon WL. 1960. The taxonomy and habitats of Fusarium species from tropical and temperate regions. Canadian Journal of Botany 38: 643–658. [Google Scholar]
  26. Gräfenhan T, Schroers H-J, Nirenberg HI, et al. 2011. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Studies in Mycology 68: 79–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Guindon S, Dufayard JF, Lefort V, et al. 2010. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. [DOI] [PubMed] [Google Scholar]
  28. Guo LD, Hyde KD, Liew ECY. 2000. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist 147: 617–630. [DOI] [PubMed] [Google Scholar]
  29. Huelsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. [DOI] [PubMed] [Google Scholar]
  30. Jacobs-Venter A, Laraba I, Geiser DM, et al. 2018. Molecular systematics of two sister clades, the Fusarium concolor and F. babinda species complexes, and the discovery of a novel microcycle macroconidium-producing species from South Africa. Mycologia 110: 1189–1204. [DOI] [PubMed] [Google Scholar]
  31. Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kornerup A, Wanscher JH. 1978. Methuen handbook of colour. 3rd ed. London, Eyre Methuen. [Google Scholar]
  33. Kulik T. 2008. Detection of Fusarium tricinctum from cereal grain using PCR assay. Journal of Applied Genetics 49: 305–311. [DOI] [PubMed] [Google Scholar]
  34. Laurence MH, Summerell BA, Burgess LW, et al. 2011. Fusarium burgessii sp. nov. representing a novel lineage in the genus Fusarium. Fungal Diversity 49: 101–112. [Google Scholar]
  35. Laurence MH, Summerell BA, Burgess LW, et al. 2014. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biology 118: 374–384. [DOI] [PubMed] [Google Scholar]
  36. Leslie JF, Summerell BA. 2006. The Fusarium laboratory manual. Blackwell Publishing Professional, 2121 State Avenue, Ames, Iowa 50014, USA. [Google Scholar]
  37. Li YG, Jiang WY, Jiang D, et al. 2019. First report of fruit rot on postharvest pumpkin caused by Fusarium acuminatum in China. Plant Disease 103: 1035. [Google Scholar]
  38. Link HF. 1809. Observationes in ordines plantarum naturals, Dissetatio I. Magazin der Gesellschaft Naturforschenden Freunde Berlin 3: 3–42. [Google Scholar]
  39. Liu F, Weir BS, Damm U, et al. 2015. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. [DOI] [PubMed] [Google Scholar]
  41. Lombard L, Sandoval-Denis M, Lamprecht SC, et al. 2019a. Epitypification of Fusarium oxysporum – clearing the taxonomic chaos. Persoonia 43: 1–47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lombard L, Van der Merwe NA, Groenewald JZ, et al. 2015. Generic concepts in Nectriaceae. Studies in Mycology 80: 189–245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lombard L, Van Doorn R, Crous PW. 2019b. Neotypification of Fusarium chlamydosporum – a reappraisal of a clinically important species complex. Fungal Systematics and Evolution 4: 183–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Marasas WFO, Nelson PE, Toussoun TA. 1984. Toxigenic Fusarium species: Identity and mycotoxicology. Pennsylvania State University, University Park, Pennsylvania. [Google Scholar]
  45. Marasas WFO, Nelson PE, Toussoun TA, et al. 1986. Fusarium polyphialidicum, a new species from South Africa. Mycologia 78: 678–682. [Google Scholar]
  46. Maryani N, Lombard L, Poerba YS, et al. 2019a. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Studies in Mycology 92: 155–194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Maryani N, Sandoval-Denis M, Lombard L, et al. 2019b. New endemic Fusarium species hitch-hiking with pathogenic Fusarium strains causing Panama disease in small-holder banana plots in Indonesia. Persoonia 43: 48–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Na F, Carrillo JD, Mayorquin JS, et al. 2018. Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Disease 102: 1154–1164. [DOI] [PubMed] [Google Scholar]
  49. Nalim FA, Samuels GJ, Wijesundera RL, et al. 2011. New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia 103: 1302–1330. [DOI] [PubMed] [Google Scholar]
  50. Nelson PE, Toussoun TA, Marasas WFO. 1983. Fusarium species: An illustrated Manual for Identification. Pennsylvania State University Press, University Park, Pennsylvania. [Google Scholar]
  51. Nirenberg HI. 1976. Untersuchungen ber die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen der Biologischen Bundesanstalt f r Land- und Forstwirtschaft (Berlin-Dahlem) 169: 1–117. [Google Scholar]
  52. Nirenberg HI, Aoki T. 1997. Fusarium nisikadoi, a new species from Japan. Mycoscience 38: 329–333. [Google Scholar]
  53. Nirenberg HI, O’Donnell K. 1998. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90: 434–458. [Google Scholar]
  54. Nylander JAA, Wilgenbusch JC, Warren DL, et al. 2008. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. [DOI] [PubMed] [Google Scholar]
  55. O’Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. [DOI] [PubMed] [Google Scholar]
  56. O’Donnell K, Cigelnik E, Nirenberg HI. 1998a. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465–493. [Google Scholar]
  57. O’Donnell K, Gueidan C, Sink S, et al. 2009a. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology 46: 936–948. [DOI] [PubMed] [Google Scholar]
  58. O’Donnell K, Kistler HC, Cigelnik E, et al. 1998b. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95: 2044–2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. O’Donnell K, Kistler HC, Tacke BK, et al. 2000a. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America 95: 7905–7910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. O’Donnell K, McCormick SP, Busman M, et al. 2018. Marasas, et al. 1984 ‘Toxigenic Fusarium Species: Identity and Mycotoxicology’ revisited. Mycologia 110: 1058–1080. [DOI] [PubMed] [Google Scholar]
  61. O’Donnell K, Nirenberg HI, Aoki T, et al. 2000b. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41: 61–78. [Google Scholar]
  62. O’Donnell K, Rooney AP, Proctor RH, et al. 2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology 52: 20–31. [DOI] [PubMed] [Google Scholar]
  63. O’Donnell K, Sutton DA, Fothergill A, et al. 2008. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology 46: 2477–2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. O’Donnell K, Sutton DA, Rinaldi MG, et al. 2009b. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. Journal of Clinical Microbiology 47: 3851–3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. O’Donnell K, Sutton DA, Rinaldi MG, et al. 2010. An Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. Journal of Clinical Microbiology 48: 3708–3718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253–1256. [DOI] [PubMed] [Google Scholar]
  67. Wang MM. et al.: Fusarioid species in China Reeb V, Lutzoni F, Roux C. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 1036–1060. [DOI] [PubMed] [Google Scholar]
  68. Ronquist F, Teslenko M, Van der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Sandoval-Denis M, Guarnaccia V, Polizzi G, et al. 2018a.. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 40: 1–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sandoval-Denis M, Lombard L, Crous PW. 2019. Back to the roots: a reappraisal of Neocosmospora. Persoonia 43: 90–185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Sandoval-Denis M, Swart WJ, Crous PW. 2018b. New Fusarium species from the Kruger National Park, South Africa. Mycokeys 34: 63–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schroers H-J, Gräfenhan T, Nirenberg HI, et al. 2011. A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs. Studies in Mycology 68: 115–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Skovgaard K, Nirenberg HI, O’Donnell K, et al. 2001. Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91: 1231–1237. [DOI] [PubMed] [Google Scholar]
  74. Snyder WC, Hansen HN. 1940. The species concept in Fusarium. American Journal of Botany 27: 64–67. [Google Scholar]
  75. Snyder WC, Hansen HN. 1941. The species concept in Fusarium with reference to section Martiella. American Journal of Botany 28: 738–742. [Google Scholar]
  76. Snyder WC, Hansen HN. 1945. The species concept in Fusarium with reference to Discolour and other sections. American Journal of Botany 32: 657–666. [Google Scholar]
  77. Snyder WC, Hansen HN. 1947. Advantages of natural media and environments in the culture of fungi. Phytopathology 37: 420–421. [PubMed] [Google Scholar]
  78. Snyder WC, Hansen HN. 1954. Variation and speciation in the genus Fusarium. Annals of the New York Academy of Sciences 60: 16–23. [DOI] [PubMed] [Google Scholar]
  79. Summerell BA, Rugg CA, Burgess LW. 1995. Characterization of Fusarium babinda sp. nov. Mycological Research 99: 1345–1348. [Google Scholar]
  80. Sun BD, Zhou YG, Chen A-J. 2017. Bisifusarium tonghuanum (Nectriaceae), a novel species of Fusarium-like fungi from two desert oasis plants. Phytotaxa 317: 123–129. [Google Scholar]
  81. Tai FL. 1979. Sylloge Fungorum Sinicorum. Science Press, Academia Sinica, Peking. [Google Scholar]
  82. Torbati M, Arzanlou M, Sandoval-Denis M, et al. 2019. Multigene phylogeny reveals new fungicolous species in the Fusarium tricinctum species complex and novel hosts in the genus Fusarium from Iran. Mycological Progress 18: 119–133. [Google Scholar]
  83. Van der Does C, Duyvesteijn RGE, Goltstein PM, et al. 2008. Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology 45: 1257–1264. [DOI] [PubMed] [Google Scholar]
  84. Van Hove F, Waalwijk C, Logrieco A, et al. 2011. Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia 103: 570–585. [DOI] [PubMed] [Google Scholar]
  85. Villani A, Moretti A, De Saeger S, et al. 2016. A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatumequiseti species complex. International Journal of Food Microbiology 234: 24–35. [DOI] [PubMed] [Google Scholar]
  86. Wang HC, Wang MS, Xia HQ, et al. 2013a. First report of Fusarium wilt of tobacco caused by Fusarium kyushuense in China. Plant Disease 97: 424. [DOI] [PubMed] [Google Scholar]
  87. Wang JH, Feng ZH, Han Z, et al. 2013b. First report of pepper fruit rot caused by Fusarium concentricum in China. Plant Disease 97: 1657. [DOI] [PubMed] [Google Scholar]
  88. Wang MM, Chen Q, Diao YZ, et al. 2019. Fusarium incarnatum-equiseti complex from China. Persoonia 43: 70–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. (eds), PCR protocols: A guide to the methods and applications: 315–322. New York, NY, Academic Press. [Google Scholar]
  90. Wollenweber HW, Reinking OA. 1935. Die Fusarien, ihre Beschreibung, Schadwirkung und Bekampfung. Verlag Paul Parey, Berlin, Germany. [Google Scholar]
  91. Xia JW, Sandoval-Denis M, Crous PW, et al. 2019. Numbers to names – restyling the Fusarium incarnatum-equiseti species complex. Persoonia 43: 186–221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Yilmaz M, Sandoval-Denis M, Lombard L, et al. 2021. Redefining species limits in the Fusarium fujikuroi species complex. Persoonia 46: 129–162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Yu DF. 1955. A preliminary list of Fusaria in China. Acta Phytopathologica Sinica 1: 1–18. [Google Scholar]
  94. Zhang H, Luo W, Pan Y, et al. 2014a. First report of Fusarium maize ear rot caused by Fusarium meridionale in China. Plant Disease 98: 1156. [DOI] [PubMed] [Google Scholar]
  95. Zhang H, Luo W, Pan Y, et al. 2014b. First report of Fusarium ear rot of maize caused by Fusarium andiyazi in China. Plant Disease 98: 1428. [DOI] [PubMed] [Google Scholar]
  96. Zhang K, Su YY, Cai L. 2013. An optimized protocol of single spore isolation for fungi. Cryptogamie, Mycologie 34: 349–356. [Google Scholar]
  97. Zhang XX, Sun HY, Shen CM, et al. 2015. Survey of Fusarium spp. causing wheat crown rot in major winter wheat growing regions of China. Plant Disease 99: 1610–1615. [DOI] [PubMed] [Google Scholar]
  98. Zhang ZF, Liu F, Zhou X, et al. 2017. Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39: 1–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Zhou X, O’Donnell K, Aoki T, et al. 2016. Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae. Mycologia 108: 668–681. [DOI] [PubMed] [Google Scholar]
  100. Zhuang WY. 2005. Fungi of northwestern China. Mycotaxon, Ltd., Ithaca, NY. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Fig. S1

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the tef1 (a), rpb1 (b), and rpb2 (c), showing the phylogenetic relationships of five species complexes within the Fusarium, namely F. concolor (FCOSC), F. falsibabinda (FFBSC), and F. nisikadoi (FNISSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Fusarium humuli (CQ1039). Ex-type cultures are indicated with ‘T’.

per-2023-48-1-SF1.jpg (223.9KB, jpg)
Fig. S2

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the tef1 (a), cam (b), rpb1 (c), rpb2 (d), and tub2 (e), showing the phylogenetic relationships of species within the Fusarium fujikuroi species complex (FFSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). All the trees were rooted to F. nirenbergiae (CBS 744.97). Ex-type cultures are indicated with ‘T’, epi-type with ‘ET’, neotype with ‘NT’.

per-2023-48-1-SF2.jpg (593.2KB, jpg)
Fig. S3

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), rpb1 (c), and rpb2 (d) showing the phylogenetic relationships of species within the Fusarium tricinctum species complex (FTSC). The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to F. concolor (NRRL 13994 T). Ex-type cultures are indicated with ‘T’, neotype with ‘NT’.

per-2023-48-1-SF3.jpg (212.4KB, jpg)
Fig. S4

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), rpb2 (c), cam (d), and tub2 (e), showing the phylogenetic relationships of species within the Bisifusarium. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). All the trees were rooted to Rectifusarium robinianum (CBS 430.91 T). Ex-type cultures are indicated with ‘T’.

per-2023-48-1-SF4.jpg (247.2KB, jpg)
Fig. S5

Fifty percent majority rule consensus trees from Bayesian analyses inferred from the ITS (a), tef1 (b), and rpb2 (c), showing the phylogenetic relationships of species within the genus Neocosmospora. The Bayesian posterior probabilities (PP > 0.9) and PhyML Bootstrap support values (BS > 50) are displayed at the nodes (PP/ML). The tree was rooted to Geejayessia cicatricum (CBS 125552) and G. atrofusca (NRRL 22316). Ex-type cultures are indicated with ‘T’, neo-type with ‘NT’.

per-2023-48-1-SF5.jpg (561.6KB, jpg)

Articles from Persoonia : Molecular Phylogeny and Evolution of Fungi are provided here courtesy of Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures

RESOURCES