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Abstract

Sequential Multiple-Assignment Randomized Trials (SMARTs) play an increasingly important 

role in psychological and behavioral health research. This experimental approach enables 

researchers to answer scientific questions about how to sequence and match interventions to the 

unique, changing needs of individuals. A variety of sample size planning resources for SMART 

studies have been developed, enabling researchers to plan SMARTs for addressing different 

types of scientific questions. However, relatively limited attention has been given to planning 

SMARTs with binary (dichotomous) outcomes, which often require higher sample sizes relative 

to continuous outcomes. Existing resources for estimating sample size requirements for SMARTs 

with binary outcomes do not consider the potential to improve power by including a baseline 

measurement and/or multiple repeated outcome measurements. The current paper addresses this 

issue by providing sample size planning simulation procedures and approximate formulas for two-

wave repeated measures binary outcomes (i.e., two measurement times for the outcome variable, 

before and after intervention delivery). The simulation results agree well with the formulas. We 

also discuss how to use simulations to calculate power for studies with more than two outcome 

measurement occasions. Results show that having at least one repeated measurement of the 

outcome can substantially improve power under certain conditions.
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Introduction

Adaptive interventions (also known as dynamic treatment regimens) play an increasingly 

important role in various domains of psychology, including clinical (Véronneau et al., 2016), 

organizational (Eden, 2017), educational (Majeika et al., 2020), and health psychology 

(Nahum-Shani et al., 2015). Designed to address the unique and changing needs of 

individuals, an adaptive intervention is a protocol that specify how the type, intensity (dose), 

or delivery modality of an intervention should be modified based on information about the 

individual’s status or progress over time.

As an example, suppose the adaptive intervention in Figure 1 was employed to reduce 

drug use among youth with cannabis use disorder attending intensive outpatient programs. 

This example is based on research by Stanger and colleagues (2019) but was modified 

for illustrative purposes. In this example, youth are initially offered standard contingency 

management (financial incentives for documented abstinence) with technology-based 

working memory training (a commercially available digital training program to improve 

working memory for youth, involving 25 sessions with eight training tasks per session). As 

part of the intervention, drug use is monitored weekly via urinalysis and alcohol breathalyzer 

tests over 14 weeks. Second, at week 4, youth who test positive or do not provide drug 

tests are classified as non-responders and are offered enhanced (i.e., higher magnitude) 

incentives; otherwise, youth continue with the initial intervention.

This example intervention is “adaptive” because time-varying information about the 

participant’s progress during the intervention (here, response status) is used to make 

subsequent intervention decisions (here, to decide whether to enhance the intensity of 

the incentives or continue with the initial intervention). Figure 1 shows how this adaptive 

intervention can be described with decision rules—a sequence of IF–THEN statements 

that specify, for each of several decision points (i.e., points in time in which intervention 

decisions should be made), which intervention to offer under different conditions. Note that 

this adaptive intervention includes a single tailoring variable: specifically, response status at 

week 4, measured based on drug tests. Tailoring variables are information used to decide 

whether and how to intervene (here, whether to offer enhanced incentives or not).

Importantly, an adaptive intervention is not a study design or an experimental design—it 

is an intervention design. Specifically, an adaptive intervention is a pre-specified protocol 

for use in practice (e.g., by health care professionals) to guide decisions about whether and 

how to intervene (Collins, 2018; Nahum-Shani & Almirall, 2019). However, in many cases, 

investigators have scientific questions about how to best construct an adaptive intervention; 

that is, how to select and adapt intervention options at each decision point to achieve 

effectiveness and scalability. Sequential multiple assignment randomized trials (SMARTs; 

Lavori & Dawson, 2000; Murphy, 2005) are increasingly employed in psychological 

research to empirically inform the development of adaptive interventions (for a review 

of studies see Ghosh et al., 2020). A SMART is an experimental design that includes 

multiple stages of randomizations and that can be used to provide information for choosing 

potential adaptive interventions. Each stage is intended to provide data for use in addressing 
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questions about how to intervene and under what conditions at a particular decision point. 

A SMART is not itself an adaptive intervention; instead, it is a randomized trial intended 

to gather scientific information to optimize an adaptive intervention. Multiple potential 

adaptive interventions are embedded in the SMART, and data from the SMART can be used 

to make causal inferences concerning their relative effectiveness.

Consider the working memory training SMART in Figure 2, which was designed to collect 

data to empirically inform the development of an adaptive intervention for youth with 

cannabis use disorders (Stanger et al., 2019). This trial was motivated by two questions: in 

the context of a 14-week contingency management intervention, (a) is it better to initially 

offer a technology-based intervention that focuses on improving working memory or not? 

and (b) is it better to enhance the magnitude of incentives or not for youth who do not 

respond to the initial intervention? These questions concern how to best intervene at two 

decision points—the first is at program entry and the second is at week four. Hence, the 

SMART in Figure 2 includes two stages of randomizations, corresponding to these two 

decision points. Specifically, at program entry youth with cannabis use disorders were 

provided a standard contingency management intervention and were randomized to either 

offer working memory training or not. Drug use was monitored weekly via urinalysis and 

alcohol breath tests over 14 weeks. At week 4, those who were drug positive or did not 

provide drug tests were classified as early non-responders and were re-randomized to either 

enhanced incentives or continue with the initial intervention, whereas those who were drug 

negative were classified as early responders and continued with the initial intervention 

option (i.e., responders were not re-randomized).

The multiple, sequential randomizations in this example SMART give rise to four 

“embedded” adaptive interventions (see Table 1). One of these adaptive interventions, 

labeled “Enhanced working memory training” and represented by cells D+E, was described 

earlier (Figure 1). Many SMART designs are motivated by scientific questions that concern 

the comparison between embedded adaptive interventions (Kilbourne et al., 2018; Patrick et 

al., 2020; Pfammatter et al., 2019). For example, is it better, in terms of abstinence at week 

14, to employ the “Enhanced working memory training” adaptive intervention (see Table 

1; also represented by cells D, E in Figure 2), or the “Enhanced incentives alone” adaptive 

intervention (represented by cells A, B in Figure 2)?

Both adaptive interventions offer enhanced incentives to non-responders while continuing 

the initial intervention for responders, but the former begins with working memory training 

whereas the latter does not.

The comparison between embedded adaptive interventions is often operationalized using 

repeated outcome measurements in the course of the trial (Dziak et al., 2019; Nahum-Shani 

et al., 2020), such as weekly abstinence over 14 weeks measured via weekly drug tests. 

Repeated outcome measurements in a SMART have both practical and scientific utility 

(Dziak et al., 2019; Nahum-Shani et al., 2020). They can be leveraged not only to make 

more precise comparisons of end-of-study outcomes, but also to estimate other quantities, 

such as area under the curve (AUC; see Almirall et al., 2016), phase-specific slopes, and 

delayed effects (see Nahum-Shani et al., 2020). Dziak and colleagues (2019) and Nahum-
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Shani and colleagues (2020) provide guidelines for analyzing data from SMART studies 

in which the repeated outcome measurements are either continuous or binary. However, 

although sample size planning resources for SMART studies with numerical repeated 

outcome measurements have been proposed (e.g., by Seewald et al., 2020), sample size 

planning resources have yet to be developed for binary repeated outcome measurements. 

The current paper seeks to close this gap by developing sample size resources for planning 

SMART studies with binary repeated outcomes measurements.

We begin by reviewing existing sample size planning resources for SMARTs with only 

an end-of-study binary outcome (i.e., not repeated measurements). We then extend this 

approach to include a pre-randomization baseline assessment (here called pretest for 

convenience) and show that this can increase power for comparing adaptive interventions 

in terms of an end-of-study outcome (i.e., an outcome measured post randomizations which 

refer to as posttest). In this paper, we provide simulation-based procedures (and R code) 

to calculate sample size requirements, or power for a given sample size, in a SMART 

with binary outcomes and two or more measurement occasions. In the special case of two 

occasions, we also derive an asymptotic sample size formula which agrees well empirically 

with the simulation results in the reasonable scenarios considered. We separately consider 

how to use simulations, constructed appropriately for the SMART context, to calculate 

power for studies with more than two outcome measurements; an example simulation 

is given in Appendix 1. It was not practical to derive useful formulas for more than 

two measurement times. We show by simulations, however, that adding more outcome 

measurements beyond pretest and posttest may or may not lead to substantial gains in power, 

depending on the scenario. Nonetheless, these additional measurements may be useful in 

answering highly novel secondary research questions, such as about delayed effects (see 

Dziak et al., 2019; Nahum-Shani et al., 2020). For convenience we begin by reviewing 

the derivation of power and sample size formulas, and then discussing settings where 

approximations can reasonably be made and settings where simulations might be more 

beneficial.

Sample Size Planning for Binary SMART

Suppose that in the process of planning the working memory training SMART (Figure 2), 

investigators would like to calculate the sample size required for comparing the ‘enhanced 

working memory training’ and the ‘enhanced incentives alone’ adaptive interventions (see 

Table 1). Note that the working memory training SMART is considered a “prototypical” 

SMART (Ghosh et al., 2020; Nahum-Shani et al., 2022). A prototypical SMART includes 

two stages of randomization, and the second-stage randomization is restricted to individuals 

who did not respond to the initial intervention. That is, only non-responders (to both initial 

options) are re-randomized to second-stage intervention options. More specifically, the 

first randomization stage involves randomizing all experimental participants to first stage 

intervention options. Next, response status is assessed. Individuals classified as responders 

are not re-randomized and typically continue with the initial intervention option. Individuals 

classified as non-responders are re-randomized to second-stage intervention options. Here, 

response status is a tailoring variable that is integrated in the SMART by design; that is, this 
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tailoring variable is included in each of the adaptive interventions embedded in this SMART 

(see Table 1).

Notation and Assumptions

Let A1 denote the indicator for the first-stage intervention options, coded +1 for working 

memory training, or −1 for no working memory training; let R denote the response status, 

coded 1 for responders and 0 for non-responders; and let A2 denote the indicator for the 

second-stage intervention options among non-responders, coded +1 for enhanced incentives 

and −1 for continuing without enhanced incentives. Throughout, we use upper-case letters 

to represent a random variable, and lower-case letters to represent a particular value of 

that random variable. Each of the four adaptive interventions embedded in the working 

memory training SMART (Figure 1) can be characterized by a pair of numbers (a1, a2), 

each +1 or −1. We write that a participant in a SMART study “follows” or “is compatible 

with” an adaptive intervention (a1, a2) if this participant’s first-stage intervention is a1, and 

if furthermore this participant is either responsive (R = 1) to the first-stage intervention, or 

else is not responsive (R = 0) and hence is offered second-stage intervention a2. Notice that 

this representation includes responders who were not assigned to a2 in practice, as long as 

they were assigned to a1; the intuition is that they might have been assigned to a2 if they had 

not responded. Thus, unlike in an ordinary randomized trial, the same participant (here, a 

responder) is compatible with more than one of the adaptive interventions being considered; 

data analytic approaches to handle this design feature are discussed further by Nahum-Shani 

and coauthors (2012) and Lu and coauthors (2016).

Let i = 1, …, n denote study participants. We assume that, for each i, the binary outcomes 

Y t, i are observed at time points t = 1, …, T . Let Ri(a1) denote the potential outcome of 

the response status variable (see accessible introduction in Marcus et al., 2012) for 

person i if that person is offered an adaptive intervention with initial option a1. Let Y t, i
(d)

or Y t, i(a1, a2) denote the potential outcome at time t for person i if offered an adaptive 

intervention d defined by intervention options (a1, a2). It is assumed that if Ri(a1) = 1, 

then Y t, i(a1, − 1) = Y t, i(a1, + 1), because responders cannot be impacted by the second-stage 

options, although they may still provide information about the effect of the first-stage 

options. Of course, for individuals with Ri(a1) = 0, Y t, i(a1, − 1) need not equal Y t, i(a1, + 1).

For the remainder of the manuscript, we assume that the investigator’s goal is to compare 

a pair of embedded adaptive interventions d = (a1, a2) and d′ = (a1
′ , a2

′), in terms of outcome 

probability at end-of-study. We start by reviewing the T = 1 case (final, end-of-study 

outcome only), then extend to T = 2 (baseline outcome and final outcome), and then explore 

T = 3 via simulations, using a flexible method that also allows for higher T . We assume 

for most of the paper that the logit link is being used, and that the estimand of interest Δ
is the log odds ratio of the end-of-study outcome between a pair of adaptive interventions. 

Throughout, we assume that the investigator wishes to choose a sample size n to achieve 

adequate power to test the null hypothesis Δ = 0. Similar to Kidwell and colleagues 

(2019) and Seewald and colleagues (2020), we assume that the pair of embedded adaptive 

interventions being compared differs in at least the first-stage intervention option A1. We 
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also assume that there are no baseline covariates are being adjusted for. In general this is 

a conservative assumption because adjusting for baseline covariates sometimes improves 

power and usually does not worsen it (Kidwell et al., 2018).

Recall that the asymptotic sampling variance of a parameter is inversely proportional to the 

sample size. Across a very wide range of models, the required sample size n to test a null 

hypothesis Δ = 0 with power q and two-sided level α can be written as

n ≥ zq + z1 − α ∕ 2
2 σΔ

2

Δ2

(1)

where zq = Φ−1(q) is the normal quantile corresponding to the desired power, Δ is the 

parameter of interest, and σΔ
2 is a quantity such that for a given sample size n, Var(Δ) = σΔ

2 ∕ n
is its sampling variance; see Derivation 1 in the Appendix 2. The main challenge is to find 

a formula for σΔ
2 which fits the model and design of interest, and which can be calculated 

from intuitively interpretable quantities, for which reasonable guesses could be elicited from 

a subject matter expert. In this paper we assume that the parameter of interest is the log odds 

ratio between outcomes for a comparison of two embedded adaptive interventions differing 

at least in first intervention option. That is, the null hypothesis is Δ = 0 where

Δ = logit(μ(d)) − logit(μ(d′)) = log

μ(d)
1 − μ(d)

μ(d′)
1 − μ(d′)

,

where μ(d) = E Y (d) = P Y (d) = 1  be the expected value of the binary end-of-study outcome 

for a participant who follows embedded adaptive intervention d. Other quantities of interest, 

such as the probability ratio, are also possible.

Parameters Required for Calculating Sample Size

Even after the parameter of interest has been defined and a proposed true value for it 

has been elicited, more information is still needed to estimate a sample size requirement. 

These pieces of information could be described as nuisance parameters, although some 

may be of secondary research interest in their own right. Specifically, let rd = E(R(d) = 1)
be the probability that an individual given adaptive intervention d will be a responder. We 

assume that rd depends only on a1 and not on a2, because the second-stage intervention is 

not assigned until after response status is assessed, but it is still convenient to use the d
subscript, with the understanding that rd and rd′ will be the same for adaptive interventions 

having the same a1. In Appendix 2, we also make consistency assumptions that imply that 

μ(d) = P(Y (d) = 1 ∣ A1 = a1, A2 = a2) and rd = P(R = 1 ∣ A1 = a1). μ(d) is taken marginally over R, 

representing the overall average success probability for non-responders who were assigned 

to first-stage option a1 and second-state option a2, as well as for responders who were 
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assigned to first-stage option a1 only. Thus, μ(d) is different from the mean response of 

individuals who were offered both a1 and a2 in practice.

Let ψ(d0) = P(Y (d) = 1 ∣ R(d) = 0) and ψ(d1) = P(Y (d) = 1 ∣ R(d) = 1) denote the end-of-study 

outcome probabilities for non-responders and responders, respectively, given intervention 

and response status. These parameters represent expected values which are conditional 

on R. These parameters can be elicited from investigators by asking them to specify 

the hypothesized probabilities that Y = 1 in the six cells A-F in Figure 2. For adaptive 

intervention d = (a1, a2), ψ(d0) corresponds to the probability that Y = 1 for someone who 

did not respond to first-stage intervention option a1 and was then offered second-stage 

intervention option a2. Also, ψ(d1) corresponds to the probability that Y = 1 for someone 

who responded to a1. Because responders are not impacted by intervention option a2, ψ(d1)

is equal for any two adaptive interventions having the same a1, whereas ψ(d0) is potentially 

different for each adaptive intervention. Although ψ(d1) in particular does not depend on the 

second-stage option comprising an adaptive intervention, it is still convenient to apply the 

shorthand superscript d here instead of a1(d), because the adaptive intervention as a whole is 

assumed to be the target of inference in the analysis.

In the next section, we discuss two options for calculating sample size. The first option 

requires eliciting hypothetical values of the ψ(d0) and ψ(d1) parameters, which are the end-of-

study outcome probabilities conditional on both the intervention options and response status. 

The second option requires eliciting hypothetical values of the μ(d) parameters, which are 

the end-of-study outcome probabilities given the embedded adaptive interventions; these 

probabilities are conditional only on the intervention options and are marginal over (i.e., 

average across levels of) response status.

Sample Size Requirements for Posttest Only: A Single Measurement time

Let V d = E Y (d) − μ(d) 2
 be the variance of Y (d), marginal over R. Thus V d equals 

μ(d) 1 − μ(d)  because Y (d) is a binary outcome. Also, let V d0 = E Y (d) − μ(d) 2 ∣ R = 0

and V d1 = E Y (d) − μ(d) 2 ∣ R = 1  be the expected squared conditional residuals from the 

marginal expected outcome for a non-responder or responder, respectively, who follows 

embedded adaptive intervention d. By standard consistency assumptions (see Appendix 2), 

V d0 can also be written as E (Y − μ)2 ∣ A1 = a1(d) , R = 0, A2 = a2(d) , and V d1 can also be 

written as E((Y − μ)2 ∣ A1 = a1(d), R = 1), where a1(d) and a2(d) are the intervention options 

comprising adaptive intervention d. The quantities V d0 and V d1 can be calculated indirectly 

from the elicited probabilities, because
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V d0 = E Y (d) − μ(d) 2 ∣ R = 0

= E Y (d) − ψ(d0) 2 ∣ R = 0 + E ψ(d0) − μ(d) 2 ∣ R = 0

+ 2E( Y (d) − ψ(d0) ψ(d0) − μ(d) ∣ R = 0)

= ψ(d0) 1 − ψ(d0) + ψ(d0) − μ(d) 2 + 0

= ψ(d0) 1 − ψ(d0) + rd
2 ψ(d1) − ψ(d0) 2,

and similarly

V d1 = E (Y (d) − μ(d))2 ∣ R = 1
= ψ(d1)(1 − ψ(d1)) + (1 − rd)2(ψ(d1) − ψ(d0))2 .

Hence, V d0 and V d1 can be interpreted as the variances of Y (d) conditional on R = 0 or R = 1, 

plus an extra quantity that can be interpreted as the effect of response status.

These expressions lead to a sample size recommendation for a pairwise comparison of two 

adaptive interventions differing at least on stage-1 recommendation. Specifically,

n ≥
zq + z1 − α

2
2 4(1 − rd)V d0 + 2rdV d1

V d
2 + 4(1 − rd′)V d′0 + 2rd′V d′1

V d′
2

Δ2 ,

(2)

where Δ is the true log odds ratio between the adaptive interventions.

Appendix 2 describes how we derived the expression above, using standard causal 

assumptions, from a sandwich covariance formula

Cov(θ) = 1
nB−1MB−1 .

Here B = E ∑d w(d)V dxd
Txd = ∑d V dxd

Txd where xd is the design matrix expressing adaptive 

intervention d, w(d) is the weight of a given individual under adaptive intervention d, and

M = E ∑
d

w(d)V d
−1xd

T(Y − μ(d))
⊗ 2

.

Note that weights are employed because non-responders are randomized twice (with 

probability ½ each time) whereas responders are randomized once (with probability ½), 

so that the former are under represented in the sample mean under a specific embedded 

adaptive intervention d (i.e., they have ¼ change of folowing d whereas responders have 

½ chance). Thus, inverse probability weights are used (i.e., 4 for non-responders and 2 for 

responders) to correct for this underrepresentation (see details in Nahum-Shani et al., 2012 
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and Dziak et al., 2019). Because of the definition of the weights, M simplifies to a diagonal 

matrix with entries

4(1 − rd)V d0 + 2rdV d1 .

It is assumed that the target contrast can be written as cTθ for some vector c, where

σΔ
2 = 1

nVar(cTθ) = cTVar 1
nθ c = cT(B−1MB−1)c .

In the case of the logistic regression model, this would be true for a pairwise log odds 

ratio. For a pairwise comparison between adaptive interventions d and d′, the researcher 

would set cd = + 1, cd′ = − 1, and other entries of c to zero. After some algebra, the sandwich 

covariance therefore implies Equation (2). Details are given in Appendix 2.

It appears at first that formula (2) requires specifying hypothetical values for all 

probabilities, both conditional on R and marginal over R, because V d0 and V d1 depend on 

both sets of probabilities. However, in practice only the conditional probabilities ψ(d0) and 

ψ(d1) for each adaptive intervention and the response rate need to be specified, because the 

marginal probabilities can then be computed by expectations: μ(d) = (1 − rd)ψ(d0) + rdψ(d1). 

However, although μ(d) can be computed from ψ(d0), ψ(d1), and rd, additional assumptions 

would be needed to compute ψ(d0) and ψ(d1) from μ(d) and rd.

Kidwell and colleagues (2018) provide an alternative formula, which (in terms of our 

notation) assumes that V d0 ≤ V d, V d1 ≤ V d, V d′0 ≤ V d′, and V d′1 ≤ V d′. Under these variance 

assumptions, the approximate required sample size is

n ≥ 2 zq + z1 − α ∕ 2
2

Δ2
2 − rd

V d
+ 2 − rd′

V d′
.

(3)

Under the further simplifying assumption that the proportion of responders is equal in the 

two adaptive interventions being compared (rd = rd′ = r), expression (2) simplifies to

n ≥ 2(2 − r) zq + z1 − α ∕ 2
2

Δ2
1

V d + V d′
.

The sample size formula above is equivalent to a sample size formula for a two-arm RCT 

with binary outcome, multiplied by the quantity 2 − r, which Kidwell and colleagues (2018) 

interpreted as a design effect. In practice, this formula requires eliciting hypothetical values 

for the marginal outcome probabilities μd for each adaptive intervention of interest, and the 

response rate r. Based on these parameters, one can calculate the variance V d = μd(1 − μd) for 

each adaptive intervention and calculate the log odds ratio = (μd ∕ (1 − μd)) ∕ (μd′ ∕ (1 − μd′)).
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Both formula (2) and formula (3) require that the proportion of responders be elicited. 

Kidwell and colleagues (2019) note that setting r = 0 provides a conservative upper bound 

on required sample size, but the resulting approximation is very pessimistic and may lead to 

an infeasibly high recommendation.

Both formula (2), which we describe here as a conditional-probabilities-based (CPB) 

formula, and formula (3) which we describe as a marginal-probabilities-based (MPB) 

formula, have advantages and disadvantages. The marginal formula requires additional 

assumptions, but then requires fewer parameters to be elicited. Furthermore, the marginal 

probabilities are related directly to the marginal log odds ratio of interest for comparing 

embedded adaptive interventions. In other words, since the hypothesis concerns the 

comparison of two embedded adaptive interventions, it may be more straightforward for 

many investigators to specify parameters that describe the characteristics of these adaptive 

intervention, rather than their corresponding cells. However, other researchers may find the 

conditional probabilities for each cell comprising the adaptive interventions of interest more 

intuitive to elicit, as they directly correspond to the randomization structure of the SMART 

being planned. In the following section, we extend both formulas to settings with a baseline 

measurement of the outcome.

Sample Size Requirements for Pretest and Posttest: Two Measurement Times

Power in experimental studies can often be improved by considering a baseline (pre-

randomization) assessment as well as the end-of-study outcome (see Benkeser et al., 2021; 

Vickers & Altman, 2001). These are sometimes described as a pretest and posttest; here, 

we refer to them as Y 0 and Y 1. The pretest is assumed to be measured prior to the initial 

randomization, and therefore causally unrelated to the randomly assigned interventions. The 

pretest could either be included as a covariate, or else could be modeled as a repeated 

measure in a multilevel model; we assume the latter approach in the sample size derivations. 

Below we provide formulas that are similar to (2) and (3), but take advantage of additional 

information from the baseline measurement.

Let μ(0) = E(Y 0) be the expected value for the baseline measurement of the outcome at the 

beginning of the study. Here, neither Y 0 nor μ(0) are indexed by adaptive intervention d, 

because Y 0 is measured prior to randomization. Let μ(d) = E Y 1
(d)  be the expected value for 

the end-of-study measurement of the outcome for an individual given adaptive intervention 

d. Then by Derivation 4 in Appendix 2, the approximate required sample size can be written 

as

n = zq + z1 − α ∕ 2
2

Δ2 cTB−1MB−1c

(4)

where the formulas for c, B, and M are derived in Appendix 2. The derivation 

comes from a sandwich covariance formula as in the posttest-only case, and follows 

the general ideas of Lu and colleagues (2016) and Seewald and colleagues (2020). 
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Specifically B = ∑d Xd
TSdXd where Gd is a 2 × 2 diagonal matrix with entries Var(Y 0

(d))
and Var(Y 1

(d)), Rd is the 2 × 2 within-person correlation matrix between Y 0
(d) and Y 1

(d), and 

Sd = Gd

1
2Rd

−1Gd

1
2. Under some assumptions (see Appendix 2), M can be approximated by 

∑d 4(1 − rd)Dd
TV d

−1V d0V d
−1Dd + ∑d 2rdDd

TV d
−1V d1V d

−1Dd.

A formula like (4) can be implemented in code but provides little intuitive understanding. 

However, under the further assumption that the variance is independent of response status 

given adaptive intervention received, equation (4) simplifies to the following:

n = (2 − r) zq + z1 − α ∕ 2
2

Δ2
4 − 3ρ2

2V d
− ρ2

V dV d′
+ 4 − 3ρ2

2V d′
.

(5)

The key to the simplifications used in deriving (5) is that B and M can each be expressed 

as an “arrowhead” matrix, i.e., a matrix which is all zeroes except for the main diagonal, the 

first row, and the first column, and therefore can be inverted by simple algebra, using the 

formula of Salkuyeh and Beik (2018). Details are given in Appendix 2.

Although in practice, it is very unlikely that variance will be independent of response status, 

we use this approximation to generate a formula that is more interpretable and accessible. 

The performance of this formula is evaluated later in the simulation studies, where the 

variance and response status are dependent. Expression (4) is again a CPB formula and 

Expression (5) is a MPB formula. If the pretest provides no information about the posttest, 

so that ρ = 0, then expression (5) simplifies to expression (3), which was the sample size 

formula of Kidwell and colleagues (2019). In other words, using an uninformative pretest 

(ρ = 0) is approximately the same as ignoring the pretest.

Beyond Pretest and Posttest: More than Two Measurement Times

For a SMART with more than two measurement times (i.e., more than pretest and posttest), 

an easily interpretable formula is not possible without making assumptions that would 

be unrealistic in the binary case. Seewald and colleagues (2020) provide both a general 

and a simplified sample size formula for comparing a numerical, end-of-study outcome 

in longitudinal SMARTs. However, the simplified formula relies on the assumption of 

homoskedasticity across embedded adaptive interventions and measurement occasions, 

and exchangeable correlation between measurement occasions. In a binary setting, these 

simplifying assumptions are less realistic because two binary random variables cannot have 

equal variance unless they also have either equal (e.g., .20 and .20) or exactly opposite 

means (e.g., .20 and .80). Determining sample size requirements via simulations would be a 

feasible alternative in this setting (see Appendix 1).

However, if the investigator prefers not to use simulations, then we propose using the 

two-measurement-occasion formulas as approximations for planning SMARTs with more 

than two measurement occasions. Simulations shown in Appendix 1 suggest that the 

resulting sample size estimates would be reasonable. Although taking more measurement 
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occasions into account might provide somewhat higher predicted power, this would depend 

on the assumed and true correlation structure and the design assumptions of the SMART. 

The power could also depend on assumptions concerning the shape of change trajectories 

within the first- and second-stage of the design (e.g., linear, quadratic, etc.), which might 

become difficult to elicit. Therefore, although more sophisticated power formulas might be 

developed, they might offer diminishing returns versus a simpler formula or a simulation. In 

the next section we discuss the use of simulations to calculate power for settings with more 

than two measurement times and to investigate the properties of the sample size formulas 

described earlier.

Simulation Experiments

In order to test whether the proposed sample size formulas work well, it is necessary 

to simulate data from SMART studies with repeated binary outcome measurements. 

Furthermore, simulation code can be relatively easily extended to situations in which the 

simplifying assumptions of the formulas do not apply. Below we discuss two simulation 

experiments. The first is designed to assess performance of the power formulas. This is 

done by comparing, for fixed sample sizes, the power estimated based on the sample size 

formulas to the power calculated from simulations. The second is designed to assess the 

performance of the sample size formulas as well as to investigate the extent of reduction in 

required sample size obtainable by taking pretest into account. This is done by comparing, 

for a fixed target power, estimates of the required sample sizes given by the various formulas 

to simulated sample size requirements.

Simulation Experiment 1: Performance of Power Formulas

A factorial simulation experiment was performed based on a SMART design with 

two measurement times. This experiment investigates the ability of the sample size 

formulas to choose a sample size which is large enough to achieve 0.80 power under 

specified assumptions. All simulation code is available online at https://github.com/d3lab-

isr/Binary_SMART_Power_Simulations or via https://d3lab.isr.umich.edu/software/ . The 

experiment is designed to answer the following questions: First, do the proposed sample 

size formulas accurately predict power compared to the power estimated via simulations? 

Second, how much does the estimated power change by using the CPB approach in 

Expression (2), versus the MPB approach in Expression (3)? Third, to what extent does 

using a pretest result in efficiency gains (i.e., higher power for a given sample size) when 

comparing adaptive interventions based on repeated binary outcome measurements? Fourth, 

if the pretest is to be used in the model, is there a relative advantage or disadvantage to 

including the pretest as a covariate (and only the posttest as an outcome), versus modeling 

both the pretest and the posttest in a repeated measurement model? We used simulations to 

answer these questions under a scenario with hypothesized true parameters described below.

Methods—Data was simulated to mimic a prototypical SMART study, similar to the 

working memory training SMART in Figure 1. Randomization probabilities were set to be 

equal (50% each) for first-stage intervention options for each simulated participant, as well 

as for second-stage intervention options for each simulated non-responder. We assume there 
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are two outcome measurement occasions: a baseline measurement before randomization 

(pretest), and an end-of-study outcome measurement (posttest). 10,000 datasets were 

simulated and analyzed per scenario (combination of effect size and sample size).

We assumed that the contrast of interest is the end-of-study log odds of drug use between 

the “enhanced working memory” (+1, −1) and the “enhanced incentives alone” (−1, +1) 

adaptive interventions (Table 1). Also, the data were simulated under the assumption of no 

attrition (study dropout). In practice a researcher should inflate the final estimate of required 

sample size to protect against a reasonable estimate of attrition probability.

We compared the power predictions obtained by using the different formulas available 

for σΔ
2, with simulated power estimates. Specifically, we considered power calculated 

from expression (1) using the CPB estimates and MPB estimates for σΔ
2, which would 

correspond to the sample size recommendations in expressions (3) and (5), respectively. We 

generated samples of either n = 300 or n = 500, in which the true correlation structure was 

either independent (ρ = 0) or correlated with correlation ρ = .3 or ρ = .5. The datasets were 

simulated using the approach described below.

Steps in Simulating Datasets.: We first generated a random dummy variable for baseline 

abstinence Y 0 with probability E(Y 0) = A0. Next, A1 was randomly assigned to +1 or −1 with 

equal probability. Then, R was generated as a random binary variable (0 or 1) such that 

the log odds of R = 1 was set to −.62 + Y 0 + .5A1. The intercept −.62 was chosen to give an 

overall response rate of about 56% in the A1 = + 1 arm and 33% in the A1 = − 1 arm, or 

about 45% overall. Thus, we assume that in general most participants are responders, with 

an advantage to those receiving working memory training. The correlation between Y 0 and R
was about .23.

Finally, the end-of-study outcome Y 1 was generated. For convenience, A2 and A1 × A2 were set 

to have zero effect, and the effect of A1 was set so that the marginal odds ratio between a pair 

of adaptive interventions differing on A1 would be approximately 1.5, 2, or 3, depending on 

the condition. These values are within the ranges which would be considered small, medium 

and large, respectively, by Olivier, May and Bell (2017). The conditional expected value for 

the final outcome Y 1 is given by the model

logit E(Y 1 ∣ Y 0, A1, R, A2) = β0 + βY0Y 0 + βA1A1 + βRR + βA2A2 + βA1A2A1A2 .

(6)

The values for βA2 and βA1A2 were set to zero for simplicity, and the other values were 

determined by trial and error to give the desired marginal quantities and are provided in 

Table 2.

Analysis of Simulated Datasets.: The model was fit using weighted and replicated 

estimating equations (see Dziak et al., 2019; Lu et al., 2016; Nahum-Shani et al., 2020) with 

either working independence or working exchangeable correlation. The latter is equivalent 

here to working AR-1 because there are only two waves (measurement occasions). Three 
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forms of the twowave model were fit separately: an analysis of the posttest adjusted for 

pretest as a covariate, a repeated measures analysis with working independence, and a 

repeated measures analysis with working exchangeable correlation. Tests were done at the 

standard two-sided Type 1 error rate of .05.

Computation of Marginal Correlation for Formulas.: Although the two-wave power 

formulas take the marginal pretest–posttest correlation as an input, this parameter was not 

directly specified in the simulation code, because a simulation requires fully conditional 

models to be specified. Therefore, for purposes of calculating power via the formula for a 

given condition, we used the average marginal correlation estimate obtained from applying 

the weighted and replicated analysis (marginal over R) to the simulated datasets generated 

for this specific condition.

Results—With respect to the first motivating question (do the proposed sample size 

formulas accurately predict power compared to the power estimated via simulations), the 

results of the simulations (Table 3) are very encouraging. First, at least under the conditions 

simulated, the proposed sample size formulas do predict power accurately compared to the 

power which is estimated via simulations. As would be expected, power is higher when the 

effects size is higher and/or the sample size is higher.

The second motivating question concerns the extent that the estimated power will change 

by using the CPB approach in Expression (2) versus the MPB approach in Expression 

(3). The results indicate that the MPB and the CPB formulas are equivalent in the one-

wave (posttest–only) case. However, these formulas differ slightly from each other in the 

pretest–posttest scenarios, with the MPB approach being slightly conservative, and the CPB 

approach being sometimes slightly overly optimistic.

The third question motivating this experiment concerns the extent that using a pretest will 

result in efficiency gains when comparing adaptive interventions. The results indicate that 

power is often higher when using a pretest–posttest model than with a posttest-only model, 

although this depends on within-subject correlation. There is no difference in power between 

these approaches when the pretest–posttest correlation is negligible (0.06) and only a very 

small difference when the pretest–posttest correlation is small (0.3), but there is a large 

difference when the pretest–posttest correlation is sizable (0.6). For example, with an odds 

ratio of 2 and sample size of 200, the one-wave approach has unacceptably low power of 

65%, while the two-wave approach has a much better power of 85%.

Finally, the fourth motivating question concerns the relative advantage or disadvantage 

to including the pretest as a covariate versus as a measurement occasion in a 

repeated-measurement model. For purposes of calculating power for comparing adaptive 

interventions, the working independence analysis was found to be exactly equivalent to 

a posttest-only analysis, and the covariate-adjusted analysis was essentially equivalent 

to the exchangeable analysis. Therefore, we focus on comparing results for the non-

independent repeated-measures analysis versus the posttest-only analysis. Because we found 

the simulated power with a pretest covariate to be approximately the same as the simulated 

power with repeated measures, they are represented by the same column under the Two-
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Waves heading. This near equivalence may result from the intervention options being 

randomized in the current settings; had there been confounding, the two models might have 

dealt with it differently, leading to differences in power and accuracy.

Simulation Experiment 2: Performance of Sample Size Formulas

This simulation was intended to study the ability of the sample size formulas to choose 

a sample size which is large enough to achieve a specified power (set here to .80) under 

specified assumptions, but which is not too large to undermine the feasibility of the study. 

The questions were analogous to the previous three. First, do the proposed sample size 

formulas give similar sample size predictions to those obtained from simulations? Second, 

how much does the estimated sample size change by using the CPB sample size formulas 

(2) and (4) versus the MPB sample size formulas (3) and (5)? Third, to what extent can 

the required sample size be reduced, under given assumptions, by taking the pretest–posttest 

correlation into account?

Method—Ordinarily, Monte Carlo simulations do not directly provide a needed sample 

size, but only an estimated power for a given sample size. However, by simulating various 

points of a power curve and interpolating, it is practical to use simulations to approximate 

the required sample size. We consider the inverse normal (probit) transform of power, 

Φ−1(q), to be approximately linearly associated with N, based on the form of Equation 

(1) and the fact that sampling variance is inversely proportional to N. That is, we assume 

Φ−1(q) ≈ a + bN for some a and b . Therefore, using the same scenarios as in the previous 

experiment, we perform simulations for several sample sizes in the range of interest and 

fit a probit model to relate the predicted power to each sample size. The needed sample 

size is then roughly estimated as N = (Φ−1(.80) − a) ∕ b . 2, 000 datasets were simulated and 

analyzed per effect size scenario, each on a grid of 10 potential sample sizes.

Results—The first question motivating this simulation experiment focused on whether the 

proposed sample size formulas provide similar sample size predictions to those obtained 

from simulations. Consistent with the results of the first simulation experiment, the results 

of the current experiment (Table 4) indicate that the formulas approximately agree with each 

other, and with the simulations, on the required sample size.

The second motivating question concerns the extent that the estimated sample size changes 

by using the CPB versus the MPB sample size formulas. As in the first simulation 

experiment, we found the MPB approach and CPB approach to be practically equivalent 

in the posttest-only case. In the pretest–posttest case, the MPB approach was found to 

be slightly conservative and the CPB approach was found to be slightly anticonservative, 

probably making the MPB approach the safer choice.

Finally, the third question motivating this experiment concerned the extent to which the 

required sample size can be reduced by taking the pretest–posttest correlation into account. 

The results indicate that taking pretest–posttest correlation into account reduces the required 

sample size. As would be expected from the previous simulation experiment, results showed 
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that the required sample size for adequate power can be reduced dramatically (possibly by 

hundreds of participants) by employing a pretest–posttest approach instead of posttest-only.

Discussion

The current manuscript addresses an important gap in planning resources for SMART 

studies by providing new sample size simulation procedures, as well as approximate 

asymptotic sample size formulas, for SMARTs with binary outcomes. These sample size 

resources enable researchers to consider the inclusion of a pretest when calculating sample 

size requirements for comparing adaptive interventions. Two simulation experiments show 

that the new formulas perform well under various realistic scenarios. Given the increased 

uptake of SMART studies in behavioral science (see Ghosh et al., 2020; Nahum-Shani et al., 

2022) and the high prevalence of binary outcome data in many domains of psychological 

and behavioral health research, the proposed sample size formulas have the potential to 

contribute to the development of adaptive interventions across multiple fields.

Our simulation results show that taking into account the inclusion of a pretest (i.e., the 

pretest–posttest correlation) in power calculations leads to smaller sample size requirements 

than comparing end-of-study outcomes (i.e., posttest) alone. While the sample size savings 

in some scenarios are relatively small, in other scenarios they are quite substantial, making 

the SMART design more feasible when resources are limited. Overall, these results suggest 

that when planning SMART studies with binary outcomes, investigators can potentially 

improve power by including a baseline measurement. This pretest may be included either as 

a measurement occasion in a repeated measurement model, or as a covariate, with similar 

power benefits.

The results also indicate that modeling more outcome measurement occasions beyond 

pretest and posttest may have diminishing returns in terms of power for comparing 

end-of-study (posttest) outcomes between adaptive interventions. However, intermediate 

measurements between pretest and posttest may be vital for secondary research questions 

about other estimands, such as delayed effects, which are not considered here (see 

Dziak et al., 2019). Systematic investigation of the extent of efficiency gained per added 

measurement occasion is needed to better assess the tradeoff between adding measurement 

occasions versus adding participants to the study in terms of power for a given hypothesis.

For the pretest–posttest case, we provided both simple asymptotic formulas and simulation 

code. Simulations have the advantage of being more easily adapted to different designs 

or situations, and do not require as many simplifying approximations as the asymptotic 

formulas do, although of course both require assumptions about parameter values.

Limitations and Directions for Future Research

Careful consideration of assumptions, preferably with sensitivity analyses, is still important 

for sample size planning. It would not be reasonable to argue that planning sample size to 

achieve exactly .80 power (and no more) is the best approach in general. More conservative 

sample size approaches may provide more capacity to handle unexpected situations such as 

higher than anticipated attrition. However, in some cases, an unreasonably high estimated 
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sample size requirement would make it difficult to justify the conduct of a study given 

realistic funding or participant recruitment constraints. Hence, calculating predicted power 

with as much precision as possible, for a given set of assumptions, is desirable.

In this paper we have used the ordinary Pearson correlation coefficient, even for describing 

the relationship between binary variables. This is valid and convenient, and it follows the 

way correlation is operationalized in, for instance, generalized estimating equations (Liang 

& Zeger, 1986). However, there are other alternative measures available such as tetrachoric 

correlation (Bonnett & Price, 2005) which could optionally be explored. One limitation 

which might be encountered when choosing parameters for simulations is that very high 

correlations might lead to complete separation (parameter unidentifiability due to frequentist 

estimates of certain conditional probabilities being at zero or one). This is a known 

limitation of binary data, but it might be avoided in simulations by specifying correlations 

that are not very high, yet still realistic, and in data analysis by either simplifying the model 

or using priors.

This paper has assumed that sample size calculations would be motivated by a primary 

question involving a pairwise comparison between two adaptive interventions. However, 

other estimands could be considered in secondary analyses once the data are gathered. 

Future studies may extend the sample size planning resources provided in this manuscript 

to accommodate other planned analyses of binary outcome data from a SMART, such as a 

multiple comparisons with the best adaptive intervention (Artman et al., 2020; Ertefaie et al., 

2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

Simulation Illustrating Three-Wave Analysis

In this appendix we assume that there are two different follow-up times per participant, Y 1

and Y 2, instead of a single end-of-study (posttest) outcome Y 1, so that there are now three 

measurement occasions per participant. For simplicity we assume here that both follow-up 

times occur after the second treatment phase. Therefore, the variables for a given individual 

in the study would be observed in the following order: pretest Y 0, initial randomization A1, 

tailoring variable R, second randomization A2 for nonresponders, first follow-up Y 1, second 

follow-up Y 2. This results in a somewhat different and simpler setting compared to that of 

Seewald (2020), who considered (in the linear modeling case) a mid-study outcome taken 

about the same time as R, and preceding the second randomization.

In the current setting, the second outcome Y 2 can potentially depend on any of Y 0, A1, R, A2, 

and Y 1, making a very wide range of different DAGs and simulation scenarios possible. For 

simplicity, we chose scenarios in which Y 2 depends on Y 1 but is conditionally independent of 

most or all the other preceding variables given Y 1.

Specifically, we continue to assume the same parameters used in the “high” correlation 

setting from Simulations 1 and 2 when simulating Y 0 and Y 1. We then further assume one 

of two scenarios for the relationship of Y 2 to the preceding variables. In the “no delayed 

effect” scenario, Y 2 depends on the preceding variables only through Y 1, and is conditionally 

independent of all other variables given Y 1, as if in a Markov chain. Thus, the effect of A1 on 

Y 2 is mediated entirely by Y 1. In the “delayed effect” scenario, A1 has an effect on Y 2 which is 

only partly mediated by Y 1.

The conditional models used for these two scenarios are as follows. For the “no delayed 

effect” condition,

logit E(Y 2 ∣ Y 0, A1, R, A2, Y 1) = logit E(Y 2 ∣ Y 1) = − 1.4 + 3Y 1 .

For the “delayed effect” condition,

logit E(Y 2 ∣ Y 0, A1, R, A2, Y 1) = logit E(Y 2 ∣ A1, Y 1) = − 1.4 + .275A1 + .5Y 1 .

The conditional effect of Y 1 on Y 2 was set to be weaker in the delayed effect scenario, so 

that the total effect of A1 on Y 2 (i.e., the direct effect conditional on Y 1 plus the indirect effect 

mediated through Y 1) would be comparable between scenarios. In particular, the resulting 

odds ratio for the contrast of interest, still assumed to be (+1, −1) versus (−1, −1), was 3.0 

for Y 1 and 2.0 for Y 2.

We assume that the estimand of interest is comparison of embedded adaptive interventions 

on the final outcome, where final outcome is interpreted as either the early follow-up Y 1 or 

the later follow-up Y 2, in order to compare the simulated power for each. We fit one-wave 
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models to predict Y 1 alone or Y 2 alone. We also fit two-wave models to predict Y 1 or Y 2

separately adjusting for Y 0, and assuming exchangeable correlation structure (equivalent 

to AR-1 for the two-wave model). These models only consider two of the measurement 

occasions available. Finally, we fit three-wave models to predict Y 2 adjusting for Y 0 and Y 1, 

by applying methods similar to Lu and colleagues (2016) and Dziak and colleagues (2020) 

and using working assumptions of either independence, AR-1 or exchangeable correlation 

structure. In the three-wave models, we assumed a separate piecewise linear trajectory from 

Y 0 to Y 1 and from Y 1 to Y 2 for each embedded adaptive intervention.

Each scenario was replicated in 10,000 datasets each for sample sizes n = 300 and n = 500. 

Simulated power for each model in each scenario is shown in Table 5. Power for models 

using Y 1 as the final outcome was very high, and much higher than those using Y 2 as the 

final outcome. However, this is not surprising because the effect size for Y 1 was also higher. 

More interesting is the power comparison among the five models for Y 2 (the rightmost five 

columns).

In the no-delayed-effect scenario, power was clearly higher for methods which used 

information from Y 0 to predict Y 2 (i.e., “Y 2 Adjusted for Y 0,” working AR-1, and working 

exchangeable) versus those which ignored Y 0 (“Y 2 Only” and working independence). 

However, there was very little additional benefit in using Y 1, possibly because Y 1 is on the 

causal chain between Y 0 and A1 on the left, and Y 2 on the right. Also, as expected, power was 

higher for a working correlation that approximately fit the data-generating model (AR-1) 

than one which did not (exchangeable). Although neither structure corresponded exactly 

to the data-generating model, the exchangeable working structure made the unhelpful 

assumption that Corr(Y 0, Y 1) = Corr(Y 0, Y 2). In contrast, in the delayed effect scenario, it made 

little difference which model was used. This was presumably because in this scenario Y 0 and 

Y 1 had relatively little value for predicting Y 2 once A1 was accounted for.

There are many other possible data-generating models that could be explored in a three-

wave simulation. For instance, we did not explore power for detecting an effect of A2, or 

whether power might be different depending on the order and timing of the measurements. 

However, it appears that at least in some circumstances, a two-wave (Y 0 Y 2) model 

provides about as much benefit as a three-wave model (Y 0 Y 1 Y 2) with less complexity, 

assuming that contrasts in expected values for Y 2 are of primary interest. Of course, for 

more complicated estimands (e.g., for studying whether the effect is delayed), more than two 

waves would be needed.
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Table 5 (for Appendix 1)

Simulated power for different models in three-wave simulation

Scenario Simulated power
for first follow-up

Y 1, by model

Simulated power for second follow-up Y 2, by model

Delayed
Effect

Sample
Size

Y 1
Only

Y 1
Adjusted for

Y 0

Y 2 Only Y 2 Adjust
ed for Y 0

Y 2 Adjusted for Y 0 and Y 1

(Indep.) (AR-1) (Exch.)

No 300 0.962 0.997 0.651 0.715 0.651 0.726 0.699

No 500 0.998 1.000 0.859 0.907 0.859 0.909 0.893

Yes 300 0.961 0.997 0.515 0.517 0.515 0.540 0.521

Yes 500 0.998 1.000 0.744 0.746 0.744 0.757 0.737

Notes. In all of these conditions, the average estimated odds ratio for the effect of A1 was set to 3.0 for Y 1 and 2.0 for Y 2, 

in terms of the pairwise comparison of (+, −) to (−, −) adaptive interventions, which is equivalent here to the effect of 

A1. For simplicity of interpretation, A2 and the A1 × A2 interaction were set to have no effect. The conditions differ in the 

relationship of the simulated late follow-up Y 2 to the baseline assessment Y 0 and initial treatment A1. The simulated decay 

in effect size over time between Y 1 and Y 2 is intended to be analogous to that found in many real-world clinical trials.
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Figure 1. 
An example adaptive intervention to reduce drug use among youth with cannabis use 

disorder attending intensive outpatient programs
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Figure 2. 
Working Memory Training (WMT) SMART Study

Notes: WMT denotes Working Memory Training. Circled R denotes randomization. All 

participants were offered standard contingency management initially.
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Table 1

SMART Design Used by Stanger and colleagues (2019)

Adaptive
Intervention A1 A2 Stage 1

Response
Status Stage 2

Cells
(Fig. 1)

Enhanced working memory training 1 1 WMT+CM Responder Continue D,E

Nonresponder Add EI

Working memory training alone 1 −1 WMT+CM Responder Continue D,F

Nonresponder Continue

Enhanced incentives alone −1 1 CM Responder Continue A,B

Nonresponder Add EI

Standard contingency management −1 −1 CM Responder Continue A,C

Nonresponder Continue

Note: WMT = working memory training, CM = contingency management, EI = enhanced incentives.
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Table 2:

Data-Generating Parameters for End-of-Study Binary Outcomes in Simulations

Scenario Parameters of Data-Generating Model

Pretest–
Posttest

Corr.

Effect
Size

(Odds
Ratio)

Conditional Regression
Parameters in (6)

Marginal Expected Values

β0 βY0 βA1 (−, −) (−, +) (+, −) (+, +)

0.06 1.5 −0.44 0.00 0.100 0.45 0.45 0.55 0.55

0.06 2 −0.44 0.00 0.250 0.42 0.42 0.59 0.59

0.06 3 −0.44 0.00 0.460 0.37 0.37 0.63 0.64

0.3 1.5 −0.90 1.20 0.115 0.45 0.45 0.55 0.55

0.3 2 −0.90 1.20 0.290 0.42 0.42 0.59 0.59

0.3 3 −0.90 1.20 0.520 0.37 0.37 0.64 0.64

0.6 1.5 −1.55 3.00 0.220 0.45 0.45 0.55 0.55

0.6 2 −1.55 3.00 0.450 0.41 0.41 0.58 0.58

0.6 3 −1.55 3.00 0.780 0.37 0.37 0.64 0.64

Note. The conditional regression parameters refer to Expression (6). For simplicity, βR is set to 1 and βA2 = βA1A2 = 0. This leads to an average 

percentage of responders across arms of 45%, with responder proportions of 56.5% and 33.5% for the +1 and −1 levels of A1. Because of a 

small remaining indirect effect of Y 0 and Y 1 via R (i.e., correlations between pretest, response variable and posttest), the lowest level of correlation 

considered here is still not exactly zero (about 0.06), despite specifying a zero parameter for the conditional effect of Y 0 and Y 1.
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Table 3:

Predicted and Simulated Power for Fixed Effect Sizes

Scenario One Wave Two Wave

Predicted
Power

Simulated
Power Predicted Power Simulated

Power

Odds
Ratio

Sample
Size MPB CPB MPB CPB

Pre-post correlation 0.06

1.5 300 0.298 0.298 0.296 0.299 0.313 0.298

1.5 500 0.455 0.454 0.457 0.456 0.476 0.458

2 300 0.665 0.664 0.667 0.666 0.692 0.667

2 500 0.869 0.868 0.876 0.870 0.888 0.878

3 300 0.956 0.955 0.961 0.956 0.966 0.962

3 500 0.997 0.997 0.999 0.997 0.998 0.998

Pre-post correlation 0.3

1.5 300 0.286 0.286 0.279 0.312 0.324 0.305

1.5 500 0.437 0.437 0.449 0.475 0.493 0.484

2 300 0.672 0.671 0.677 0.716 0.737 0.722

2 500 0.874 0.874 0.880 0.904 0.917 0.908

3 300 0.957 0.957 0.963 0.971 0.977 0.976

3 500 0.997 0.997 0.999 0.999 0.999 0.999

Pre-post correlation 0.6

1.5 300 0.290 0.290 0.291 0.423 0.431 0.427

1.5 500 0.442 0.442 0.450 0.627 0.637 0.641

2 300 0.649 0.649 0.652 0.831 0.840 0.848

2 500 0.856 0.857 0.861 0.965 0.968 0.968

3 300 0.955 0.956 0.962 0.994 0.995 0.996

3 500 0.997 0.997 0.998 1.000 1.000 1.000

Notes. “MPB” = marginal-probabilities-based (expression 3); “CPB” = conditional-probabilities-based (expression 5), In all conditions, the 
proportion of responders was set to approximately 0.565 given A1 = + 1 and 0.336 given A1 = − 1; this difference is the reason why the 

pre-post correlation Cor(Y 0, Y 1) could not be set to exactly zero. The odds ratio shown is for pairwise comparison of +, − to −, − adaptive 

interventions, which is equivalent here to the effect of A1. For simplicity of interpretation, A2 and the A1 × A2 interaction were set to have no 

effect on Y 1. The simulated power shown for the two-wave model uses the covariate adjustment approach (pretest as covariate); the repeated 

measures approach had approximately the same power, or in some conditions about 0.005% higher.
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Table 4

Predicted and Approximate Simulated Sample Size Requirements N for Fixed Effect Sizes

Scenario One Wave Two Waves

Predicted
N Required

Simulated
N Required

Predicted
N Required

Simulated
N Required

Odds Ratio MPB CPB MPB CPB

Pre-post correlation 0.06

1.5 1152 1154 1157 1149 1087 1153

2 414 415 413 413 389 412

3 176 176 167 175 165 165

Pre-post correlation 0.3

1.5 1209 1211 1210 1090 1040 1091

2 408 408 411 368 351 371

3 175 175 169 159 151 152

Pre-post correlation 0.6

1.5 1192 1191 1182 753 735 745

2 430 429 431 277 270 269

3 176 176 172 118 115 109

Notes. “MPB” = marginal-probabilities-based (expression 3); “CPB” = conditional-probabilities-based (expression 5). The data-generating model 
settings are the same as those used for Table 3.

Multivariate Behav Res. Author manuscript; available in PMC 2025 January 01.


	Abstract
	Introduction
	Sample Size Planning for Binary SMART
	Notation and Assumptions
	Parameters Required for Calculating Sample Size
	Sample Size Requirements for Posttest Only: A Single Measurement time
	Sample Size Requirements for Pretest and Posttest: Two Measurement Times
	Beyond Pretest and Posttest: More than Two Measurement Times

	Simulation Experiments
	Simulation Experiment 1: Performance of Power Formulas
	Methods
	Steps in Simulating Datasets.
	Analysis of Simulated Datasets.
	Computation of Marginal Correlation for Formulas.

	Results

	Simulation Experiment 2: Performance of Sample Size Formulas
	Method
	Results


	Discussion
	Limitations and Directions for Future Research

	Appendix 1
	Table 5 (for Appendix 1)
	References
	Figure 1
	Figure 2
	Table 1
	Table 2:
	Table 3:
	Table 4

