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Abstract. Meta-analysis of transcriptomic data from different experiments has become increasingly prevalent due to 
a significantly increasing number of genome-wide experiments investigating gene expression changes under various 
conditions. Such data integration provides greater accuracy in identifying candidate genes and allows testing new hy-
potheses, which could not be validated in individual studies. To increase the relevance of experiment integration, it is 
necessary to optimize the selection of experiments. In this paper, we propose a set of quantitative indicators for a com-
prehensive comparative description of transcriptomic data. These indicators can be easily visualized and interpreted. 
They include the number of differentially expressed genes (DEGs), the proportion of experiment-specific (unique) 
DEGs in each data set, the pairwise similarity of experiments in DEG composition and the homogeneity of DEG profiles. 
For automatic calculation and visualization of these indicators, we have developed the program InterTransViewer. We 
have used InterTransViewer to comparatively describe 23 auxin- and 16 ethylene- or 1-aminocyclopropane-1-carboxy-
lic acid (ACC)-induced transcriptomes in Arabidopsis thaliana L. We have demonstrated that analysis of the characteris-
tics of individual DEG profiles and their pairwise comparisons based on DEG composition allow the user to rank ex-
periments in the context of each other, assess the tendency towards their integration or segregation, and generate 
hypotheses about the influence of non-target factors on the transcriptional response. As a result, InterTransViewer 
identifies potentially homogeneous groups of experiments. Subsequent estimation of the profile homogeneity within 
these groups using resampling and setting a significance threshold helps to decide whether these data are appropri-
ate for meta-analysis. Overall, InterTransViewer makes it possible to efficiently select experiments for meta-analysis 
depending on its task and methods.
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Аннотация. В настоящее время в связи со стремительным ростом количества полногеномных экспериментов 
по изучению изменения экспрессии генов в различных условиях все более широкое распространение получа-
ют методы метаанализа транскриптомных данных из разных экспериментов, так как интеграция данных может 
обеспечить большую точность в выявлении генов-кандидатов и позволяет тестировать новые гипотезы, кото-
рые невозможно было проверить в отдельных исследованиях. Для повышения информативности такой инте-
грации необходимо оптимизировать подбор экспериментов. В настоящей работе мы предлагаем набор количе-
ственных показателей для всестороннего сравнительного описания транскриптомных данных. Эти показатели 
легко могут быть визуализированы и интерпретированы. Они включают в себя количество дифференциально 
экспрессирующихся генов (ДЭГ), долю специфических (уникальных) ДЭГ в каждом наборе данных, попарное 
сходство экспериментов по составу ДЭГ, оценку однородности профилей дифференциально экспрессирую-
щихся генов. Для автоматического вычисления и визуализации этих показателей мы разработали программу 
InterTransViewer. Мы применили InterTransViewer для сравнительного описания транскрипционных ответов на 
обработку фитогормонами у модельного растения Arabidopsis thaliana L., взяв в анализ 23 едино образно об-
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работанных профиля дифференциальной экспрессии генов в ответ на ауксин и 16 профилей дифференциаль-
ной экспрессии, индуцированных этиленом или его предшественником – 1-аминоциклопропановой кислотой. 
Мы продемонстрировали, что комплексное рассмотрение характеристик отдельных профилей ДЭГ в контексте 
результатов попарных сравнений профилей по составу ДЭГ позволяет позиционировать эксперименты в кон-
тексте друг друга, оценивать тенденцию к их интеграции или сегрегации, генерировать гипотезы о влиянии 
весомых нецелевых факторов на исследуемый транскрипционный ответ. В результате это дает возможность 
выделять потенциально однородные группы экспериментов. Последующий анализ однородности этих групп 
профилей с помощью процедуры ресемплинга и установления порога уровня значимости помогает принять 
решение о целесообразности использования этих данных для метаанализа. В целом InterTransViewer позволяет 
эффективно формировать выборки экспериментов в зависимости от задачи и методов метаанализа.
Ключевые слова: транскриптом; интеграция данных; ауксин; этилен; Arabidopsis thaliana L.

Introduction
Analysis of differential gene expression under various condi-
tions is one of the most promising approaches for studying the 
genetic regulation of traits (Stelpflug et al., 2016; Tello-Ruiz 
et al., 2016). The rapid increase in the number of experiments 
on whole-genome profiling of gene expression under different 
conditions and the availability of their results in functional 
genomics databases such as Gene Expression Omnibus (GEO) 
(Clough, Barrett, 2016) or BioStudies (Sarkans et al., 2021) 
open a wide space for comparative analysis of experimental 
results from different studies aimed at generalizing them across 
studies using meta-analysis (Cahan et al., 2007; Rung, Brazma, 
2013; Keel, Lindholm-Perry, 2022). Such an approach allows 
not only to extract the most robust differentially expressed 
genes (DEGs) (Freire-Rios et al., 2020), but also to increase 
sample size to identify weak patterns (Bairakdar et al., 2023) or 
to test hypotheses that could not be investigated in individual 
studies (Sudmant et al., 2015; Winter et al., 2019). 

For successful integration, data must meet several criteria 
(Cahan et al., 2007; Rung, Brazma, 2013; Yu, Zeng, 2018). 
First of all, experiments should be characterized according 
to the established minimum requirements for transcriptome 
experiments (Brazma et al., 2001; Brazma, 2009). In addi-
tion, the experiments should investigate similar hypotheses 
on the effect of the same factor. At the same time, one should 
avoid or correct the so-called batch effect, when non-target 
factors (biological characteristics of the object, experimental 
conditions, sample preparation protocol, choice of the data 
acquisition platform, etc.) affect the results of the experiment. 

Simple data filtering by experimental conditions does not 
always ensure optimal selection of data for meta-analysis. On 
the one hand, a significant non-target factor may not be men-
tioned in the metadata, and formal matching of experimental 
conditions does not always rule out a batch effect. On the 
other hand, the results of experiments performed under non-
identical conditions can be fairly well matched. Comparative 
description of transcriptome data from different experiments 
allows to optimize the choice of data and methods for data 
preprocessing. However, no standard has yet been developed 
for this procedure, and there is a significant lack of appro priate 
software tools, especially for graphical presentation of the 
results. For example, MetaQC program used for microarray 
quality assessment evaluates six quantitative metrics: (1) re-
producibility of co-expressed groups of genes across experi-
ments, (2) consistency of the co-expression pattern of known 
genes with databases of metabolic and signaling pathways (i. e. 
involvement of genes in the same process); (3–4) accuracy 

of detecting the enrichment of the DEG group in Gene Onto-
lo gy terms (i. e., gene involvement in processes, association 
with cellular components or molecular functions) and their 
consistency across experiments; (5) accuracy of detection of 
known biomarkers; (6) consistency of DEG ranking between 
transcriptomes (Kang et al., 2012). However, MetaQC does 
not visualize these metrics, and some of the quality metrics 
rely on external databases and known markers rather than 
internal features of expression profiles, which can obscure 
insufficiently studied processes and complicate analyses for 
non-model species. 

Another program, ViDGER, designed to simplify the 
interpretation of data from RNA sequencing experiments, 
provides a wide range of visualizations but does not offer a 
convenient means to compare DEG profiles (McDermaid et 
al., 2019). NetworkAnalyst 3.0 emphasizes the reconstruction 
of protein-protein interaction networks, but also provides the 
ability to visually compare gene lists using interactive heat 
maps, enrichment networks, Venn diagrams, and chord dia-
grams (Zhou et al., 2019). 

In this paper, we propose a set of easily visualized and in-
terpreted indicators for a comprehensive comparative descrip-
tion of DEG profiles. These indicators characterize individual 
differential expression profiles, their pairwise similarity, and 
their tendency to integrate or segregate. To automatically 
calculate and visualize these indicators, we developed the 
InterTransViewer program, which we applied to comparati-
vely describe transcriptional responses to auxin (23 DEG pro-
files from 16 studies) and ethylene (16 DEG profiles from  
8 studies) in Arabidopsis thaliana.

Materials and methods
Characteristics of individual differential expression pro-
files. In each hormone-induced transcriptome, we composed 
the DEG list. Next, we estimated (1) the number of DEGs, 
(2) the ratio of DEGs specific only for this DEG list to the 
total number of DEGs in the list, and (3) the ratio between the 
proportion of specific DEGs in the DEG list and the propor-
tion of the transcriptome DEGs in the joint DEG list from all 
transcriptomes under study:

Ri = δi · N
ni

,
where Ri is the ratio between two proportions for the DEG 
list i, δi is the proportion of DEGs specific for the DEG list i, 
ni is the number of DEGs in the DEG list i, N is the number 
of DEGs in the joint DEG list for all transcriptomes under 
study. The calculated indicators are graphically represented 
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Fig. 1. The procedure for creating two pseudo-samples, each consisting 
of m and ki (ki < m) DEG lists selected randomly with replacement, and 
determining the difference dj between the number of DEGs in at least one 
of the m and ki DEG lists (Nmj and Nkij , respectively). 
The subscript j denotes the serial number of the pseudo-sample. The opera-
tion was repeated 5000 times ( j ∈ ℕ, j = [1; 5000]), thus generating a distribu-
tion of d values, which allowed to assess the significance of the difference of 
N values in the pseudo-samples. This procedure was repeated for each value 
of  ki (k1 = m – 1; ki+1 = ki – 1, where i ∈ ℕ, i = [1; m – 1]).

using mirrored histograms. Together with the metadata, they 
provide a first approximation for the similarity of DEG profiles 
and enable identification of potential outliers. For example, 
a too small or a too large number of DEGs or a high R value 
that do not correlate with specific experimental conditions or 
biological properties of the sample may indicate the influence 
of an unknown non-target factor or poor data quality.

Pairwise comparison of differential expression profiles 
by DEG composition. If a smaller DEG list is nested within 
a larger DEG list, and the deviation of the size of each DEG 
list from the mean is insignificant or correlated with specific 
experimental conditions or biological properties of the sample, 
we consider the results of the two experiments to be consistent. 
Therefore, to assess the similarity of any two DEG lists, we 
calculated the similarity index I as follows:

I = c
min{a, b} + c,

where c is the number of  DEGs shared between the DEG 
lists, a is the number of DEGs present in the first and absent 
in the second DEG list, b is the number of DEGs present in 
the second and absent in the first DEG list. Thus, the simi-
larity index I reflects the proportion of shared DEGs in the 
smaller DEG list. The similarity index can take values from 
zero to one, with zero corresponding to the absence of shared 
DEGs in two DEG lists, and one corresponding to full nest-
ing of one DEG list in the other. DEG list similarity matrices 
are visualized as a heatmap, on the basis of which one can 
not only infer the similarity of expression profiles by DEG 
composition, but also identify individual groups of the most 
similar experiments.

Clustering of differential expression profiles. The similari-
ty matrix described in the previous section compares the DEG 
lists without considering fold changes in gene expression. To 
identify groups of similar differential expression profiles, we 
used hierarchical clustering based on a matrix of Euclidean 
distances in the log2-transformed space of fold changes in 
gene expression (log2FC), without considering statistical 
sig nificance of fold changes. To allow comparison of tran-
scriptional response profiles from different experiments, fold 
changes were normalized to the range in each experiment and 
standardized for each gene beforehand. Hierarchical clustering 
was performed with the Bclast function from the shipunov 
v.1.17.1 (https://CRAN.R-project.org/package=shipunov) 
package, using the Ward.D2 method based on minimizing 
the sum of squares of the Euclidean distances between each 
object of the cluster and the cluster centroid.

Quantitative evaluation of homogeneity by DEG com-
position within a group of profiles. Let A be the set of genes 
identified as DEGs in at least one of the m analyzed DEG 
lists, and the number of these DEGs be | A | = N. The set А 
includes (1) DEGs, changes in the expression level of which in 
a given sample of m DEG lists are determined predominantly 
by the influence of a target factor, and (2) genes, changes in 
the expression level of which are significantly affected by 
non-target factors. Obviously, if we calculate the value of Nk 
for a subsample of k DEG lists (k < m) and then, adding one 
DEG list at a time to this subsample, calculate the values of 
Nk+i , then the value of Nk+i should not decrease as the i value 
grows. In this case, the more heterogeneous the set of DEG 
profiles (the more DEG lists formed under the influence of 

different non-target factors it contains), the stronger the growth 
of the Nk+i value will be.

Using resampling, we created m – 1 sets of pseudo-samples 
of DEG lists: in one set i (i∈ℕ, i = [1; m – 1]), each pseudo-
sample consisted of ki < m DEG lists (k1 = m – 1, ki+1 = ki – 1), 
to estimate at what value of ki there would be a meaningful 
decrease in Nki compared to Nm. To form a single pseudo-
sample, from the original set of DEG lists consisting of m 
elements, we randomly selected ki DEG lists with replacement 
(Fig. 1). For each pseudo-sample, we determined the number 
of genes Nkij identified as DEGs in at least one of the ki DEG 
lists (index j denotes the number of the pseudo-sample in the 
same set). Simultaneously, we created a pseudo-sample of m 
DEG lists and calculated the corresponding value of Nmj, then 
calculated the difference dj = Nmj – Nkij (see Fig. 1). As a result 
of 5000 iterations (  j∈ℕ, j = [1; 5000]), a variational series 
of these differences was generated. The confidence interval 
was determined using the percentile method (Rousselet et 
al., 2021). If a significant difference between Nm and Nki was 
observed at some values of ki, the analyzed set of profiles was 
considered heterogeneous. The distribution of d values was 
visualized as a histogram.

Implementation of the InterTransViewer program. The 
InterTransViewer program is implemented as an R script 
(v.4.1.2) and is available at (https://github.com/al-t1/Inter 
TransViewer0/). InterTransViewer takes as input a table, in 
which the first column contains one grouping variable (gene 
identifiers, IDs) and each subsequent pair of columns contains 
log2-transformed gene expression fold change values (logFC) 
and the corresponding adjusted p values for each individual 
experiment. If the user preprocessed the raw transcriptome 

https://github.com/al-t1/InterTransViewer0/
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data independently, such a table can be assembled using 
InterTransViewer’s DEGweave function, which combines 
the results generated by the limma topTable function (for 
micro arrays) and/or the DESeq2 results function (for RNA-
seqs). It is advisable to perform preprocessing of raw data as 
uniformly as possible for each technology platform, and that 
the design of each experiment should include at least two bio-
logical replicates in both control and treatment trials. During 
the quality control step, it is recommended to pay particular 
attention to the data variation among replicates: for example, 
to employ the plotMDS function from the limma package for 
microarrays (Ritchie et al., 2015); fastQC and fastp for raw 
RNA-seq data (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/; Chen et al., 2018) and to utilize the plotPCA 
function from the DESeq2 package for a count matrix (Love 
et al., 2014). It is essential that all differential expression 
profiles reflect the action of a single target factor. Technically, 
a DEG list is suitable for analysis with InterTransViewer if 
it has at least one DEG at the selected significance level, but 
it is recommended to have at least 10 DEGs in the DEG list.

The calculation of indicators for the comparative description 
of DEG profiles and their visualization are implemented as 
functions described in the InterTransViewer documentation. 
For example, the number of DEGs, the fraction of experiment-
specific DEGs and the Ri ratio for all experiments can be 
obtained using the DEGsummary function and visualized as 
bar charts using the TotalSpecPlot and RmetricPlot functions. 
The GetSimMatrix function allows to obtain the similarity 
matrix I. The DE_bootstrap function allows resampling as 
described above. Hierarchical clustering is performed using 
the DE_clustering function. Finally, InterTransViewer gene-
rates a wide range of output data. For each transcriptome, 
two tables are generated containing a DEG list and a list of 
transcriptome-specific DEGs, both supplemented with the 
corresponding logFC and p-adj values.

InterTransViewer also outputs the following: the total list 
of genes that are DEGs in at least one experiment with the 
number of experiments, in which the gene is a DEG; the sum-
mary table generated by the DEGsummary function, and the 
corresponding histograms; the similarity matrix I, and the 
corresponding heatmap; the dendrograms obtained by cluster-
ing; tables and diagrams with resampling results to assess the 
homogeneity within groups of DEG lists.

Transcriptome datasets from publicly available sources. 
We collected all publicly available transcriptomic data on the 
treatment of A. thaliana with phytohormones auxin, ethylene, 
their precursors, or synthetic analogues. From those, we have 
selected transcriptomes of whole seedlings or individual or-
gans of wild-type plants, in which hormone treatments were 
complemented by control experiments (mock treatment or 
no treatment). To allow subsequent comparative analysis, we 
performed uniform preprocessing of the raw data. Microarray 
data were downloaded from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/). RNA-seq data were extracted from 
the NCBI Sequence Read Archive (SRA) (https://www.ncbi.
nlm.nih.gov/sra/). The genome sequence of A. thaliana and its 
annotation (TAIR 10) were downloaded from Ensembl Plants 
(https://plants.ensembl.org/index.html, release 52). 

All microarray experiments found were performed  using 
the ATH1 platform. Raw microarray data normalization and 

DEG calling were performed with the limma v.3.52.4 pack-
age (Ritchie et al., 2015). FastQC v.0.11.9 (http://www. bioin 
formatics.babraham.ac.uk/projects/fastqc/) was used to assess 
the quality of RNA-seq data. Illumina reads were trimmed and 
quality filtered with fastp v.0.23.2 (Chen et al., 2018) using the 
following parameters: -q 20 -u 30 -5 -3 -W 4 -M 20. The reads 
were aligned to the A. thaliana genome with HISAT2 v.2.2.1 
(Kim et al., 2019). SOLiD reads were aligned to the genome 
using TopHat (Kim et al., 2013). To quantify the number of 
uniquely mapped reads, we used the summarizeOverlaps 
function from the GenomicAlignments R package v.1.30.0 
(Lawrence et al., 2013) with A. thaliana genome annotation. 
DEGs were called using the DESeq2 package v.1.34.0 (Love 
et al., 2014). For each dataset (both microarray and RNA-seq), 
we applied the Benjamini–Hochberg multiple hypothesis 
testing correction (Benjamini, Hochberg, 1995) to control the 
false discovery rate (FDR) for DEG calling. To detect DEGs, 
we used an FDR threshold of 0.05. As a result, we obtained  
23 and 16 DEG lists for auxin and ethylene treatment, respec-
tively. Each list contained at least 300 DEGs (see the Table).

Results and discussion
In this work, we applied InterTransViewer to comparatively 
characterize differential gene expression profiles in transcrip-
tional response to phytohormones in A. thaliana. We selected 
23 auxin-induced transcriptomes from 16 different studies and 
16 transcriptomes induced by ethylene or its precursor ACC 
from 8 studies (see the Table and Materials and Methods).

Figure 2 schematically illustrates the metadata for each 
transcriptome. It can be seen that despite the similarity of the 
target factor, the experimental conditions are heterogeneous. 
In particular, there were differences in the chemical nature of 
the target factor, its concentration, the method and duration 
of treatment, the growing conditions of the plants, their age 
at the time of sample collection, the samples’ nature, and the 
methods of expression profiling. Only two auxin-induced 
DEG profiles (No. 9 and 10) from two studies and three 
ethylene-induced DEG profiles (No. 1, 2, and 3) also from 
two studies were obtained under similar conditions according 
to the metadata. Thus, the aim of further comparative analysis 
was to investigate the homogeneity of phytohormone-induced 
transcriptomes depending on the conditions under which they 
were obtained.

Auxin- and ethylene-induced DEG profiles  
are variable in the number of DEGs 
First, we characterized each DEG list using the DEGsummary 
function. Auxin- and ethylene-induced DEG profiles appeared 
to be heterogeneous in the number of DEGs: ranging from 
410  to 11,966 in auxin-induced transcriptomes (median value 
3205) and from 379 to 5253 in ethylene-induced ones (median 
value 1428) (Fig. 3, a, b). The deviation of the DEG numbers 
from the median value in most cases could be explained by 
specific experimental conditions. Thus, low numbers of auxin-
sensitive DEGs were observed in the meristem and young 
flowers after short-term auxin treatment (No. 1; 586 DEGs) 
and in the root during long-term treatment (24 h) with low 
IAA concentration (1 μM) (No. 21, 686 DEGs). The reason 
for the low number of DEGs in the latter case is because the 
peak of transcriptional activity changes in response to auxin 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
https://plants.ensembl.org/index.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Microarray and RNA-seq data used in this study

No. Accession 
number

Type Tissue, developmental stage Treatment  
(concentration, time)

Number  
of replicates

Reference

Auxin

1 ERP021928 Р Meristem and young flowers  
up to and including stage 10 

10 µM IAA, 0.5 h 3 Simonini et al., 2017

2, 4, 9 GSE18975 М 7 DAG seedlings 1 µM IAA, 0.5 h; 1 µM IAA,  
1 h; 1 µM IAA, 3 h

3 Delker et al., 2010

3 SRP258689 Р Roots of 3 DAG seedlings 1 µM IAA, 1 h 3 Freire-Rios et al., 2020

5, 15 GSE3350 М Roots without root apex  
of 3 DAG seedlings, grown on MS  
with 10 µM NPA

10 µM NAA, 2 h;  
10 µM NAA, 6 h

2 Vanneste et al., 2005

6 GSE35580 М Roots of 7 DAG seedlings 5 µM IAA, 2 h 3 Bargmann et al., 2013

7, 16 GSE42896 М Roots without root apex of 3 DAG 
seedlings, grown on MS medium  
with 10 µM NPA

10 µM NAA, 2 h;  
10 µM NAA, 6 h

3 De Rybel et al., 2012

8 GSE627 М 7 DAG seedlings 5 µM IAA, 2 h 3 Okushima et al., 2005

10 GSE58028 М 7 and 8 DAG seedlings 1 µM IAA, 3 h 3

11 SRP033494 Р Roots of 7 DAG seedlings 5 µM IAA, 4 h 2 Chaiwanon, Wang, 
2015

12, 18, 
19, 21

GSE42007 М Roots of 6 DAG seedlings 1 µM IAA, 4 h; 1 µM IAA, 8 h;  
1 µM IAA, 12 h; 1 µM IAA, 24 h

3 Lewis et al., 2013

13 GSE7432 М Roots of 3 DAG etiolated seedlings 1 µM IAA, 4 h 2 Stepanova et al., 2007

14 SRP102803 Р Roots of 3 DAG seedlings 1 µM IAA, 6 h 3 Omelyanchuk et al., 
2017

17 GSE59426 М Root apices of 3 DAG seedlings 10 µM IBA, 6 h 3 Xuan et al., 2015 

20 GSE59741 М Cauline buds of 21-28 DAG seedlings 1 µM NAA, 18 h 3 Müller et al., 2015

22 SRP074436 Р Shoot apical meristem region  
and axillary meristem region  
of 14 DAG seedlings

5 µM 2,4-D, 55 h 3 Mozgová et al., 2017

23 GSE179303 М Leaves of similar sizes  
and developmental stages

23 mM 2,4-D, 72 h post  
treatment (spraying)

3 Romero-Puertas et al., 
2022

Ethylene

11, 12 SRP118634 Р 4 DAG seedlings 10 µM ACC, 2 h; 10 µM ACC, 4 h 3 Fu et al., 2021

1, 2, 
6, 7

SRA063695 Р 3 DAG etiolated seedlings 10 ppm ethylene gas, 4 h*  
10 ppm ethylene gas, 12 h;  
10 ppm ethylene gas, 24 h

3 Chang et al., 2013

3 SRP069072 Р 3 DAG etiolated seedlings 10 ppm ethylene gas, 4 h 2 Zhang et al., 2016a

4, 8 SRP076862 Р Roots and shoots of 3 DAG etiolated 
seedlings separately

10 ppm ethylene gas, 4 h 2 Zhang et al., 2016b

5 SRP168223 Р 3 DAG etiolated seedlings Ethylene gas, 4 h 2 Zander et al., 2019

9 GSE7432 М Roots of 3 DAG etiolated seedlings 10 ppm ethylene gas, 4 h 2 Stepanova et al., 2007

10 SRP126162 Р Roots of 6 DAG seedlings 10 ppm ethylene gas, 4 h 2 Feng et al., 2017

13, 14, 
15, 16

GSE84446 М Roots of 3 DAG seedlings 1 µM ACC, 4 h; 1 µM ACC, 8 h;  
1 µM ACC, 12 h; 1 µM ACC, 24 h

3 Harkey et al., 2018

* In experiments No. 1 and 2, ethylene treatment was carried out under the same conditions.
The number of biological replicates available for each sample and used for DEG detection is indicated in the sixth column. For DEG calling, untreated control 
samples collected at the initial time point were used in auxin treatments No. 2, 4, 5, 7, 9, 16, 17, 22, 23, and in ethylene treatments No. 1, 2, 6, 7; otherwise, separate 
mock treated control samples were employed. R – RNA sequencing; M – microarray experiment; 2,4-D – 2,4-dichlorophenoxyacetic acid; NPA – naphthylphthalamic 
acid; IAA – indole-3-acetic acid; NAA – 1-naphthaleneacetic acid; IBA – indole 3-butyric acid; DAG – days after germination.
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Fig. 2. Schematic representation of the experimental conditions, under which transcriptomes selected for compara-
tive analysis were obtained. 
The asterisk indicates the root segment between the root apical meristem and the root-hypocotyl junction. Ethylene was 
applied either as a gas (concentration in parts per million) or as its precursor ACC (μM). Auxin was applied as IAA, otherwise 
indicated. Treatment duration is indicated in hours. Numbers in bold denote the serial numbers of the experiments from 
Table. C – hormone concentration; black circles – etiolated seedlings; yellow circles – light-grown seedlings; & – spraying; 
$ – post-treatment; ? – concentration of gaseous ethylene is not given in the primary source.
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is observed at 2–8 h of treatment (Lewis et al., 2013). Treat-
ment prolongation up to 12–24 h returns the transcriptional 
activity of most genes to the level observed in the control (no 
auxin treatment) samples, and the number of DEGs becomes 
close to the one detected in short-term (1 h) auxin treatments. 
A high number of DEGs (No. 22, 11,966 DEGs) was typical 
for prolonged treatment (55 h) of shoot apices and axillary 
meristems with 5 μM 2,4-D to induce callus initiation, which 
is accompanied by significant reprogramming of genome 
transcriptional activity (Xu et al., 2012). A fairly large num-
ber of DEGs was also found in shorter (4–6 h) treatments of 
seedlings with 5–10 μM IAA, which corresponds to the peak 
of transcriptional activity changes in response to auxin (Lewis 
et al., 2013). Notably, a large number of DEGs was observed 
in transcriptomes of whole roots or roots without root tips, 
both possessing a wide variety of tissues (No. 11, 15, and 16; 
9461, 7692, and 11,905 DEGs, respectively). In the root tip 
(No. 17), on the contrary, the number of DEGs decreased to 
4214, which can be explained by biological homogeneity of 
the sample (columella, stem cell niche and first progenitors 
of the initials). 

Worth noting is the high value of the R ratio for the DEG 
profile of meristem and young flowers (No. 1), indicating 
that this auxin-induced transcriptome has a specific DEG 
composition compared to all others presented in the study. The 

reason for a significant deviation of the DEG number from the 
median in profile No. 10 (410 DEG) could be stress induced 
by a dramatic change in the seedling cultivation conditions, 
when the seedlings grown on agarized medium for 6–7 days 
were placed for a day in liquid medium with constant shaking 
before auxin treatment. In this case, auxin-sensitive genes 
associated with the stress response changed their expression 
both in the experimental and in the control groups. As a result, 
only genes unrelated to stress manifested as auxin-sensitive 
DEGs. At the same time, considering the slightly increased 
value of the R ratio for the DEG list No. 10 compared to the 
median, we can assume that the quality of these data is not 
high enough.

A low number of ethylene-sensitive DEGs was observed 
in roots of light-grown seedlings after a short-term (4 h) 
treatment with the ethylene precursor, ACC, at a low (1 μM) 
concentration (No. 13, 522 DEGs), which may be due to the 
insufficient treatment duration to implement a full response 
to ethylene. Treatment prolongation up to 8, 12, and 24 hours 
(No. 14, 15, 16) increased the number of DEGs approximately 
twofold in all cases (Harkey et al., 2018). 

Thus, a complete response to ethylene and the number of 
DEGs close to the median value were observed for 8-hour 
and longer treatments. The low number of DEGs in the DEG 
list No. 9 (379 DEGs) can be linked to technical features of  
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Fig. 3. Comparative description of the transcriptional response to auxin and ethylene under different conditions in A. thaliana. 
a, b – number of DEGs and proportion of specific (unique) DEGs in the auxin (a) and ethylene (b) datasets, and R metric for each data set; c, d – pairwise compari-
son of auxin experiments (c) and ethylene experiments (d ). The similarity index I reflecting the proportion of common DEGs in the smaller list is described in the 
Materials and Methods section. Experiment serial numbers correspond to those in Table.

the experiments, given the low number of DEGs in the auxin-
induced profile No. 13 (657 DEGs) from the same study (Ste-
panova et al., 2007). Nevertheless, there is no reason to con-
clude that the quality of these data is low, since the observed 
deviations are not accompanied by a significant increase in the 
R ratio value. It is noteworthy that DEG numbers close to the 
median values were obtained in the experiments implemented 
with SOLiD RNA sequencing (No. 1, 2, 6, and 7) regardless 
of the treatment duration (Chang et al., 2013), as well as with 
Illumina sequencing of shoots (No. 4) and plants of the Ler 
(Landsberg erecta) ecotype (No. 5), but not Columbia, as in 
all other cases. In contrast, Illumina sequencing of etiolated 
shoots and roots yielded the numbers of DEGs greatly exceed-
ing the median value (No. 3, 8, and 10; 5253, 3715, and 4067 
DEGs, respectively).

Differential gene expression profiles  
in response to phytohormones in the samples  
from different plant parts differ in DEG composition
Next, we investigated the similarity of the DEG lists by DEG 
composition in more detail. Pairwise comparisons using 
 GetSimMatrix confirmed the specific nature of the transcrip-
tional response to auxin in the shoot meristem and young 
flowers (profile No. 1) compared to all other organs (see  
Fig. 3, c). Not surprisingly, a relatively high value of the 
similarity index for this DEG list (I = 0.47) was observed 
only with the one of shoot and axillary meristems (No. 22). 
Next, two groups of similar DEG lists represented the auxin 
response in whole seedlings and in the roots. The difference 

between seedling and root DEG profiles was also confirmed 
with DE_clustering, and it is intuitively clear, since the shoot 
is represented in the seedling along with the root (Fig. 4). 
Notably, with the detected intragroup similarity, there was 
still obvious variability among transcriptomes within each 
group (see Fig. 2, c). Finally, the DEG lists with more DEGs 
(No. 11, 15, 16, 22) showed a fairly high similarity index when 
compared in pairs with all others (see Fig. 3, c). 

The qualitative similarity of large DEG lists with each 
other as well as with smaller DEG lists suggests their valid-
ity. Transcriptomic responses cauline leaf buds (No. 20) and 
leaves (No. 23) showed moderate similarity (I ≥ 0.42) only 
to the large DEG lists. It can be hypothesized that treatment 
with high auxin concentrations (No. 11, 15, 16, 22) alters the 
expression of different groups of genes, each responding to low 
auxin concentrations only under certain conditions. In addi-
tion, the large number of DEGs in the late response may be due 
to a wide representation of secondary auxin response genes.

Pairwise comparisons of ethylene-induced transcriptomes 
revealed a discrete group (No. 13–16) from the study by 
A.F. Harkey et al. (2018) (see Fig. 2, d ). They described gene 
expression changes in roots after treatment of seedlings grown 
under continuous light conditions with the ethylene precur-
sor ACC. ACC is also thought to have ethylene-independent 
biological activity (Vanderstraeten et al., 2019), and light has 
a significant effect on shaping the transcriptional response to 
ethylene in A. thaliana (Shi et al., 2016a, b; Luo, Shi, 2019). 
We hypothesized that the chemical nature of the active com-
pound and the light conditions during seedling growth could 
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Fig. 4. Hierarchical clustering of auxin- (a) and ethylene-induced (b) transcriptomes using the Ward.D2 method. 
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act as significant non-target factors in this case. However, DEG 
lists No. 13–16 showed only moderate similarity to the ones 
from roots of ethylene-treated seedlings grown under long day 
(16 h) conditions (No. 10) (I = 0.59, 0.54, 0.52, and 0.49), 
and were quite different from ACC-induced transcriptomes of 
whole seedlings grown under 12 h day/12 h night conditions 
(No. 11 and 12) (0.22 < I < 0.42) (see Fig. 3, d ). Thus, we 
cannot exclude that the isolation of profiles No. 13–16 may 
be due to a batch effect. The remaining profiles fell into two 
groups of similar DEG lists. 

The first one included the transcriptional response to ethy-
lene in the roots of seedlings regardless of light conditions, 
as well as in whole seedlings grown in the presence of light. 
The second group integrated the response to ethylene in 
etiolated seedlings or shoots. Thus, we confirmed the known 
fact that light plays an essential role in shaping the ethylene 
response (Shi et al., 2016a, b; Luo, Shi, 2019), but additio-
nally we showed that this effect is observed in shoots but 
not in roots. Notably, hierarchical clustering using log2FC 
values showed that the time series for ethylene treatment of 
etiolated seedlings from (Chang et al., 2013) stands out as a 
separate group (see Fig. 4), which also raises the question of 
a possible batch effect.

The set of seven ethylene-induced transcriptomes  
is homogeneous in terms of DEG composition
The number of genes identified as DEGs in a set of transcrip-
tomes (i. e. detected as DEG at least in one of the transcrip-
tomes) essentially depends on the homogeneity of this set. In 
our case, 20,552 and 10,988 genes were identified as DEGs in 
at least one auxin- and ethylene/ACC-induced transcriptome, 
respectively. Given the size of the A. thaliana genome, which 
contains just over 30,000 genes, this is an unexpectedly large 
number of DEGs, which is markedly higher than the number 
of DEGs in individual experiments, and is likely explained by 
the dependence of transcriptome induction on experimental 

conditions. Quantification of the homogeneity of the DEG 
list sets by resampling (using the DE_bootstrap function) 
expectedly showed their heterogeneity in DEG compositions 
(Fig. 5, a, b). 

At the same time, based on the results of pairwise compari-
son of DEG lists described in the previous section (see Fig. 3, 
c, d ), we can suggest the potential homogeneity of auxin-
induced DEG profiles in the root (No. 5–7, 12–14, 18–21) 
and ethylene-induced DEG profiles in etiolated seedlings/
shoots (No. 1–3, 5–8). To test this hypothesis, we analyzed 
the corresponding sets of DEG lists using the DE_bootstrap 
function. While the set of auxin-induced root transcriptomes 
still showed heterogeneity (different durations of treatment 
probably caused differences in DEG composition), no sig-
nificant differences in the number of ethylene-induced DEGs 
in etiolated seedlings were found. Thus, the set of ethylene-
induced transcriptomes in etiolated seedlings/shoots (No. 1–3, 
5–8), due to their homogeneity, can be reasonably used for 
meta-analysis (e. g., to better identify weak patterns).

Conclusion
Meta-analysis of transcriptomic data provides great opportuni-
ties for increasing the power of statistical analysis, if the data 
are homogeneous. However, reasonable selection of experi-
ments for meta-analysis is often hampered by the lack of stan-
dards in this field and the absence of convenient software tools 
for comparative description of DEG lists, in particular, for the 
construction of user-friendly visualizations. In this work, we 
proposed a set of quantitative indicators for comparative de-
scription of DEG lists (n – number of DEGs; δ – proportion of 
DEGs specific for a given transcriptome; R – ratio describing 
the specificity of the transcriptional response; I – similarity 
index for a pair of transcriptomes based on DEG composition; 
assessment of the homogeneity of DEG lists) and implemented 
their calculation and visualization as the InterTransViewer 
program. We demonstrated that an integrated analysis of the 
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Fig. 5. Assessment of homogeneity of auxin- (a, b) and ethylene-induced (c, d ) transcriptomes by resampling. 
The bars represent the 95 % confidence interval of values d = Nm – Nk , where Nm is the number of genes that are DEGs in at least one of 
the DEG lists in the pseudo-sample of size m; Nk is the number of genes that are DEGs in at least one of the DEG lists in the pseudo-sample 
of size k, m > k. A detailed description of the procedure is presented in the Materials and Methods. a – results for m = 23 (all auxin-induced 
transcriptomes); b – results for m = 9 (auxin-induced transcriptomes No. 5–7, 12–14, 18, 19, 21); c – results for m = 16 (all ethylene-induced 
transcriptomes); d – results for m = 7 (auxin-induced transcriptomes No. 1–3, 5–8). The bold red line indicates the value of d = 0.
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characteristics of individual DEG lists (n, δ, R) in the context 
of the results of pairwise comparisons of transcriptomes by 
DEG composition (both using the similarity index I and by 
clustering based on the fold changes in expression levels) al-
lowed us to range the experiments in the context of each other, 
to assess the tendency for their integration or segregation, and 
to generate hypotheses about the influence of significant non-
target factors on the transcriptional response. As a result, this 
made it possible to identify potentially homogeneous groups 
of DEG lists. 

Subsequent analysis of the homogeneity of these groups 
using a resampling procedure and the establishment of a sig-
nificance threshold allowed us to decide whether these data 
should be used for meta-analysis. Thus, InterTransViewer 
allows for efficient sampling of the induced transcriptomes 
depending on the meta-analysis aim and methods.
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