Skip to main content
. Author manuscript; available in PMC: 2025 Jan 1.
Published in final edited form as: Multivariate Behav Res. 2023 Jul 17;59(1):1–16. doi: 10.1080/00273171.2023.2229079

Table 2:

Data-Generating Parameters for End-of-Study Binary Outcomes in Simulations

Scenario Parameters of Data-Generating Model
Pretest–
Posttest
Corr.
Effect
Size
(Odds
Ratio)
Conditional Regression
Parameters in (6)
Marginal Expected Values
β0 βY0 βA1 (−, −) (−, +) (+, −) (+, +)
0.06 1.5 −0.44 0.00 0.100 0.45 0.45 0.55 0.55
0.06 2 −0.44 0.00 0.250 0.42 0.42 0.59 0.59
0.06 3 −0.44 0.00 0.460 0.37 0.37 0.63 0.64
0.3 1.5 −0.90 1.20 0.115 0.45 0.45 0.55 0.55
0.3 2 −0.90 1.20 0.290 0.42 0.42 0.59 0.59
0.3 3 −0.90 1.20 0.520 0.37 0.37 0.64 0.64
0.6 1.5 −1.55 3.00 0.220 0.45 0.45 0.55 0.55
0.6 2 −1.55 3.00 0.450 0.41 0.41 0.58 0.58
0.6 3 −1.55 3.00 0.780 0.37 0.37 0.64 0.64

Note. The conditional regression parameters refer to Expression (6). For simplicity, βR is set to 1 and βA2=βA1A2=0. This leads to an average percentage of responders across arms of 45%, with responder proportions of 56.5% and 33.5% for the +1 and 1 levels of A1. Because of a small remaining indirect effect of Y0 and Y1 via R (i.e., correlations between pretest, response variable and posttest), the lowest level of correlation considered here is still not exactly zero (about 0.06), despite specifying a zero parameter for the conditional effect of Y0 and Y1.