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Abstract

Purpose: Spectral CT uses energy-dependent measurements that enable material discrimination 

in addition to reconstruction of structural information. Flat-panel detectors (FPDs) have been 

widely used in dedicated and interventional systems to deliver high spatial resolution, volumetric 

cone-beam CT (CBCT) in compact and OR-friendly designs. In this work, we derive a model-

based method that facilitates high-resolution material decomposition in a spectral CBCT system 

equipped with a prototype dual-layer FPD. Through high-fidelity modeling of multilayer detector, 

we seek to avoid resolution loss that is present in more traditional processing and decomposition 

approaches.

Method: A physical model for spectral measurements in dual-layer flat-panel CBCT is developed 

including layer-dependent differences in system geometry, spectral sensitivities, and detector 

blur (e.g., due to varied scintillator thicknesses). This forward model is integrated into a 

model-based material decomposition (MBMD) method based on minimization of a penalized 

weighted least-squared (PWLS) objective function. The noise and resolution performance of 

this approach was compared with traditional projection-domain decomposition (PDD) and image-

domain decomposition (IDD) approaches as well as one-step MBMD with lower-fidelity models 

that use approximated geometry, projection interpolation, or an idealized system geometry without 
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system blur model. Physical studies using high-resolution three-dimensional (3D)-printed water-

iodine phantoms were conducted to demonstrate the high-resolution imaging performance of the 

compared decomposition methods in iodine basis images and synthetic monoenergetic images.

Results: Physical experiments demonstrate that the MBMD methods incorporating an 

accurate geometry model can yield higher spatial resolution iodine basis images and synthetic 

monoenergetic images than PDD and IDD results at the same noise level. MBMD with blur 

modeling can further improve the spatial-resolution compared with the decomposition results 

obtained with IDD, PDD, and MBMD methods with lower-fidelity models. Using the MBMD 

without or with blur model can increase the absolute modulation at 1.75 lp/mm by 10% and 22% 

compared with IDD at the same noise level.

Conclusion: The proposed model-based material decomposition method for a dual-layer flat-

panel CBCT system has demonstrated an ability to extend high-resolution performance through 

sophisticated detector modeling including the layer-dependent blur. The proposed work has the 

potential to not only facilitate high-resolution spectral CT in interventional and dedicated CBCT 

systems, but may also provide the opportunity to evaluate different flat-panel design trade-offs 

including multilayer FPDs with mismatched geometries, scintillator thicknesses, and spectral 

sensitivities.
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1. INTRODUCTION

Spectral CT has found a number of clinical applications including contrast-enhanced lesion 

detection,1–3 kidney stone detection4 and classification,5,6 virtual non-contrast imaging,4,7,8 

virtual monoenergetic imaging,9 and multiphasic functional imaging10 using multiple 

contrast agents injected in a single scan. Spectral CT systems collect energy-dependent 

measurements data separable into two or more channels. Since different materials have 

different energy-dependent attenuation coefficients, the measurements can be processed to 

differentiate materials and estimate material densities in addition to providing the structural 

information available in single-energy CT. A variety of spectral CT systems have been 

designed to collect energy-dependent measurements and can be roughly divided into 

two types: 1) CT systems that utilize varied x-ray source spectral modulations, where 

each spectral channel has a different incident spectrum, for example, through multiple 

sources,2,11–13 kV switching,14 and split3,15 or tiled filters16–18; and 2) CT systems that 

equip energy-resolving detectors such as dual-layer detectors11,12 and photon-counting 

detectors19–21 that can differentiate between x rays of different energies.

Flat-panel detectors (FPDs) have found widespread use in both digital radiography imaging 

and cone-beam CT (CBCT) systems, including interventional and dedicated scanners.22 A 

FPD enables measurement of projection data of a large volume in one rotation and the small 

sub-millimeter pixels are useful for imaging fine structures such as trabecular bone, the inner 

ear, small vessels, etc. Flat-panel CBCT systems can potentially benefit from the additional 

capability of material discrimination and material density estimation in both interventional 
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and dedicated scanners. Interventional procedures that involve contrast agent injection can 

take advantage of the inherent separation in material decomposition providing both contrast 

and non-contrast images. Similarly, spectral CBCT enables improved quantitative imaging 

through direct density estimation with applications, for example, in osteology examinations 

with bone mineral density estimates. In previous work,23 Lu et al. have implemented a 

prototype dual-layer FPD that stacks two indirect amorphous silicon detectors each with 

its own CsI scintillator. Filtered by an intermediate copper filter sandwiched between the 

two layers, the incident x-ray beam to the second layer exhibits higher average energy for 

detected x rays, as compared with the first layer. These two channels provide the necessary 

data for material decomposition. The dual-layer FPD has shown promising preliminary 

results in both dual-energy x-ray radiography and spectral CBCT imaging.24

While the FPD has the potential for high spatial resolution imaging tasks due to the small 

native pixel size, scintillator blur in the indirect detectors plays an important role in overall 

spatial resolution properties. Imaging performance involves an inherent trade-off between 

the detector blur and quantum absorption efficiency.25,26 Specifically, thicker scintillators 

have more stopping power; however, there is also more light spread within the scintillator, 

producing a broader point spread function. This trade-off is more complicated in the dual-

layer FPD as compared with a single-layer FPD, since the two scintillators may have 

different thicknesses. Different scintillator thicknesses can permit better efficiency and 

spectral separation by making the first layer thin (relatively more sensitive to low-energy 

(LE) photons) and the second layer thicker to stop the higher energy photons. However, 

accurate quantitative evaluation of material density can be challenging to multilayer systems 

because: 1) different scintillator thicknesses yield inconsistent blur between detection layers; 

2) the detector grids may not be perfectly aligned due to manufacturing limitations; and 3) 

there is an inherent geometry mismatch due to the small gap between the two detector 

grids and divergent beam. Because of the noncoincident geometry, projection-domain 

decomposition (PDD)27,28 methods (that first decompose the measurements from all energy 

channels into line integrals of materials) can be more difficult to implement. Generally, such 

approaches necessitate some form of interpolation onto a common geometry; however, this 

interpolation will generally result in spatial resolution loss. Image domain decomposition 

(IDD)29,30 methods that estimate material densities after reconstruction of each spectral 

channel are potentially easier to implement and accommodate geometry changes between 

channels. However, IDD presumes a simple linear or polynomial model that is a mismatch 

with the intrinsic nonlinear behavior in spectral CT. Further post-processing is needed to 

reduce beam-hardening artifacts and may be suboptimal in quantitative studies. Compared 

with PDD and IDD methods that estimate the densities in two steps, one-step model-based 

methods31–36 can directly estimate the material densities from the spectral measurements 

using a high-fidelity system model as well as more sophisticated regularization design to 

potentially retain more high-resolution advantages with accurate quantification.

In this work, we propose a MBMD method with blur modeling dedicated to dual-layer 

FPD. Physical experiments on a CBCT test bench equipped with a prototype dual-layer 

FPD were conducted. MBMD performance with an averaged geometry model (aMBMD), 

single geometry model with projection-domain interpolation preprocessing (pMBMD), 

an idealized model (iMBMD), and the high-fidelity model including the detector blur 
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(bMBMD) were compared with projection- and image-domain decomposition estimated 

from FBP reconstructions. Preliminary simulation studies were first presented in Wang et 

al,37 and initial physical experiments were shown in Ma et al.38 The paper presents a refined 

development of both the theory and performance investigations in physical experiments, 

building significantly upon those conference proceedings. The paper is organized as follows: 

Section 2 introduces the proposed MBMD method and the physical experiments setup. The 

results and analysis are summarized in Section 3. Finally, conclusion and discussion are 

presented in Section 4.

2. METHODS

2.A. Multilayer flat-panel detector model

In this section, we propose a general model for multilayer FPDs that stack multiple 

indirect amorphous silicon detectors each with its own scintillator layer. Importantly, each 

scintillator layer may have different thickness imparting different sensitivity and spatial 

resolution. Such varying resolution can be characterized and represented mathematically 

with a blur kernel in a forward model. Specifically, we write the energy-integral spectral 

measurement model presuming a K-material imaging object as,

yi = ∫
u ∈ Ni

b u i, u ∫ S u , E exp − ∑
k = 1

K
qk E ∫

Lu

ρk l dl dE dσ .

(1)

where Su E  is the spectral sensitivity at projection location u , including all spectral 

filtering and source settings that affect the incident spectrum as well as energy-dependent 

detector sensitivities, b u i, u  denotes the blur kernel weight of location u  in the 

neighborhood Ni of pixel i centered at u i, and ρk and qk E  denote the density and the 

energy-dependent mass attenuation coefficients of material k, respectively. Lines of response 

are given by Lu i. Note that i indexes pixels in all panel layers.

For digital estimation purpose, it is convenient to discretize this forward model. Specifically, 

we discretize (1) using image voxels, energy bins, and presampling “pixels” so that the mean 

measurements can be written as follows:

yi = ∑
i′ ∈ Ni

bi, i′ ∑
m = 1

M
Si′ Em ΔEexp − ∑

k = 1

K
qk Em ∑

j
ai′jρjk ,

(2)

where ρjk is the kth material density in the jth voxel and ai′j is the corresponding path 

length of the i′th projection through the jth voxel. The energy spectrum is sampled with 

the unit ΔE. A total of M energy bins are considered Em = mΔE, m = 1, 2, …, M . The 

projection image is presampled with interval Δ u , permitting modeling of the presampling 
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blur, bi, i′ = b u i, u i′ Δσ. Note that the pre-blurred image is a function of i′ and may have 

different sampling than the post-blur image which is a function of i representing physical 

pixels and the measurement index. Using a matrix formulation, one can write the forward 

model compactly as follows:

y = BSexp −QAρ ,

(3)

where ρ ∈ ℝJK is a vectorized stack of all materials density images with J voxels in K
material bases, y ∈ ℝNP  is a vectorized stack of all spectral projections with P  projections 

(the number of pixels in each frame times the number of views) in N spectral channels, A
is the system matrix that forward projects all material bases to all spectral channels, and 

Q is the mass attenuation coefficients matrix that weights and sums the path lengths over 

all materials to compute energy-dependent line integrals. System spectral sensitivities and 

blur are characterized by S and B, respectively. When applying the generalized model to the 

dual-layer flat-panel CBCT system, the geometry, spectral sensitivities, and system blur vary 

between the spectral channels. For example, the general system matrix A includes system 

matrix of the LE channel (first layer) ALE and that of the high-energy (HE) channel (second 

layer) AHE. Detailed compositions of the matrices B, S, Q, A in the dual-layer flat-panel CBCT 

system are shown in Appendix A. We will use the above formulation in Equation 3 to derive 

our proposed MBMD approach. The model is general and can accommodate lower-fidelity 

system models that do not include the geometry mismatch through substituting A of each 

channel with an approximated system matrix or neglecting the detector blur by using the 

same expression with B=I.

2.B. Model-based material decomposition

Presuming the spectral measurements follow a multivariate Gaussian distribution where the 

mean is given by the proposed forward model in Equation 3 and has covariance K,

y:N y, K ,

(4)

one can write the regularized likelihood-based objective function as37

Φ ρ, y = 1
2(y − y)TKy

−1 y − y + R ρ .

(5)

We further presume the measurements follow an independent Poisson distribution. The 

covariance matrix is diagonal where the variance is approximated with the measurements, 

Ky = D y . The regularizer R ρ  controls the smoothness level of the estimated images. In 

this work, we adopt a quadratic penalty on differences in the 4-nearest neighborhood in each 

material basis.
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R ρ = ∑
k

βk∑
j

∑
j′ ∈ Nj

ρk, j − ρk, j′
2

(6)

where βk denotes the regularization strength for the kth material.

The material decomposition results ρ are estimated by minimizing the objective function 

iteratively using a preconditioned gradient descent (pGD) algorithm reported in Tivnan et 

al.39 Details of the algorithm implementation and convergence performance evaluation are 

summarized in Appendix B.

2.C. Dual-layer flat-panel detector characterization

Flat-panel spectral sensitivities and blurs are essential inputs in the proposed MBMD 

method and need to be calibrated before decomposition. In this section, we outline a 

characterization method that we will adopt in our physical experiments using a prototype 

dual-layer FPD23 by Varex Imaging, Inc.

Spectral sensitivities Stot  are modeled with the incident spectrum Sin  and detector spectral 

sensitivities Sdet :

Stot E = Sin E Sdet E .

(7)

The spectrum incident on the first layer includes an idealized source spectrum S0 and 

additional filtration modeled with aluminum thickness tAl, where S0 was computed with 

Spektr.40

Sin
LE E = S0 E exp −tAlμAl E

(8)

We fit one aluminum thickness for all pixels in both channels. This additional filtration 

in the model permits calibration between the our physical system and the ideal spectrum 

provided by S0. The spectrum incident on the second layer is modeled as the composition 

of the incident spectrum of the first layer attenuated with the scintillator in the first 

layer and any intermediate filtration. Specifically, for the prototype Varex detector, the 

top layer of the dual-layer FPD has a 200 − μm CsI scintillator and the second layer 

has a 550 − μm CsI scintillator. Between the two layers, there is a 1-mm copper filter to 

improve spectral separation between the two spectral channels. Therefore, the CsI thickness 

tCSI
LE = 0.2 − mm and the copper filtration thickness tCu = 1 − mm. Energy-dependent linear 

attenuation coefficients of CsI and copper are denoted with μCsI E  and μCu E , respectively.

Sin 
HE E = Sin 

LE E exp −tCsI
LEμCsI E − tCuμCu E .
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(9)

Detector sensitivities were computed with an energy- and depth-dependent sensitivity model 

of CsI.41 To incorporate the depth dependence, each scintillator is divided into thin slabs 

of thickness Δz = 0.1 − μm. The mean absorption of x-ray photons of energy E at depth z is 

follows:

g1 E, z = exp −zρCSIμCSI
ρ E 1 − exp −ΔzρCSIμCSI

ρ E

(10)

where ρCSI denotes the density of CsI and μCSI
ρ E  denotes the energy-dependent mass 

attenuation coefficients of CsI. For each detection, we consider three pathways of x-ray 

photon energy deposit: A) an x-ray photon absorption without yielding a K-fluorescence, B) 

and x-ray photon absorption with a K-fluorescence, and C) absorption of a K-fluorescence 

produced locally at a remote site.

gA(E, z) = g1(E, z)ηesc z; tCsI 1 − rK EW ,

(11)

gB E, z = g1 E, z ηesc z; tCsI rK E − EK W ,

(12)

gC E, z = g1 E, z ηesc z; tCSI rKfK tCsI EKW .

(13)

The probability of a K-fluorescence yield is denoted with rK E , which is zero when the 

incident x-ray photon energy is below the K-fluorescence energy EK. The fraction of 

K-fluorescence reabsorption is fK tCSI . We adopt a depth-dependent light escape fraction 

ηesc z; tCsI  that models the fraction of locally converted optical photons that reach at the exit 

surface of the scintillator. A linear model proposed by Howansky et al.42 is used for a direct 

deposit CsI scintillator detector:

ηesc z; tCsI = ηesc 0; tCsI + ηesc tCsI; tCSI − ηesc 0; tCsI
tCsI

z

(14)

The parameters ηesc 0; tCSI  and ηesc tCsI; tCsI  vary with different scintillator thicknesses. For the 

first layer of 200 μm thickness, we adopt ηesc 0 = 0.6 and ηesc tCsI  = 0.81. For the second 

layer of 550 μm thickness, we use ηesc 0 = 0.575 and ηesc tCsI = 0.814. The overall spectral 

sensitivity of each detector is modeled with an integration of all scintillator slabs among 

three pathways,
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Sdet E; tCsI = λ∑
z

gA E, z + gB E, z + gC E, z

(15)

where λ is a constant that models the additional gain.

In our system, the only unknown parameter in the spectral sensitivities model is the 

aluminum filter thickness tAl. This is calibrated through fitting the measurements ycal with 

varying thickness of aluminum plates tAl
cal and copper plates tCu

cal to the model. Specifically, 

the optimized aluminum thickness in the incident spectrum model is computed through 

minimizing the mean square error between the measurements and model predictions.

t Al = argmin
tAl

ycal − BS tAl exp −μAltAl
cal − μCutCu

cal 2

(16)

The overall spectral sensitivities in the two spectral channels are shown in Fig. 1a. The 

detector modulation transfer functions (MTFs) of each layer have been measured using 

an edge device43 and reported in previous work.23 The MTFs are shown in Fig. 1b. A 

one-dimensional (1D) blur kernel in the horizontal direction is constructed and convolved 

with the projection data for in-plane resolution improvement. This can be easily extended to 

a two-dimensional (2D) case presuming the system blur is isotropic.

2.D. Material decomposition methods for comparison

2.D.1. Image-domain decomposition and projection-domain decomposition
—Conventional two-step material decomposition methods including IDD and PDD were 

implemented for comparison. For IDD, we first reconstructed each spectral channel using 

filtered back-projection (FBP) method and then decomposed the two attenuation maps into 

two material densities through a linear combination by applying the inverse of the effective 

attenuation coefficients matrix.

ρ1

ρ2
=

μρ, 1, LE μρ, 2, LE

μρ, 1, HE μρ, 2, HE

−1 μLE

μHE
.

(17)

In the physical experiment, the attenuation coefficients were estimated from two small 

uniform regions in the phantoms that contained only iodine solution or only solid three-

dimensional (3D)-printing materials. To implement the PDD method, projections for 

each layer must be on a common grid. The geometrically matched measurements were 

approximated through interpolation of LE channel data to the HE channel grid. The line 

integrals of each material were estimated with a fourth-order polynomial of the post-log 

interpolated spectral measurements.24
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l1 = ∑
0 ≤ r1 ≤ 4 − r2

∑
r2 = 0, …, 4

ar1, r2lLE
r1 lHE

r2

(18)

l2 = ∑
0 ≤ r1 ≤ 4 − r2

∑
r2 = 0, …, 4

br1, r2lLE
r1 lHE

2

(19)

where coefficients ar1, r2 and br1, r2 were precomputed using a 2D grid of water and iodine 

line-integrals and corresponding measurements simulated with the calibrated spectral model. 

The material densities ρ1 and ρ2 are reconstructed from the estimated line integrals l1 and l2

using FBP. In both IDD and PDD, the noise-resolution trade-offs are explored through filter 

width a sweeps on the following filter design in FDK:

w n; a = a − 1 − a cos 2πn
N , − N

2 ≤ n ≤ N
2 .

(20)

The higher spatial frequencies are increasingly regularized with a smaller a. We performed a 

sweep of a between 0.6 and 1 with a 0.05 step size. In resolution measurement, a scalar was 

applied to match the mean CT value in small uniform regions in both material bases with the 

MBMD results for comparison.

2.D.2. Model-based material decomposition—We implemented four versions of 

the proposed one-step MBMD method using models with increasingly higher fidelity to 

demonstrate the impact of modeling the geometry mismatch and detector blur in the dual-

layer CBCT system.

a. aMBMD: A simplest model was used that approximates the geometry between 

the two layers with an averaged geometry using the averaged source-to-detector 

distance (SDD) and source projection coordinates ALE ≈ Aavg ≈ AHE . The layer-

dependent magnification and grid mismatch were neglected. The system blur was 

not included in the model B=I .

b. pMBMD: The measurements of the first layer (LE channel) are interpolated onto 

the second-layer grid in the projection domain using bi-linear interpolation. The 

interpolated measurements were then decomposed using the proposed MBMD 

method with the geometry of the second layer ALE
interp = AHE . The system blur was 

not included in the model B=I .

c. iMBMD: For each detector layer, the geometry was calibrated and implemented 

that models the magnification difference and pixel grid misalignment. The 

system blur was not included in the model B=I .
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d. bMBMD: The complete high-fidelity model that includes the layer-dependent 

geometry and the system blur model.

In each decomposition, we initialized the estimates with IDD results and used 60 iterations 

of the pGD algorithm to achieve a good convergence.

2.E. Experimental setup

In the physical experiments, we investigated quantitative accuracy using a water-iodine 

phantom and the high-resolution capability with two specialized 3D-printed phantoms 

designed with high-resolution patterns/textures. The water-iodine phantom used in 

quantitative evaluation study includes 6 vials containing a water and iodine solution with 

concentration varying from 10 mg/mL to 50 mg/mL in 10 mg/mL increment (Fig. 2e). The 

digital design and photographs of the 3D-printed high-resolution phantoms are shown in 

Figs. 2a, 2b, 2c and 2d. The first phantom includes seven groups of line-pairs designed with 

spatial frequencies varying from 0.25 lp/mm to 1.75 lp/mm in 0.25 lp/mm increment. The 

second phantom has a number of spherical voids ranging from 1 to 2 mm in a cylinder that 

emulate trabecular bone structures.44 Both phantoms are immersed in a 40 mg / mL iodine 

solution and vacuum processed to eliminate air bubbles. The material decomposition used 

water and iodine as basis materials.

A prototype dual-layer FPD with 43 cm × 43 cm field-of-view (Varex Imaging, San Jose, 

CA) was investigated with a 200 − μm CsI scintillator top layer that collects relatively 

low-energy measurements and a 550 − μm CsI scintillator bottom layer for a relatively high-

energy channel. Both channels use a-Si detector panel consisting of 2880 × 2880 150 μm
pixels. A 1-mm copper filtration layer is sandwiched between the two layers to improve 

spectral separation.

The prototype dual-layer FPD is equipped on a CBCT test bench (Fig. 3) consisting of a 

rad/fluoro x-ray source (Rad-94, Varex Imaging, San Jose, CA) and a rotary stage (Alio 

Industries, Arvada, CO).

For each phantom, projections were acquired over 720 views in a 360° rotation with uniform 

angular sampling. The x-ray technique was a constant 90 kVp and 1 mAs per frame. The 

SDDs, SAD, and the projection point of the source at each of the pixel-grids were calibrated 

using Cho et al45 for each layer. The SAD was 828 mm and the SDD was 1126 mm for the 

first layer and 1132 mm for the second layer. The mismatch between the two pixel-grids was 

2 pixels in the horizontal direction and 0.4 pixel in the vertical direction. Native 150 pixels 

were used without binning. Incident fluence levels were estimated by computing the mean 

over variance of the normalized measurements in the air region presuming all noise was 

quantum and Poisson distributed. Estimated incident fluence was 1.3 × 104 photons/pixel 

in the first layer, and 6.7 × 103 photons/pixel in the second layer. Six different methods 

were used to estimate material decomposition results in water/iodine: IDD, PDD, aMBMD, 

pMBMD, iMBMD, and bMBMD. All methods used two 360 × 360 × 3 volumes (i.e., iodine 

and water bases) with 0.11 mm cubic voxels. The impact of regularization strength was 

investigated with 8 regularization strengths in the iodine basis βI applied between 104.5 and 

108 with an uniform exponential interval of 100.5. The regularization strength in the water 
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basis was scaled to be proportional to βw with a fixed ratio of 6 × 10−4 to balance the 

regularization in both material bases.

3. RESULTS

3.A. Quantitative evaluation

Reconstructions of the quantitative phantom using IDD, PDD, aMBMD, pMBMD, iMBMD, 

and bMBMD are summarized in Fig. 4. The mean estimates and standard deviations of 

five iodine concentration levels varying from 10mg/mL to 50mg/mL are reported in Fig. 

5, in which the reference concentration levels are marked with black dashed lines. In the 

IDD iodine basis image, the nonuniformity in each vial is obvious with higher estimates 

at the boundaries of the circles due to beam-hardening effect. This artifact is not observed 

in PDD and MBMD results. From the bar plots, we observe that the IDD, PMBMD, 

IMBMD, and bMBMD methods slightly overestimate the iodine concentration, while the 

PDD and aMBMD methods underestimate the iodine concentration. Specifically, iMBMD 

and bMBMD estimates show good agreement at all concentration levels, suggesting that the 

incorporation of the system blur model does not influence the quantification accuracy. The 

relative errors of the PMBMD, iMBMD, and bMBMD methods at all concentration levels 

do not exceed 8.7%, 11.9%, and 12.3%, respectively.

3.B. High-resolution imaging performance evaluation

Iodine material decompositions of the 3D-printed line-pair phantom are shown in Fig. 6 for 

qualitative comparison. The finest line pairs at 1.75 lp/mm are highlighted in the yellow 

square and are shown in the zoomed-in figures on the left upper corner of each subplot. The 

iodine noise level is measured as the standard deviation σ  in a uniform region. We chose 

the regularization parameters for each material decomposition method so that the noise is 

approximately at the same level. Specifically, the filter widths (as defined in Equation 20) 

of IDD and PDD are 0.95 and 0.9. The regularization strengths in iodine are 105.5, 105, 

105.5, and 106 in aMBMD, pMBMD, iMBMD, and bMBMD, respectively. The measured 

noise is noted at the lower right corner of the plots. The aMBMD result shows the worst 

spatial resolution where the 1.75 lp/mm line pairs are not visible. This is because of the 

excessive blur introduced by the inaccurate geometry model. The 1.75 lp/mm line pairs can 

be recognized in IDD and PDD results, but are blurrier as compared with the PMBMD, 

iMBMD, and bMBMD results. The line pairs in bMBMD estimates show the sharpest 

structure and the highest contrast among all iodine images.

We show the iodine material decomposition results in the 3D-printed trabecular phantom in 

Fig. 7. We chose the regularization parameters to achieve a good match in the noise level 

between the methods. The filter widths of IDD and PDD are 1.0 and 0.95, respectively. 

The regularization strengths in iodine are 105.5, 104.5, 105.5, and 106 in aMBMD, pMBMD, 

iMBMD, and bMBMD, respectively. Again, the aMBMD result qualitatively shows the 

worst spatial resolution performance, and the bMBMD result shows the sharpest features.

For quantitative comparison of methods, the noise and resolution properties were computed 

in the iodine material decomposition images with different filter widths in IDD and PDD, 
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and varying regularization parameters in MBMD methods. The resolution is characterized 

as the modulation of the line pairs at 1.75 lp/mm and the noise is measured as the 

standard deviation in a uniform region. To eliminate the influence of absolute quantification 

mismatch, each of the iodine images is normalized to attain 40 mg/ml in the uniform region. 

The noise-resolution curves are plotted in Fig. 8. The aMBMD results were not included 

here because the line pairs at 1.75 lp/mm in aMBMD were completely blurred across all 

investigated regularization parameters. The trade-off between noise and spatial resolution 

was tuned by the filter window width in IDD and PDD, and by the regularization strength 

in MBMD. With a broader frequency window in FBP (larger a), the spatial resolution in 

IDD and PDD results is higher, but with increased noise. Similarly, with lower regularization 

strength, all MBMD results exhibit improvement in spatial resolution and higher noise. 

Compared with IDD results, the PDD results show reduced spatial resolution at matched 

noise level. This spatial resolution loss is potentially due to the spatial interpolation in the 

projection domain. This spatial resolution loss also affects the performance of pMBMD, 

where the same interpolation is used in projection preprocessing. The iMBMD and bMBMD 

methods outperform the PDD and IDD methods with higher spatial resolution and lower 

noise. At a similar noise level (12mg/mL), the iMBMD approach can achieve a 10% 

absolute improvement and the bMBMD approach can achieve a 22% absolute improvement 

over IDD in modulation at 1.75 lp/mm. With further decreased regularization strength, the 

bMBMD approach can further improve the spatial resolution at a cost of higher noise. 

The iMBMD approach reaches a resolution limit despite lower regularization due to the 

mismatched ideal blur model.

Synthetic monoenergetic images of the line-pair phantom at 40, 50, and 60 kV are 

shown in Fig. 9. The regularization parameters are chosen to match the noise level in 

50 kV monoenergetic images. Specifically, the filter widths of IDD and PDD are 1.0 (no 

additional filtration). The regularization strengths in iodine are 106.5, 106, 106.5, and 106.5 

in aMBMD, pMBMD, iMBMD, and bMBMD, respectively. The measured noise levels σ
are displayed at the lower right corner of each subplot. In the IDD results, beam-hardening 

artifacts are observed, particularly in monoenergetic images at lower energy. The PDD and 

MBMD results eliminate the beam-hardening artifacts due to the intrinsic nonlinear spectral 

modeling. The spatial resolution of the MBMD methods, except for the aMBMD, is finer 

than the PDD results at all energies. In the monoenergetic images of the IDD and PDD, the 

spatial resolution decreases at higher energies because the high-energy channel has lower 

intrinsic resolution due to the thicker scintillator layer. This trend is not observed in the 

MBMD methods, but the noise in MBMD results at 60 kV are higher than the IDD and 

PDD results. The different noise-resolution trade-off of MBMD as compared to conventional 

methods has potential benefits for high-resolution imaging tasks. The bMBMD method that 

incorporates the system blur model demonstrates the best spatial resolution improvement 

in monoenergetic images. Similar to the analysis in iodine basis images, the noise and 

resolution properties are computed in the 50-kV monoenergetic images with varying filter 

width in IDD and PDD, and varying regularization parameters in MBMD methods. The 

noise-resolution curves are plotted in Fig. 10. At the same noise level (7 × 10−3)-mm−1)), the 

MBMD methods show improved spatial resolution. Moreover, the highest achievable spatial 

resolution is improved with iMBMD and bMBMD methods by 5% and 26%, respectively.
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4. CONCLUSIONS AND DISCUSSION

In this work, we proposed a model-based method for high-resolution material decomposition 

in a dual-layer flat-panel CBCT system. The model includes layer-dependent geometry, 

spectral sensitivity, and detector blur. In physical experiments with a prototype dual-layer 

FPD, we investigated four MBMD methods with increasingly high-fidelity models of the 

dual-layer flat-panel CBCT and compared their performance with conventional IDD and 

PDD methods. The results validated the capability of the MBMD with high-fidelity model 

in high-resolution spectral CT imaging. The proposed method demonstrates improved noise-

resolution trade-offs and provides good quantification ability in dual-energy CT. It can 

achieve extended high spatial resolution when an accurate system blur model is included. 

These results are consistent with prior work46 in model-based iterative reconstruction 

(MBIR), where methods with blur modeling outperform methods without blur modeling 

by extending the feasible range of noise-resolution tradeoffs. Specifically, while traditional 

methods permit higher spatial resolution at the cost of increased noise with decreased 

regularization or finer reconstruction kernels, those methods are ultimately limited by 

unmodeled system blurs. At some point, less regularization only increases noise without 

a resolution advantage—effectively “hitting a wall.” Blur modeling extends the range—

pushing the “wall” to finer resolutions but still at the expense of increased noise. In regions 

before this limit, the effects of blur modeling can be marginal or non-existent. In essence, all 

the blur modeling is counteracted by increased regularization. That is, if lower resolutions 

are desired (with decreased noise) there may not be a noise advantage in modeling the 

blur and then, effectively, blurring out the results via regularization. In contrast, when 

comparing model-based approaches to non-statistical approaches including FBP, there is a 

noise advantage even at these lower spatial resolutions. This improvement is at the price of 

a 50% extra computational cost because the forward projection of the estimated volume is 

computed separately for each spectral channel compared with the aMBMD and PMBMD 

where two spectral channels share a common geometry.

The proposed model is flexible and can be adapted for other spectral CT systems, especially 

for detectors where the geometry and blur vary between spectral channels. Because the 

proposed approach changes and improves upon traditional trade-offs, there is also an 

opportunity to design new FPDs based on these new trade-offs. For example, one might 

intentionally vary alignments and scintillator thicknesses between layers knowing that 

the proposed model-based approach can leverage differential resolution and sampling. 

The system blur implemented in the current work is shift-invariant, which is a good 

approximation for relatively small cone angles. In the case of larger cone angles, the 

obliquity of x rays interacting in the scintillator can result in broadening of the detector 

blur. While such shift-variant blur can be accommodated in the system model, we do 

not investigate such effects in this work. Similarly, other physical shiftvariance, for 

example focal spot blur, is also ignored, though previously reported methods47 could be 

applied here if those physical effects are significant. In the physical experiments, the 

concentration of the iodine solution used in the high-resolution phantoms is relatively 

high. Further investigation using different contrast and at varying noise levels is merited 

to evaluate the contrast- and noise-dependent performance of MBMD, particularly at 
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lower iodine concentrations. The presented work used relatively simple regularization to 

make performance comparison more straightforward; however, in ongoing work, we are 

implementing more sophisticated regularization schemes (e.g., cross-material penalties48 

in addition to in-material regularization) to provide increased advantage. This work is 

dedicated to high spatial resolution imaging capability of a dual-layer flat-panel CBCT 

where we used a relatively small phantom in the physical experiment. The impact of 

scattering was small and neglected. In a more realistic scenario where a larger imaging 

object is examined, proper scatter correction for both spectral channels is important, which 

is investigated in ongoing work.49 There may be a benefit in an optimized sampling with 

intentionally misaligned pixel grids. However, there are a number of challenges in terms 

of physical implementation, including precision alignment in manufacturing and divergent 

beam effects where the misalignment varies across the panel. A thorough investigation of all 

the above factors is beyond the scope of this paper and reserved for future investigation.
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APPENDIX A

MATRICES IN THE SPECTRAL CT MODEL OF DUAL-LAYER FLAT-PANEL 

CBCT

The generalized spectral CT model we propose in Equation 3 can be generalized to arbitrary 

spectral CT systems. Specifically in this work, we consider a dual-material estimation 

problem with a dual-layer CBCT system that has a low-energy (LE) channel and a high-

energy (HE) channel. The system matrix A is composed as follows:

A =

ALE 0
AHE 0
0 ALE

0 AHE

,

(A1)

where ALE, AHE ⊂ ℝP × J are the system matrices that forward project an image in one 

material basis to the projections in the corresponding projection grid in the LE and HE 

channels, respectively. The mass attenuation matrix Q is written as follows:
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Q =

q1 E1 I(P) 0 q2 E1 I(P) 0
⋮ ⋮ ⋮ ⋮

q1 EM I(P) 0 q2 EM I(P) 0

0 q1 E1 I(P) 0 q2 E1 I(P)

⋮ ⋮ ⋮ ⋮

0 q1 EM I(P) 0 q2 EM I(P)

(A2)

where I P ∈ ℝP × P  is an identity matrix. Similarly, the blur model B and the spectral 

sensitivity matrix S can be written as follows:

B =
BLE 0
0 BHE

, S = ΔE
SLE 0
0 SHE

.

(A3)

Here BLE, BHE ⊂ ℝP × P  are the blurring matrices in each of the spectral channels. The S
matrix is capable of modeling different spectral sensitivities at different pixels and between 

spectral channels. In this work, the spectral sensitivities are considered shift-invariant for all 

pixels in each of the two spectral channels, but different between the spectral channels. The 

spectral sensitivity matrices of the LE and HE channels are written as follows:

SLE = SLE E1 I P , …, SLE EM I P ,

(A4)

SHE = SHE E1 I P , …, SHE EM I P .

(A5)

APPENDIX B

PRECONDITIONED GRADIENT DESCENT ALGORITHM

In previous work, Tilley et al. developed a separable paraboloidal surrogates (SPS) algorithm 

for MBMD36 that presumes all image voxels are uncorrelated. Tivnan et al.39 developed a 

preconditioned gradient descent (pGD) algorithm for MBMD that uses a curvature Λ based 

on an estimate of the curvatures H1, …, Hk, …, HK  that accounts for correlations between 

the materials at each voxel with the current estimates.

Hk ≔ ATQTWTK−1WQA1k

(B1)
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Λ =

H1, 1

H1, 2

⋱
H1, J

⋯

H1, 1 + (k − 1)J

H1, 2 + (k − 1)J

⋱
H1, J + (k − 1)J

⋮ ⋱ ⋮
HK, 1

HK, 2

⋱
HK, J

⋯

HK, 1 + (k − 1)J

HK, 2 + (k − 1)J

⋱
HK, J + (k − 1)J

,

(B2)

where Hk ∈ ℝJK denotes the estimates of curvature with respect to the kth material basis, 

1k ∈ ℝJK denotes an image vector that has ones in the kth material basis and zeros else-

where, Hk, j denotes the jth  element in Hk. The off-diagonal elements characterize the 

correlation between the densities at the same location of different material bases, which is 

neglected in the SPS algorithm. The W denotes the energy-dependent statistical weights that 

occurs when computing the derivative of the mean spectral measurements y with respective 

to material densities ρ :

W = BSD exp −QAρ , ∂y
∂ρ = − WQA .

(B3)

The pseudo-code is shown in Algorithm 1.

The convergence curves of SPS and pGD are shown in Fig. B1. Compared with the SPS 

algorithm, the convergence rate is relatively fast and can achieve good convergence with 

30 iterations. In this work. we used 60 iterations to achieve good convergence in all 

regularization conditions.
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Fig. B1. 
Convergence curves of the SPS and pGD algorithms.
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Fig. 1. 
The calibrated (a) spectral sensitivities and the (b) MTFs of the low-energy and high-energy 

channels.
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Fig. 2. 
Digital designs of (a) the line-pair phantom and (b) the trabecular phantom. (c) Photograph 

of the 3D-printed line-pair phantom. (d) Photograph of the 3D-printed trabecular phantom. 

(e) Photograph of the physical phantom for quantification accuracy validation.
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Fig. 3. 
Cone-beam CT test bench equipped with a prototype dual-layer flat-panel detector.
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Fig. 4. 
Decomposed iodine images of the quantitative phantom in Fig. 2e using IDD, PDD, 

aMBMD, pMBMD, iMBMD, and bMBMD.
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Fig. 5. 
Mean estimates and standard deviations of the iodine concentrations at 10 to 50 / using IDD, 

PDD, aMBMD, pMBMD, iMBMD, and bMBMD.
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Fig. 6. 
Material decomposition results of the line-pair 3D-printed phantom. Each of the subplots 

shows the iodine basis images using IDD, PDD, aMBMD, pMBMD, iMBMD, and 

bMBMD.
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Fig. 7. 
Material decomposition results of the trabecular 3D-printed phantom. Each of the subplots 

shows the iodine basis images using IDD, PDD, aMBMD, pMBMD, iMBMD, and 

bMBMD.
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Fig. 8. 
Noise-resolution characterization curves in the iodine basis images estimated through IDD, 

PDD, pMBMD, iMBMD, and bMBMD with varying regularization parameters. The black 

horizontal dashed line indicates the noise level of the images shown in Fig. 6.
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Fig. 9. 
Synthetic monoenergetic images at 40, 50, and 60 kV of the 3D-printed line-pair phantoms. 

Each of the columns shows the estimates using IDD, PDD, aMBMD, pMBMD, iMBMD, 

and bMBMD.
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FIG. 10. 
Noise-resolution characterization curves in the 50-kV synthetic monoenergetic images 

estimated through IDD, PDD, pMBMD, iMBMD, and bMBMD with varying regularization 

parameters. The black horizontal dashed line indicates the noise level of the images shown 

in the 50-kV monoenergetic images in Fig. 9.
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