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PDGFRb Signaling Cooperates with b-Catenin to
Modulate c-Abl and Biologic Behavior of Desmoid-Type
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ABSTRACT
◥

Purpose: This study sought to identify b-catenin targets that
regulate desmoid oncogenesis and determine whether external
signaling pathways, particularly those inhibited by sorafenib (e.g.,
PDGFRb), affect these targets to alter natural history or treatment
response in patients.

Experimental Design: In vitro experiments utilized primary
desmoid cell lines to examine regulation of b-catenin targets.
Relevance of results was assessed in vivo using Alliance trial
A091105 correlative biopsies.

Results: CTNNB1 knockdown inhibited hypoxia-regulated gene
expression in vitro and reduced levels of HIF1a protein. ChIP-seq
identifiedABL1 as a b-catenin transcriptional target thatmodulated
HIF1a and desmoid cell proliferation. Abrogation of either
CTNNB1 orHIF1A inhibited desmoid cell–induced VEGFR2 phos-
phorylation and tube formation in endothelial cell co-cultures.
Sorafenib inhibited this activity directly but also reduced HIF1a

protein expression and c-Abl activity while inhibiting PDGFRb
signaling in desmoid cells. Conversely, c-Abl activity and des-
moid cell proliferation were positively regulated by PDGF-BB.
Reduction in PDGFRb and c-Abl phosphorylation was common-
ly observed in biopsy samples from patients after treatment with
sorafenib; markers of PDGFRb/c-Abl pathway activation in
baseline samples were associated with tumor progression in
patients on the placebo arm and response to sorafenib in patients
receiving treatment.

Conclusions: The b-catenin transcriptional target ABL1 is nec-
essary for proliferation andmaintenance of HIF1a in desmoid cells.
Regulation of c-Abl activity by PDGF signaling and targeted
therapies modulates desmoid cell proliferation, thereby suggesting
a reason for variable biologic behavior between tumors, a mecha-
nism for sorafenib activity in desmoids, and markers predictive of
outcome in patients.

Introduction
Desmoid-type fibromatosis (desmoids) is a mesenchymal neo-

plasm, which does not progress to high-grade disease or metastasize
but can be locally aggressive. Surgery has been the standard treatment,
but complete resection often requiresmorbid procedures and�30% of
patients have local recurrence (1). Therefore, alternatives to surgery
have been extensively studied. Large series of patients managed
without medical or surgical intervention have shown that in approx-
imately 50% of patients, the disease remains stable or regresses
spontaneously without treatment (2, 3). For patients with progressive
tumors at risk for significant symptoms such as limb contracture or
life-threatening intestinal fistulas, a range of cytotoxic (e.g., doxoru-
bicin-based regimens) and antihormonal therapies have been used (4).
More recently, phase III randomized-controlled trials have shown
significant responses to sorafenib or the g-secretase inhibitor niroga-
cestat, although the mechanisms by which these drugs exert their
effects are unclear (5, 6).

Activated b-catenin is associated with initiation of desmoids. Most
desmoids have sporadic mutations in exon 3 of its encoding gene
CTNNB1 (7, 8). These mutations prevent b-catenin phosphorylation,
usually observed in the context of canonical Wnt activation. GSK3b
phosphorylation of these sites (T41 or S45) leads to degradation of
b-catenin when complexed with APC, Axin, and GSK3b. Exon 3
mutations therefore lead to accumulation of b-catenin in cancer
cells (9). In a minority of cases, germline or sporadic loss-of-
function mutations in the adenomatous polyposis coli (APC) gene
prevent the turnover of b-catenin (10, 11). In the unphosphorylated
state caused byCTNNB1 orAPCmutation, b-catenin translocates into
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the nucleus, where it acts as a transcription factor for oncogenes such as
CCND1 and MVC in most systems. These canonical targets do not
appear to be upregulated in desmoid cells, and several genes upregu-
lated in desmoids have not been linked to Wnt/b-catenin signal-
ing (12). These suggest that alternative b-catenin transcriptional
targets may be important for desmoid initiation.

Here, we sought to identify a subset of these targets to better
understand how b-catenin may promote desmoid formation. Because
secondary genomic events affecting desmoid progression and response
to therapy have not been identified, we hypothesized that external
signaling may modulate activity of the b-catenin targets and alter
biologic behavior of tumors. Using an in vitro system, we examined
whether one such pathway targeted by sorafenib, PDGFRb signaling,
could act in this manner. Our results identify a mechanism by which
PDGF signaling affects oncogenic activity ofABL1, identified as a novel
b-catenin transcriptional target, andHIF1a in desmoid cells. Analyses
of pre- and post-treatment biopsies suggest that sorafenib may inhibit
this pathway in desmoids and that activation of PDGF signaling may
be a marker predictive of progression in untreated tumors.

Materials and Methods
Sample acquisition

Tumor and normal tissues were flash frozen at the time of surgery in
patients who consented to Memorial Sloan Kettering Cancer Center
(MSKCC) Institutional Review Board–approved protocol #02–060
(Supplementary Materials and Methods Table S1). Flash frozen, pre-
and post-treatment biopsies from a subset of patients (n¼ 17) enrolled
on Alliance for Clinical Trials in Oncology trial A091105 and who
consented to A091105-ST1 were obtained by image guidance prior to
treatment and between days 8 and 11 after initiation of sorafenib or
placebo. Baseline FFPE specimens were available from a larger cohort
(Supplementary Materials and Methods Tables S2 and S3; ref. 6). All
patient procedures were performed in accordancewith theDeclaration
of Helsinki and U.S. Common Rule; informed written consent was
obtained from each subject or subject’s guardian.

Cell culture
Desmoid cells were grown in a 1:1 mixture of DMEM high glucose

and F12 medium with 2 mmol L-glutamine, 100 units/mL penicillin,

and 100 mg/mL streptomycin and maintained in a 37�C incubator at
5% CO2. Puromycin (1 mg/mL), blasticidin (2 mg/mL), or G418
(1 mg/mL) was used for plasmid selection. Primary desmoid cell lines
(DES9525, DES8163, and DES3726), derived from resected specimens
by collagenase disaggregation, were grown in 50% FBS during initial
passages and transitioned to 20%FBS for standard conditions; all three
cell lines utilized in this manuscript were derived from lower extremity
tumors. Desmoid cell lines were validated by Sanger sequencing (see
below); only those demonstrating�50% variant allele frequency were
utilized for long-term cultures and repeat sequencing was performed
every 10 to 15 passages (Supplementary Materials and Methods
Fig. S1). Desmoid cells were immortalized using Lenti-hTERT-Neo
Virus and antibiotic selection between 5 and 8 passages after estab-
lishment (1 mg/mL neomycin; Applied Biological Materials) and
tested for mycoplasma using MycoAlert-Plus (Lonza; August 2020).
Effects of sorafenib (Selleckchem) and PDGF-BB (R&D Systems) were
examined in the presence of 10% and 5% FBS, respectively.

HUVEC cells (Lonza) were cultured in Endothelial Cell Growth
Media (Cedarlane Laboratories). Desmoid and HUVEC cells were co-
cultured by seeding 18 � 103 desmoid cells onto 24-well inserts for
24 hours before transfer to 24-well plates coated with growth factor–
reduced Matrigel (Corning) and containing 4 � 104 HUVEC cells in
400 mL desmoid medium with 1% FBS. Conditioned medium (CM)
was collected after 48 hours of desmoid cell culture; the amount of CM
used to treat HUVEC cells was adjusted on the basis of desmoid cell
numbers at the time of collection.

Nucleic acid preparation and mutation, transcriptome, and
transcription factor binding analysis

DNA and RNA were prepared using DNeasy and RNeasy Kits
(Qiagen). CTNNB1 exon 3 was amplified from genomic DNA by PCR
HotStart Taq DNA Polymerase (Qiagen) and primer sequences 50-
TGATGGAGTTGGACATGGCC-30, 50-CTCATACAGGACTTG-
GGAGG-30. After purification (QiaQuick; Quiagen) PCR products
were isolated by gel electrophoresis. Sanger sequencing was performed
as reported previously (13). Tumor specimens were macrodissected
from cryomolds and RNA samples prepared from specimens contain-
ing >90% tumor as determined by hematoxylin and eosin staining.
RNA from tumor or cell line samples was isolated using RNeasy
Kits (Qiagen).

Gene expression was analyzed by U133A 2.0 arrays (Affymetrix) to
which cRNA (prepared as described previously) was hybridized (14).
Array data were quantified and normalized using standard R/Biocon-
ductor packages and differential expression was assessed by the
LIMMA empirical Bayes method (15, 16). Libraries from cell-line
RNA were prepared for sequencing on the Illumina HiSeq 4000
platform as described by Chi and colleagues (17). The raw count
matrix generated by HTSeq was processed using the R/Bioconductor
package DESeq, which both normalizes the full dataset and analyzes
differential expression between sample groups (18, 19). Gene set
enrichment analysis (GSEA) was performed using the Fast-GSEA
(fgsea) package from R/Bioconductor (100,000,000 permutation set-
ting; https://www.biorxiv.org/content/10.1101/060012v3). We used
the bedtools coverage tool and RNAseq.bam files to calculate depth
of coverage over the CTNNB1 locus for transcript ENST00000349496
(gencode versionV19) and assess variant allele frequency;median read
depth was �300 and 95% of bases were covered between �160 and
630� (20).

Nucleic acids for chromatin immunoprecipitation sequencing
(ChIP-seq) were prepared from 1 � 106 cells using the SimpleChIP
Enzymatic Kit (Cell Signaling Technology) with b-catenin antibody

Translational Relevance

Desmoid-type fibromatosis is amesenchymal neoplasm that can
regress spontaneously or be locally aggressive, leading to significant
morbidity. Desmoid tumors are universally associated with acti-
vation of b-catenin signaling, but secondary factors that modulate
differences in tumor growth and affect response to drugs such as
sorafenib have not been identified despite extensive genomic
analyses. Here we demonstrate that PDGF receptor signaling can
modulate desmoid cell proliferation, at least in part by promoting
activity of the b-catenin transcriptional target c-Abl. We show that
activity of the PDGFRb/b-catenin/c-Abl signaling axis is associated
with outcome both in desmoids managed with active observation
and those treated with sorafenib by analyzing biopsies from
Alliance A091105, a phase III, placebo-controlled trial evaluating
sorafenib response in desmoid patients. This is the first study to
provide mechanistic evidence leading to rational identification of
predictive markers in desmoid patients.
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D10A8 (6 mg; Cell Signaling Technology) and amplified using Maxima
SYBR Green Mix (Thermo Fisher Scientific). Immunoprecipitated
DNA was quantified by PicoGreen, size evaluated by Agilent BioA-
nalyzer, and Illumina sequencing libraries prepared using the KAPA
HTP Library Preparation Kit (Kapa Biosystems KK8234) per manu-
facturer’s instructionswith 0.1 to 16.8 ng inputDNAand eight cycles of
PCR. Barcoded libraries were run on the HiSeq 4000 in a PE100 run
using the HiSeq 3000/4000 SBS Kit (Illumina; average of 30 million
paired reads). Duplicate .fasta files from ChIP and input samples were
concatenated and aligned to hg19 using bowtie2 with default set-
tings (21). Peaks were annotated by MACS2 (broad peak calling,
P-value ¼ 10�7, data were normalized to the larger dataset and mfold
parameter between 5 and 50; ref. 22). To generate bedgraph files for
UCSC genome browser visualization, .sam files were processed using
Homer software (final parameters of makeUCSCfile program, -fsize
5e7 -res 10; ref. 23). ChIP-qPCR used the same b-catenin antibody and
the following primers for ABL1: F:TGCCATGTCCGAGAATCTTT
and R: ACTGGATCTGTGCATGATTAACT.

In vitro analyses
Lentiviral infections, cell proliferation assays, and RT-PCR analyses

were performed as described previously (14, 24, 25). Gene expression
was inhibited using lentiviral pLKO.1 vectors (Horizon Discovery or
MSKCC Gene Editing and Screening facility) carrying short hairpin
RNA (shRNA) directed against relevant genes (SupplementaryMateri-
als and Methods Table S4) or a scramble control (#RHS6848; ref. 26).
Overexpression of HIF1A utilized LentiORF [OHS5898–224626816;
control RFP ORF (Horizon Discovery)]. Assays were performed 4 to
6 days following infection to allow for antibiotic selection. Cell prolif-
eration was measured using the CyQuant Cell Proliferation Assay Kit
(Invitrogen) with 103 cells seeded in 96-well plates. IC50 was calculated
as the drug concentration reducing DNA content by 50% in cultures
compared with untreated controls. For transcript analyses, cDNA was
synthesized using cDNA Reverse Transcription Kit (Thermo Fisher
Scientific) and amplified using Taqman Gene Expression Master Mix
(Applied Biosystems) with gene-specific primers (ABL1 Taqman Probe
Hs01104728_m1, HIF1a Hs00153153_m1, CTNNB1 Hs00355045_m1
Thermo Fisher Scientific TaqmanGene Expression Assays) on a ViiA 7
Real-Time PCR System (Thermo Fisher Scientific).

For luciferase reporter assays, cells were seeded on 48-well plates at
75% confluence before transfection with hypoxia-responsive luciferase
and control Renilla constructs (Cigal HIF1 pathway reporter assay;
Qiagen) using Lipofectamine 2000 (Invitrogen). Luciferase assayswere
performed 48 hours after transfection using the Dual-Glo Luciferase
Assay System (Promega). Results were reported as the ratio of induc-
ible to non-inducible signal. Endothelial tube formationwas quantified
manually in 6 to 10 representative fields of view using lightmicroscopy
24 hours after co-culture of desmoid and HUVEC cells.

Immunoblotting, IHC, and antibodies
For immunoblots, cultured cells were lysed in 50 mmol/L Tris-HCl

pH 7.4, 250 mmol/L NaCl, 5 mmol/L EDTA, and 0.5% NP-40. Super-
natants were acquired from tissue preparations for immunoblot anal-
ysis after fresh-frozen biopsy specimens or macrodissected cryomolds
were dissociated in resin/RIPA buffer (Cytiva Sample Grinding Kit) on
ice. Equal quantities of protein (15–20 mg) were resolved using Mini-
PROTEANTGXPrecast Protein Gels or Tetra Vertical Electrophoresis
Cell (Bio-Rad). After transfer to 0.2 mmol/L polyvinylidene difluoride
(PVDF) membrane (Bio-Rad) and blocking, membranes were incu-
bated with antibodies in Starting Block T20 (Thermo Fisher Scientific)
overnight, then horseradish peroxidase-conjugated mouse or rabbit

IgG before development using an Enhanced Chemiluminescence
(ECL) Kit (GE Healthcare), SuperSignal West Pico PLUS, or Femto
Chemiluminescent Substrate (Thermo Fisher Scientific) according to
the manufacturer’s instructions. Primary antibodies against the fol-
lowing proteins and isoforms were used: HIF1a [Cell Signaling Tech-
nology (CST) 36169], b-catenin (CST 9562), pAkt (Ser473) (CST
9271), Akt (CST 9272), pPDGFRb (Y751) (CST 3161), PDGFRb (CST
3169), pVEGFR2 (Y1175) (CST 2478), c-Abl (CST 2862), pc-Abl Y412
(Millipore 07–788), pCrkl (CST 3181), pCrkII (CST 3491), b-actin
(CST 8457), and vinculin (Abcam ab91459). Protein levels were
quantified using ImageJ. Phospho-receptor tyrosine kinase array kits
were evaluated per the manufacturer’s instructions in the presence or
absence of 40 mmol/L sorafenib (R&D Systems).

For IHC, paraffin-embedded tissue sections were cut at 5 mmol/L
andheated at 58�C for 1 hour. Sampleswere loaded into Leica BondRX
and sections were dewaxed at 72�C before being pretreated with
EDTA-based epitope retrieval ER2 solution (Leica, AR9640) for 20
minutes at 100�C. Slides were incubated with anti-FosB (0.5 mg/mL,
CST 2251), anti-EGR1 (5 mg/mL, R&D Systems MAB2818), or anti-
p21 (1: 150, EA10, Millipore OP64) for 60 minutes (30 minutes for
p21), then with Leica Bond Polymer anti-rabbit HRP [included in
Polymer RefineDetectionKit (LeicaDS9800)] for 8minutes, with anti-
rat ormouse secondary antibody (Vector Laboratories, BA-4000) for 8
minutes, with Leica Bond Polymer anti-rabbit HRP, then mixed DAB
reagent (Polymer Refine Detection Kit) for 10 minutes, followed by
hematoxylin (Refine Detection Kit) counterstaining for 10 minutes.
After staining, sample slides were washed in water, dehydrated using
ethanol gradient (70%, 90%, 100%), washed three times in HistoClear
II (National Diagnostics, HS-202), and mounted in Permount
(Thermo Fisher Scientific, SP15).

Statistical analysis
Unless otherwise noted, in vitro experiments were performed at

least three times. Figures show mean � SE. For experiments
performed using multiple cell lines and/or constructs, test results
describe the range of means and least stringent P-value applicable to
all cell lines and/or constructs examined. Statistical associations
were assessed using the Fisher exact test for categorical variables,
Welch t test for continuous variables and Kaplan–Meier curves, log-
rank testing, and Cox regression for time-to-event variables. Best
response was defined by RECIST v1.1 and progression-free survival
(PFS) by time to clinical progression or >15% growth in size of the
index lesion (as of May 4, 2023).

Data and resource availability
The data generated in this study are publicly available and accessible

in Gene Bank Omnibus (GEO study GSE237692). Cell lines and
lentiviral constructs are available on request. RRID for commercially
available resources are noted in SupplementaryMaterials andMethods
Table S5.

Results
b-Catenin regulates HIF1a-mediated paracrine signaling by
desmoid cells

Assessment of transcriptomes of DES9525 cells in which CTNNB1
was knocked down (vs. scramble controls) using GSEA demonstrated
dysregulation of multiple gene sets associated with hypoxia and HIF1
signaling (Supplementary Table S1). Supervised clustering of desmoid
tumors (n ¼ 65) and normal mesenchymal tissues (n ¼ 8 skeletal
muscle and 9 fat samples), analyzed by U133A 2.0 gene array, revealed
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that HIF1- and angiogenesis-associated genes separated tumors and
normal tissue with 100% accuracy (Supplementary Table S2; Supple-
mentary Fig. S1). HIF1awas also detectable in immunoblots of a small
set of desmoids at levels proportional to b-catenin (Supplementary
Fig. S2A). In vitro, HIF1a protein was detected in desmoid cell lines at
levels higher than in control mesenchymal stem cells (Supplementary
Fig. S2B). Assessment of these cells by immunoblot after CTNNB1
knockdown showed not only decreasedb-catenin but also a decrease in
HIF1a protein and HIF1 luciferase reporter activity compared with
scramble controls (47%–57%, P ≤ 0.045 and 33%–44%, P ≤ 0.0029
reporter activity in DES9525 and 8163 cells, respectively; Fig. 1A
and B).

Reduction in HIF1A using shRNA did not inhibit desmoid cell
proliferation (Supplementary Fig. S2C and S2D), although knockdown
of CTNNB1 reproducibly reduced cell proliferation by >90% (P ≤
0.032; Supplementary Fig. S2E). Because HIF1a signaling was also
regulated byCTNNB1 in desmoid cells, we examined desmoid cells co-
cultured with HUVECs; a 3-fold increase in HUVEC tube formation
was noted in co-cultures compared with HUVECs grown alone;
conditioned media from desmoid cultures also induced VEGFR2
phosphorylation in HUVEC cells (Supplementary Fig. S3). Such
paracrine effects appeared to depend on both HIF1a and b-catenin;
HIF1A knockdown in desmoid cells led to decreased HUVEC tube
formation: 61% to 77% inDES9525 cells (P≤ 0.011) and 61% to 82% in
DES8163 cells (P≤ 0.0054; Fig. 1C). AbrogatedCTNNB1 expression in
desmoid cells similarly resulted in fewer HUVEC tubes when the
endothelial cells were co-culturedwithDES9525 (48%–52% reduction,
P < 0.001) or DES8163 cells (56%–75%, P < 0.001; Fig. 1D). Condi-
tioned media from both CTNNB1 and HIF1A knockdowns failed to
induce VEGFR2 phosphorylation in HUVECs as robustly as media
from control cultures and knockdown ofCTNNB1was associated with
decreased VEGF secretion as detected by ELISA (Fig. 1E and F;
Supplementary Fig. S4A). Enforced expression of HIF1A rescued
compromised HUVEC tube formation and VEGF secretion caused
by CTNNB1 knockdown, suggesting paracrine effects of desmoid cells
on HUVECs were mediated by b-catenin in a HIF1-dependent
manner (Fig. 1G and H; Supplementary Fig. S4B).

Sorafenib inhibits PDGFRb on desmoid cells to modulate
paracrine signaling and proliferation

We examined whether sorafenib, a VEGFR2 inhibitor, prevented
b-catenin/HIF1a paracrine signaling and proliferation. Relatively
high concentrations were required to inhibit proliferation of des-
moid cells grown under standard conditions (IC50 11 mmol/L and
13 mmol/L, respectively, for DES9525 and DES8163; Supplementary
Fig. S5). Addition of sorafenib to desmoid/HUVEC co-cultures
inhibited tube formation at significantly lower doses, however.
Sorafenib (1 mmol/L) inhibited HUVEC tube formation by 72%
in DES9525 co-cultures and 60% in DES8163 co-cultures (P ≤
0.045; Fig. 2A). Similar concentrations of sorafenib were sufficient
to suppress activation of VEGFR2 on HUVECs induced by des-
moid-conditioned media when sorafenib was added either to des-
moid cultures themselves or to endothelial cell cultures after
treatment with conditioned media (Fig. 2B). Addition of sorafenib
to desmoid cell cultures was associated with decreases in HIF1a
protein expression at concentrations at least as low as 1 mmol/L and
inhibited HIF1-mediated transcription as assessed by luciferase
reporter assays (by 54% and 38% in DES9525 and DES8163,
respectively, grown in 10 mmol/L, P ≤ 0.015; Fig. 2C and D).

Sorafenib did not alter cellular levels of b-catenin itself (not shown)
and given its ability to inhibit multiple tyrosine kinases, we examined

which were inhibited by the drug in desmoid cells and whether such
inhibition could modulate downstream effects of b-catenin. Sorafenib
specifically reduced PDGFRb phosphorylation in desmoid cells
(Fig. 3A). Stimulation of PDGFRb signaling by addition of PDGF-
BB to cultures resulted in increased PDGFRb andAkt phosphorylation
and increased HIF1a and HIF1-mediated transcription (by 100% in
DES9525 and 56% in DES8163, P ¼ 0.027 and 0.096,
respectively; Fig. 3B and C). The effect on PDGFR pathway activation
was completely inhibited by sorafenib at concentrations as low as
1 mmol/L (Fig. 3B). Addition of PDGF-BB to desmoid and HUVEC
co-cultures also increased HUVEC tube formation (by 34% in
DES9525, P ¼ 0.043 and 44% in a representative trial of
DES8163; Fig. 3C). In addition to modulating paracrine effects,
PDGF-BB was mitogenic, increasing desmoid proliferation by 51%
and 50% in DES9525 andDES8163, respectively (P ≤ 0.034 in each cell
line; Fig. 3D). This was associated with sensitization to sorafenib, with
reduced IC50s observed in both DES9525 and DES8163 cell lines after
addition of PDGF-BB to cell cultures (from 14 mmol/L to 10 mmol/L in
DES9525 and 15 mmol/L to 10 mmol/L in DES8163 after addition of
10 ng PDGF-BB; Fig. 3E). Together, these data indicate PDGFRb
signaling supports desmoid paracrine signaling and proliferation and
is inhibited by sorafenib.

c-Abl is a transcriptional target of b-catenin and its activity is
modulated by PDGFRb signaling

Knockdownofb-catenin hadminimal effect onHIF1A transcription
(not shown). ChIP-seq identified a potential b-catenin binding site in
the region of ABL1, previously reported to regulate HIF1a translation
(Supplementary Fig. S6A; ref. 27). This was confirmed by ChIP-qPCR
and expression of the gene was 54% lower inCTNNB1 knockdown cells
compared with scramble control based on RNA-seq (Supplementary
Fig. S6B; Supplementary Table S3). CTNNB1 knockdown caused 73%
to 79% downregulation of ABL1 mRNA expression by RT-PCR in
DES9525 (P ≤ 0.0069) and 38% downregulation in DES8163 (P ≤
0.0089; Fig. 4A). Immunoblotting confirmed this change was reflected
at the protein level and demonstrated concordant decreases in phos-
phorylation of c-Abl targets Crkl and CrkII (Fig. 4B). HIF1a expres-
sion was also downregulated in ABL1-deficient cells (Fig. 4C).

Inhibition of ABL1 also completely suppressed proliferation in
DES9525 and reduced proliferation by >50% in DES8163 cells
(Fig. 4D). Significant death in ABL1 knockdowns complicated the
ability to perform co-culture experiments to examine the role of c-Abl
in regulating HUVEC tube formation. However, supporting a role for
c-Abl/HIF1 in paracrine signaling toHUVEC cells, increasedVEGFR2
phosphorylation was not observed when HUVEC cells were treated
with conditioned media from desmoids in which ABL1 was knocked
down (Fig. 4E). To determine whether c-Abl is regulated by PDGFRb,
we examined the effect of PDGF-BB on phosphorylation of canonical
c-Abl targets; increased Crkl and CrkII phosphorylation were
observed, supporting such an interaction (Fig. 4F). Sorafenib inhibited
activation of these pathways (Fig. 4G). These results suggest c-Abl is a
novel transcriptional target of b-catenin, is essential for desmoid
survival, and regulates desmoid secretions via HIF1a.

Analysis of specimens from alliance protocol A091105 suggests
a role for PDGFRb/c-Abl signaling in prediction of desmoid
progression and response to sorafenib in patients

To determine whether PDGFRb/b-catenin/c-Abl/HIF1a signaling
was targeted by sorafenib in vivo, we examined biopsy samples from a
double-blind, randomized phase III placebo-controlled clinical trial of
sorafenib in desmoid patients (Alliance A091105, NCT02066181).
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Figure 1.

Desmoid cells promote endothelial cell tube formation by activating VEGFR2 in a HIF1A- and CTNNB1-dependent manner. A and B, Effect of CTNNB1 knockdown on
(A) HIF1a protein and (B) mRNA expression assessed by dual luciferase assay. C and D, Effect of knockdown of (C) HIF1A or (D) CTNNB1 in DES9525 or DES8163
desmoid cells on co-culture–induced HUVEC tube formation. Representative photos showHUVECs following co-culturewith DES9525 cells transduced as indicated;
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Fresh-frozen samples from pre- and post-treatment biopsies were
available in 8 patients treated with sorafenib (4 with partial response
and 4 with stable disease) and 7 patients on the placebo arm (2 with
progressive disease, 4 with stable disease, and 1 with partial response).
Patients treated with sorafenib had a median difference in normalized
pPDGRb values of �0.66 (IQR: �3.77–0.00) in post-treatment biop-
sies comparedwith placebo patients (�0.29; IQR: 0.47–0.27; P¼ 0.30),
and 6 of 8 (75%) sorafenib patients had a >50% decrease in pPDGFRb
compared with baseline compared with only 1 of 7 (14%) in patients
receiving placebo (P ¼ 0.041; Fig. 5A; Supplementary Fig. S7A).
Decreased phosphorylation of c-Abl was also more common in
post-treatment biopsies in patients treated with sorafenib compared
with placebo [median change �0.49 (IQR: �1.51–0.13) vs. 0.09
(IQR: 0.00–0.44); P ¼ 0.12; 62% vs. 14% of patients with >50%
reduction; P ¼ 0.12; Supplementary Fig. S7B and S7C]. Changes in
HIF1a expression were not specifically observed in response to
sorafenib (decreased in 38% of sorafenib-treated vs. 42% of placebo-
treated tumors).

Among patients receiving sorafenib, pronounced decrease in
phosphorylation of c-Abl was more commonly observed in patients
experiencing partial responses (3 of 4: 100% decrease) than in those
with stable disease (2 of 4: 70% decrease, 100% decrease). This
difference reflected higher baseline levels of pc-Abl in samples from
patients who responded to treatment. In fact, pc-Abl was, on
average, 5.3-fold higher in patients with response (after normali-
zation to vinculin, P ¼ 0.036) compared with those with stable
disease (Supplementary Fig. S8A–S8C). Phospho-PDGFRb levels

averaged 2.6-fold higher in patients who responded versus those
who did not, although this result was not statistically significant
(P ¼ 0.20). Interestingly, protein expression of b-catenin tended to
decrease in patients treated with sorafenib who responded (3 of 4 vs.
1 of 4 patients with stable disease), although this did not correlate
with a decrease in CTNNB1 mutant variant allele frequency as
assessed by RNA-seq (Fig. 5A; Supplementary Table S4).

Neither CTNNB1 mutation site nor variant frequency was clearly
associated with progression during active observation in the 7 patients
with biopsies available. When normalized to vinculin, baseline
pPDGFRb tended to be higher in patients with progressive disease
compared with those with stable disease in this cohort, but the small
sample size prohibited definitive analysis (3.9-fold; Supplementary
Fig. S9A and S9B). RNA-seq on DES9595 cells treated with PDGF-BB
identified EGR1 as significantly upregulated after PDGFRb stimula-
tion and IHC on a desmoid TMA showed pronounced variability in
in vivo expression (Supplementary Table S5; Supplementary Fig. S10).
We examined EGR1 expression in biopsies from 17 patients treated on
the placebo arm of Alliance A091105 (median follow-up 287 days). No
patients with increasing tumor size in the cohort remained on trial
until formal RECISTprogressionwas noted. If progressionwas defined
as clinical progression or >15% radiographic growth, however, those
with EGR1 staining in ≥50% of tumor cells had shorter PFS compared
with those with low EGR1 staining (median time to progression
123 days vs. not reached, P¼ 0.018; Fig. 5B). EGR1 staining appeared
to be more predictive in the context of observation than did FosB and
p21, markers of TERT-associated senescence, nominated by RNA-seq
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and GSEA on frozen baseline samples of two progressing and four
stable tumors on the placebo arm of the trial as potentially prognostic
(Supplementary Fig. S11; Supplementary Table S6). The association of
EGR1 and progression while on sorafenib could not be assessed due to
lack of events in the sorafenib arm, but EGR1 staining in ≥90% of
tumor cells was associatedwith less tumor shrinkage after four cycles of
drug (n ¼ 6, average growth 1.1 � 3.7%) compared with tumors with
less EGR1 staining (n ¼ 6, average shrinkage –17 � 4.9%; P ¼
0.02; Fig. 5C). EGR1 staining thresholds used for stratification in the
analyses were selected post hoc, but these results nominate PDGFR
pathway activation as a biomarker of response to sorafenib in desmoid
patients, and of progression in those under active observation.

Discussion
To understand the molecular biology underpinning variations in

desmoid behavior and sensitivity to active therapies including sor-
afenib (7, 8), we investigated the oncogenic targets of b-catenin in
desmoids and whether environmental signaling could alter their
activity to produce changes in desmoid behavior. Because the genes
most differentially regulated in desmoids (compared to normal mes-
enchymal tissues) do not include canonical b-catenin targets such as
CCND1 or AXIN2 (28), we performed RNA-seq on desmoid cells to
determine which genes b-catenin may regulate; many were associated
with angiogenesis and HIF1 signaling. This was not due to a direct
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transcriptional effect on HIF1A or HIF1B per our ChIP-seq data;
instead, we identified ABL1 as a b-catenin target that according to the
literature translationally regulates HIF1 components (27). Both
CTNNB1 andABL1 are necessary for HIF1a accumulation in desmoid
cells.We also found that c-Abl was necessary for bothHIF1-associated
paracrine activity and desmoid cell proliferation. Perhaps even more
interestingly, the activity of c-Abl as assessed by phosphorylation of its
canonical targets seems to be positively regulated by signaling through

PDGFRb, a protein implicated in desmoid pathogenesis (29). Taken
together, these data present a novel model in which oncogenic effects
of b-catenin are modulated not by secondary genomic events but
instead by environmental signaling, offering an alternative explanation
for desmoids’ variable behavior. We confirmed our in vitro results in
two cell lines with CTNNB1 S45F mutations; select results were also
confirmed in a cell line carrying the CTNNB1 T41Amutation because
previous reports have suggested that different b-catenin mutations
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may affect cells differently (Supplementary Fig. S12; ref. 30). This cell
line (DES3276), even after ectopic expression ofTERT, has a prolonged
doubling time, preventing complete analysis.

It is unclear whether the paracrine effects of HIF1a seen in vitro
have clinical relevance. Although HIF1-associated gene expression
differentiates desmoids from normal fat and skeletal muscle, whether
these are the appropriate normal mesenchymal controls is open to
debate. Also, CD34 staining for endothelial cells in banked specimens

showed few blood vessels (not shown), and HIF1a protein levels were
not altered by treatment in specimens obtained from patients on
the sorafenib armofAlliance trial A091105. Our identification of c-Abl
as a potential dependency in desmoids may more accurately inform
understanding of how tumors respond to current therapeutic regi-
mens. Both sorafenib and imatinib (used to treat desmoids, particu-
larly in Europe; ref. 31) inhibit PDGFRb, which activates c-Abl by
phosphorylation and can inhibit c-Abl directly. Preclinical data have
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also identified FAK inhibitors and dasatinib as potential therapies for
in vivo validation (32). Both inhibit Src kinase, which, like PDGFRb,
can positively regulate c-Abl via posttranslational modification
(Y412 phosphorylation). We show here that dasatinib, which inhibits
PDGFRb, c-Abl, and Src, inhibits proliferation at concentrations >10-
fold lower than sorafenib, suggesting targeting such an axis at
multiple levels may be even more efficient than targeting PDGFRb
and c-Abl alone (Supplementary Fig. S13). Whether these pathways
represent the end targets of other desmoid therapies such as gamma
secretase inhibitors is less clear. It is possible, however, as gamma
secretase substrates such as CD44 and ephrin family members are
highly expressed in desmoid cells (Supplementary Table S4) and
each has been associated with regulation of c-Abl and/or Src
activity (33–35).

The clinical relevance of a b-catenin/PDGFRb/c-Abl pathway was
interrogated using pre- and post-treatment biopsies from both the
sorafenib and placebo arms of Alliance A091105. The limited number
of samples prevents us from drawing definitive conclusions and effects
of sampling error could be significant. The CTNNB1 mutation could
not be detected in a subset of samples analyzed by immunoblot, which
could reflect low variant allele frequency, alternateAPCmutations that
could not be detected in this study because the genewas poorly covered
in our RNA-seq analysis (�25–75�), or sampling error, which would
affect the power of our analyses. Nonetheless, PDGFRb phosphory-
lation was generally reduced in patients following treatment with
sorafenib and baseline levels tended to be higher in patients who
responded to the drug compared with those who had stable disease.
This was consistent with in vitro findings demonstrating increased
sensitivity to sorafenib in cell lines pretreated with PDGF-BB to
stimulate PDGFRb signaling. Perhaps even more convincing, phos-
phorylation of c-Abl was significantly higher in 3 of 4 patients with
partial responses and available samples compared with those with
stable disease; in all cases, kinase activation appeared to drop precip-
itously after treatment. c-Abl phosphorylation as a predictive marker
of response may be more accurate than pPDGFRb if additional
pathways sensitive to sorafenib inhibition and upstream of c-Abl in
parallel signaling cascades also play a role in desmoid pathogenesis
(e.g., ephrins and MET are both inhibited by sorafenib and can
phosphorylate c-Abl via Src; refs. 36–38). Interestingly, ephrin regu-
lation of c-Abl is a targetable vulnerability in animal models of APC-
driven intestinal tumorigenesis, suggesting interplay of this pathway
with b-catenin signaling (39).

Surprisingly, c-Abl itself did not seem to predict progression during
active observation, although again small sample size severely limits our
ability to draw definitive conclusions. PDGFRb phosphorylation did
seem to be higher in the baseline specimen of one patient whose tumor
later progressed. To evaluate the association with outcomes of varia-
tions in activity in this pathway in a larger cohort, we identified EGR1
as a gene significantly upregulated in desmoid cells after treatment
with PDGF-BB. AsEGR1 stains accurately by IHC (40), we utilized this
as a surrogate for PDGFRb stimulation in baseline biopsies from 17
patients treated with placebo in Alliance A091105. In patients with
≥50% of tumor cells staining with EGR1, PFS was significantly shorter
than in patients with less robust EGR1 staining. This would be
concordant with activation of PDGFRb signaling predicting biologic
behavior during periods of active observation, although the link may
not be direct. EGR1 itself can bind to b-catenin to modulate its
transcriptional activity (41). In addition, it has been shown in other
systems to act as a downstream effector of Src (42). Future studies may
assess whether the protein itself plays a functional role in regulation of
desmoid oncogenesis.

Although analysis of PFS in patients treated with sorafenib was not
feasible due to lack of events, analysis of radiographic growth suggested
that high expression of EGR1 was associated with relative resistance to
sorafenib. In hepatocellular carcinoma, a similar phenomenon has
been noted and appears to reflect activation of parallel, upstream
oncogenic pathways less sensitive to sorafenib (e.g., MET/Akt/ERK;
ref. 43). We observed PDGFRb inhibition in patients treated with
sorafenib regardless of response. However, precipitous decreases in c-
Abl phosphorylation from high baseline and, in fact, any decrease in
Akt phosphorylation were observed only in patients with response.
Decreases in activation of at least one of these proteins was observed in
each of the patients with response (Fig. 5A). Post-treatment biopsies in
patients with response had decreases in a median of four of the five
markers total b-catenin, pAkt, pc-Abl, pCrkl, and HIF1a versus a
median of one in patients with stable disease. These suggest that
PDGFRb inhibition’s effects on downstream signaling pathways cor-
relates with sorafenib’s induction of significant tumor responses. This
result, along with the ability of EGR1 to predict desmoid progression
during observation, will need to be validated in secondary cohorts.
Validations would be particularly important, since thresholds for
defining desmoid subsets with high and low EGR1 staining were
determined post hoc, introducing bias.

Together these data identify a mechanism by which external
signaling pathways modify activity of b-catenin–mediated onco-
genesis in desmoid tumors. In the absence of secondary molecular
mutations that can lead to variable behavior during active obser-
vation or differences in drug response, environmental regulation
may play a dominant role in determining tumor phenotype. Our
molecular studies have nominated PDGFRb signaling as a potential
marker of aggressive and resistant disease. If validated, this finding
may significantly improve tailoring of therapy for patients with
desmoid-type fibromatosis.
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