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Summary
Background Epidemic waves of coronavirus disease 2019 (COVID-19) infections have often been associated with the
emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Rapid detection of
growing genomic variants can therefore serve as a predictor of future waves, enabling timely implementation of
countermeasures such as non-pharmaceutical interventions (social distancing), additional vaccination (booster
campaigns), or healthcare capacity adjustments. The large amount of SARS-CoV-2 genomic sequence data
produced during the pandemic has provided a unique opportunity to explore the utility of these data for
generating early warning signals (EWS).

Methods We developed an analytical pipeline (Transmission Fitness Polymorphism Scanner – designated in an R
package mrc-ide/tfpscanner) for systematically exploring all clades within a SARS-CoV-2 virus phylogeny to detect
variants showing unusually high growth rates. We investigated the use of these cluster growth rates as the basis
for a variety of statistical time series to use as leading indicators for the epidemic waves in the UK during the
pandemic between August 2020 and March 2022. We also compared the performance of these phylogeny-derived
leading indicators with a range of non-phylogeny-derived leading indicators. Our experiments simulated data
generation and real-time analysis.

Findings Using phylogenomic analysis, we identified leading indicators that would have generated EWS ahead of
significant increases in COVID-19 hospitalisations in the UK between August 2020 and March 2022. Our results also
show that EWS lead time is sensitive to the threshold set for the number of false positive (FP) EWS. It is often
possible to generate longer EWS lead times if more FP EWS are tolerated. On the basis of maximising lead time
and minimising the number of FP EWS, the best performing leading indicators that we identified, amongst a set
of 1.4 million, were the maximum logistic growth rate (LGR) amongst clusters of the dominant Pango lineage
and the mean simple LGR across a broader set of clusters. In the case of the former, the time between the EWS
and wave inflection points (a conservative measure of wave start dates) for the seven waves ranged between a 20-
day lead time and a 7-day lag, with a mean lead time of 5.4 days. The maximum number of FP EWS generated
prior to a true positive (TP) EWS was two and this only occurred for two of the seven waves in the period. The
mean simple LGR amongst a broader set of clusters also performed well in terms of lead time but with slightly
more FP EWS.

Interpretation As a result of the significant surveillance effort during the pandemic, early detection of SARS-CoV-2
variants of concern Alpha, Delta, and Omicron provided some of the first examples where timely detection and
characterisation of pathogen variants has been used to tailor public health response. The success of our method
in generating early warning signals based on phylogenomic analysis for SARS-CoV-2 in the UK may make it a
worthwhile addition to existing surveillance strategies. In addition, the method may be translatable to other
countries and/or regions, and to other pathogens with large-scale and rapid genomic surveillance.
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Research in context

Evidence before this study
We searched PubMed on 29 June 2023 using the keywords
("COVID-19*" OR "SARS-CoV-2*") AND ("early?warning*" OR
"leading?indicator*"). This returned 1013 articles. While we
have not reviewed each of these articles, the set contains
numerous studies of the SARS-CoV-2 genome and mutations
with various analyses used to infer the impact on viral
characteristics such as transmissibility and severity, and
therefore provide an early warning. It also contains studies
looking at producing early warning signals using non-
phylogenomic leading indicators. By adding (“phylo*”) as an
additional search term, using the ‘AND’ Boolean operator, the
number of articles was reduced to 21. This includes a study
that demonstrated the use of counts of amino acid changes
to detect the emergence of SARS-CoV-2 variants of interest/
concern. However, our search did not identify any previous
studies on the use of similar phylogenomic analysis as a
method for generating early warning signals for epidemic
waves of SARS-CoV-2 infections.

Added value of this study
We present a methodology for generating early warning
signals of epidemic waves of COVID-19 infections in the UK,
based on phylogenomic analysis of cluster logistic growth
rates using geo-matched comparator sets. This has been
made possible by the significantly higher number of SARS-
CoV-2 genome sequences recorded during the COVID-19
pandemic relative to that in databases of other infectious
disease pathogens. Using a relatively simple method for
generating early warning signals, we have demonstrated that
it would have been possible to produce lead times ahead of
COVID-19 epidemic wave peaks that we judge to be useful for
public health policymakers.

Implications of all the available evidence
The resulting lead times of the early warning signals
generated suggest that the methodology may be useful if
incorporated into broader surveillance programmes. There is
also potential for future work to assess the performance of
the methodology for other countries and/or regions, as well
as other pathogens with large-scale and rapid genomic
surveillance.
Introduction
The coronavirus disease 2019 (COVID-19) pandemic
has been typified by recurrent epidemic waves associ-
ated with distinct severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) variants. Early detection of
epidemic waves can enable countermeasures to be
implemented such as non-pharmaceutical interventions
(social distancing), additional vaccination (booster cam-
paigns), or healthcare capacity adjustments. In an article
published in June 20221 members of the World Health
Organization’s Technical Advisory Group on Virus
Evolution (TAG-VE), tasked with implementing a global
risk-monitoring framework for SARS-CoV-2 variants,
and colleagues highlighted the importance of early
warning systems and called for strengthened surveil-
lance and the continued monitoring of SARS-CoV-2.

A variety of statistical methods have been developed,
and/or borrowed from other scientific fields, with the
objective of providing early warning signals (EWS) of
the re-emergence of infectious diseases.2–5 Often the
leading indicator used in such methods is the incidence
or prevalence of the infectious disease being moni-
tored,5 with detrending and/or standardisation applied
prior to statistical analysis.6 Machine learning has also
been applied to the generation of EWS and has shown
potential to increase the sensitivity and specificity of
EWS.7

In addition to the generation of infectious disease
EWS from the incidence and prevalence of the infec-
tious disease itself, which we term ‘direct data’, re-
searchers have sought to generate early warnings, and/
or model the trajectory of the epidemic, using a range of
potential leading indicators derived from ‘indirect data’
(i.e. data which does not directly measure the number of
cases of infection). These include polymerase chain re-
action (PCR) cycle threshold (Ct) levels from diagnostic
tests,8,9 behavioural changes relating to social contact10

and mobility,11 wastewater analysis,12 internet search,13

social media usage,13 and work absenteeism.14 Counts
of amino acid changes in virus samples15 and analysis of
www.thelancet.com Vol 100 February, 2024
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amino acid features to predict mutation spread16 have
also been used to detect or forecast, respectively, the
emergence of SARS-CoV-2 variants of interest/concern.

Because epidemic waves of SARS-CoV-2 infections
are typically associated with particular variants,17 rapid
detection of growing genomic variants can serve as a
predictor of future waves. As a result of the significant
surveillance effort during the pandemic, early detection
of SARS-CoV-2 variants of concern Alpha, Delta, and
Omicron provided some of the first examples in infec-
tious disease epidemiology where the timely detection
and characterisation of pathogen variants has been used
to tailor public health response. The large amount of
SARS-CoV-2 genomic sequence data produced during
the pandemic18 has provided a unique opportunity to
explore the possibility of using such data as the basis for
generating an EWS for SARS-CoV-2 epidemic waves.
The success of our method for SARS-CoV-2 in the UK
may be indicative of what may be possible if genomic
surveillance for other pathogens were to be massively
increased.

We developed an analytical pipeline (Transmission
Fitness Polymorphism Scanner)17,19 for systematically
exploring all clades within a SARS-CoV-2 virus phylog-
eny to detect variants showing unusually high growth
rates. We investigated the use of these cluster growth
rates as the basis for a variety of statistical time series to
use as leading indicators for the epidemic waves in the
UK during the pandemic between August 2020 and
March 2022. Our experiments simulated data genera-
tion and real-time analysis, and identified leading in-
dicators that would have generated EWS ahead of
significant increases in COVID-19 hospitalisations in
the UK during this period. Other leading indicators
generated using this method also compared favourably
against a range of non-phylogenomic potential leading
indicators with EWS generated using broadly the same
method with some adjustments to make comparison
possible.
Methods
Analysis of SARS-CoV-2 phylogenies using the
Transmission Fitness Polymorphism (TFP) Scanner
We used the Transmission Fitness Polymorphism (TFP)
Scanner17,19 to analyse a set of large SARS-CoV-2 phy-
logenies spanning August 2020 to March 2022. Whereas
many statistics are generated by the TFP Scanner and
many variations of this analysis are possible depending
on cluster thresholds, we systematically explored a wide
range of statistics and thresholds as the basis for EWS
leading indicators. The analysis included the calculation
of logistic growth rates (LGRs) for clusters (mono-
phyletic clades above a given size threshold) within each
phylogeny using two different methods: (1) a general-
ised linear model (GLM) to calculate the log odds of a
sample being from a cluster of interest compared to a
www.thelancet.com Vol 100 February, 2024
geographically (by country) and temporally matched
sample weighted by prevalence, and multiplied by the
estimated mean generation time of 6.5 days20–23 to
calculate the relative LGR per generation for each cluster
of interest (the method is not sensitive to the value
selected for generation time, see Supplementary
Material for details); and (2) a generalised additive
model (GAM) combined with a Gaussian process model
to identify changes in growth rates over time. A third
growth rate output is computed for each cluster as being
either (1) or (2) depending on the level of model support
calculated using the Akaike Information Criterion (AIC)
and ‘relative likelihood’. Fig. 1a shows an example of the
TFP Scanner output as viewed in the online html tree
viewer.

The TFP Scanner also computes a ‘molecular clock
outlier’ (MCO) statistic that measures the degree to
which evolutionary rates differed in the lineage leading
to a phylogenetic cluster (example shown in Fig. 1b).
This statistic uses root-to-tip regression to predict the
divergence of tips in a cluster and contrasts this with
divergence within an ancestral clade including the given
cluster. This predicted divergence is then compared to
the true divergence of the cluster. If the predicted values
based on the ancestral clade are very different from the
observed values (p < 0.05) the cluster of interest is
considered to be a MCO.

We used 24 different parameter sets in the TFP
Scanner analysis, varying: the minimum cluster
age ∈ {7, 14, 28 days}; the maximum cluster age ∈ {56,
84 days}; and the minimum threshold size for the
number of descendants in clusters ∈ {20, 50, 100, per-
centage of genomic sequences within the maximum
sample date period, such that the minimum number of
descendants across the time series is 20 (0.32% for 56-
day period and 0.24% for 84-day period)}.

Calculation of early warning signals and ranking of
leading indicators
We used the calculated cluster growth rates and MCO
values, along with other statistics computed from the
phylogeny, as the basis for 19 potential leading indicator
types (listed in Supplementary Table S2 in the
Supplementary Materials). We applied filters to the set
of clusters to be included in the production of leading
indicator time series. Only extant clusters (containing
recent samples) were included and overlapping tips
were removed to maintain independence of the cluster
growth rates. Only external clusters (all descendants of
the cluster most recent common ancestor (MRCA)
included in the cluster) were included although this
requirement was relaxed depending on the ratio of the
growth rates between parent and sub-clusters in order to
examine the inclusion of larger parent clusters where
growth rates were similar to their sub-clusters. Where
replacement was allowed, we varied the growth rate ratio
between 60% and 100%. We also filtered clusters based
3
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Fig. 1: Transmission Fitness Polymorphism (TFP) Scanner output example: (a) extract from cluster phylogeny (tree date = 25 February 2021,
minimum cluster age = 7 days, maximum cluster age = 56 days, minimum number of descendants = 20) showing the relative logistic growth
rates between clusters and their size; (b) ‘molecular clock outlier’ (MCO) statistic boxplot showing elevated values as Alpha (B.1.1.7) replaced
B.1.177 as the predominant variant in the UK.
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on the p-value for the GLM calculated logistic growth
rate ∈ {<0.01, <0.05 and no filter}. In total this added 30
unique filter sets to the analysis.

The time series were standardised using a ‘robust’ z-
score (a.k.a. median absolute deviation method), with
the resulting values compared against a range of
thresholds on a chronological ‘add-one-in’ basis (simu-
lating real-time analysis) to generate early warning sig-
nals (EWS). These indicators included realistic delays to
simulate the time required to carry out genomic
sequencing and execute bioinformatic pipelines (quality
control and phylogenetic analysis). Positive EWS were
classified as true or false according to the presence of
the predominant SARS-CoV-2 variant during an
epidemic wave being a significant contributor to the
EWS generation. A variant was defined as being a sig-
nificant contributor based on it being the most prevalent
variant within a large proportion of phylogenetic clus-
ters and/or the most prevalent variant in the phyloge-
netic clusters with the highest growth rates. Further
details can be found in the Supplementary Material.

We calculated EWS lead times relative to COVID-19
epidemic wave start dates, which we defined by applying
an optimised GAM to new hospital admissions data in
the UK. These start dates are effectively the inflection
points in between epidemic waves and represent a
conservative date against which to measure the lead
times of our EWS. Note that these inflection points
would not be discernible from hospitalisation data in
real time but are only apparent retrospectively.

The combination of TFP Scanner input parameter
sets (24), the application of variable cluster filters (30),
multiple potential leading indicators (19), and a range of
EWS threshold levels (101), resulted in a set of 1.38
million unique EWS time series. The leading indicators
were ranked on the basis of both EWS lead time and the
number of false positives, with the aim of maximising
lead time and minimising false positives.

Leading indicator parameter sets were filtered for
those that had at least one true positive EWS per
epidemic wave. We also applied filters limiting the
number of false positive EWS per wave and ranking of
leading indicators was based on lead time. Both criteria
were applied across different combinations of waves.
Further details of these criteria can be found in the
Supplementary Material.

For comparison purposes, we also generated EWS
from non-phylogeny-derived potential leading indicators
(i.e. new hospital admissions, test positivity rates, PCR
Ct levels, CoMix survey, Google mobility), using the
same methodology format of time series standardisation
and EWS generation above a threshold. Some adjust-
ments to the methodology were made due to differences
in the time range and data point frequency in the data
sets. A different method of assessing performance was
also required because it was not possible to differentiate
between true and false positives in the same way for the
non-phylogeny-derived leading indicators. A time win-
dow around the wave start (inflection) date or Rt critical
transition date (when the time varying, or effective,
reproduction number, or reproductive ratio, Rt, in-
creases above 1) was used to define the four elements of
the confusion matrix. Further details of the methodol-
ogy are described in the Supplementary Material.

Data sources
We obtained a set of 288 SARS-CoV-2 phylogenetic trees
used in our analysis from the Cloud Infrastructure for
www.thelancet.com Vol 100 February, 2024
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Microbial Bioinformatics (CLIMB).24 These were
generated routinely and periodically between 14 August
2020 and 29 March 2022 using genomic sequence data
from the COVID-19 Genomics UK (COG-UK) Con-
sortium by the Phylopipe pipeline (https://github.com/
virus-evolution/phylopipe). Trees were generated using
maximum likelihood (ML) methods until March 2021,
with later trees generated from a single ML tree by
updating it using maximum parsimony methods.
Contemporary trees were used in order to simulate real-
time analysis and, in particular, to avoid including data
that were subsequently revised. Genomic sequences in
the trees were linked to patient case metadata, sourced
from COG-UK via CLIMB on 3 May 2022. This enabled
positive filtering for the genomic sequences collected in
the UK under Pillar 2 (P2) sampling which was based
primarily on community COVID-19 testing25 between
April 2020 and the end of March 2022. Only P2 samples
were selected to eliminate sampling bias present in
Pillar 1 (P1) hospital samples, as well as to garner a
more representative sample of transmission in the
general population. Additional details can be found in
the Supplementary Material.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report and the decision to submit the
paper for publication.
Results
EWS performance varied across the potential leading
indicators and the analysis variables investigated, which
in combination represented 1.38 million unique
parameter sets. Of these, 40,720 generated at least one
true positive (TP) EWS for each of the seven epidemic
waves during the period investigated. Fig. 2 shows an
example of the EWS generated from one of the potential
leading indicators we investigated. It is one of the
highest ranked parameter sets on the basis of TP EWS
lead-time and the number of false positive (FP) EWS
generated.

Fig. 2 shows that the earliest TP EWS (d) provide a
meaningful lead time ahead of the growth in new hos-
pital admissions (c) across multiple waves. The mean
lead time across all seven waves is 5.4 days for these
parameters. The earliest lead time is 20 days, for the first
Delta wave, and the latest lag time is 7 days, for the
B.1.177 wave. Our leading indicator time series begins
on 14 August 2020 and our computed start date for the
B.1.177 wave is 19 August 2020, so given the limited
number of data points in the leading indicator time
series ahead of this wave, it is not surprising that the
EWS lead time performance is weaker than for other
waves. The earliest TP EWS generated for the B.1.177
wave by any of the parameters that produced at least one
www.thelancet.com Vol 100 February, 2024
TP EWS for each wave is a 6-day lag. Our selected best
leading indicator parameter set matches the earliest TP
EWS amongst this group for three out of the seven
waves and is within 4 days for all waves. This parameter
set also performed well in terms of FP EWS, with just
eight generated across all seven waves and only four
before the earliest TP EWS, split across just two waves.
Further details of the lead times for each wave are
shown in Table 1.

The leading indicator shown in Fig. 2d and Table 1
was derived by identifying the Pango lineage26 that was
dominant (highest sample frequency within a cluster) in
the most clusters and computing the maximum logistic
growth rate (LGR) among the clusters where this Pango
lineage was dominant. The specific parameters used in
the generation of the leading indicator time series are
shown in the first column of Table 2. These specific
parameters were selected as the ‘best’ leading indicator
in 9 of the 20 filtering and ranking criteria that produced
results.

We found that other leading indicators also per-
formed well and by some measures performed better.
Details of the best leading indicators for each set of
filtering and ranking criteria are in Table 3. The leading
indicator derived from the mean of the simple LGRs
amongst phylogenetic clusters (specific parameters
shown in the second column of Table 2) also performed
well under the criteria with no restriction on the num-
ber of FP EWS. It produced similar lead times to those
shown in Fig. 2 and Table 1 and the mean lead time
across all seven waves was higher (6.4 days compared
with 5.4 days for the dominant Pango lineage leading
indicator), but with a higher level of mean FP EWS (2.9
vs 1.1).

The difference between the mean lead time and
number of false positives for these two parameter sets
also shows that in general, parameter sets that generate
earlier TP EWS do so with a larger number of FP EWS.
This is true for the majority (14 out of 19) of leading
indicator types that we investigated, although not all.
This relationship is further illustrated across all leading
indicator parameter sets in Fig. 3a and b, which focuses
on the two leading indicator types generating the best
performing parameter sets.

The parameter sets selected as the best performing
under the various filtering and ranking criteria are
shown in Table 3. Due to multiple parameter sets
sharing the same top score on total lead times across
waves, there is some subjectivity in selecting the best
performing parameter sets. Where parameter sets were
tied on total EWS lead time, we considered the number
of false positives as well as lead time performance for
individual waves. The highest ranked parameter sets for
each of the 20 unique ranking and filtering criteria sets
that produced results are available in a separate file
(SM1–Best EWS Results by Filter and Ranking Criteria)
as part of the Supplementary Material.
5
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Fig. 2: Early warning signals for COVID-19 epidemic waves in the UK generated by analysis of SARS-CoV-2 phylogenetic trees. (a)
Estimated COVID-19 reproduction number (Rt) with 90% confidence intervals and ‘critical transitions’ (when Rt increases above 1) marked. (b)
New recorded positive cases of COVID-19 in the UK. (c) New COVID-19 hospital admissions in the UK with epidemic wave start (inflection) dates
marked. (d) ‘Robust’ Z-score for one of the best performing leading indicators identified using our method. Earliest true positive (TP) EWSs
(light blue) and wave start (inflection) points (red) marked. The mean earliest TP EWS lead time was 5.4 days. It ranged from a 20-day lead time
to 7-day lag, but for all waves the earliest TP EWS was generated ahead of a significant rise in both hospitalisations and cases. (e) Estimate of
SARS-CoV-2 sequencing ratio.
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Using a different method of assessing performance,
which enabled comparison between the phylogeny-
derived leading indicators and the non-phylogeny-
derived leading indicators, we found that the best of
the former outperformed the best of the latter. The
highest ranked for each category are shown in
Supplementary Table S7 in the Supplementary Material.
The best performer in the former category was the mean
cluster LGR, which had a minimum normalised Mat-
thews Correlation Coefficient (MCC) across five
epidemic waves (Alpha, Delta (1,2,3), Omicron BA.1) of
0.63 (range 0.63–0.93) and an arithmetic mean nor-
malised MCC of 0.74. This compares with the mini-
mum normalised MCC of 0.56 (range 0.56–0.68) and
arithmetic mean normalised MCC of 0.63 for the best
performer, Google mobility grocery & pharmacy, from
the latter category. Time series plots for both are shown
in Supplementary Figure S1 in the Supplementary
Material.

We compared EWS results for the best performing
phylogeny-derived leading indicator and parameter sets,
shown in Table 2, generated using cluster matching at
www.thelancet.com Vol 100 February, 2024
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B.1.177 Alpha Delta (1) Delta (2) Delta (3) Omicron BA.1 Omicron BA.2

Epidemic wave start (inflection) date 19 Aug 2020 29 Nov 2020 11 May 2021 3 Aug 2021 27 Sep 2021 26 Nov 2021 21 Feb 2022

Rt critical transition date 6 Sep 2020 13 Dec 2020 22 May 2021 19 Aug 2021 13 Oct 2021 25 Nov 2021 11 Mar 2022

Earliest true positive EWS date 26 Aug 2020 23 Nov 2020 21 Apr 2021 4 Aug 2021 18 Sep 2021 2 Dec 2021 4 Feb 2022

EWS lead time (days) relative to wave start
(inflection) date
Lead (−ve) and Lag (+ve)

+7 −6 −20 +1 −9 +6 −17

Number of false positives

Prior to earliest true positive 0 0 2 0 0 2 0

After earliest true positive 4 0 0 0 0 0 0

Positive predictive value i.e. precision 0.76 1.00 0.95 1.00 1.00 0.90 1.00

Change in number of daily hospital admissions

Between EWS and wave start (inflection) date

Number −17 −200 −64 −17 +23 −106 −178

% −13% −13% −37% −9% +3% −13% −13%

Between EWS and wave peak

Number +1843 +2990 +2432 +1843 +406 +1795 +1263

% +1418% +188% +1406% +40% +53% +214% +89%

The best leading indicator generated an earliest true positive (TP) EWS ranging from a 20-day lead time to a 7-day lag time, with a mean lead-time of 5.4 days across the seven epidemic waves. In all
waves, the earliest TP EWS was ahead of significant increases in COVID-19 hospitalisations. A total of eight false positive (FP) EWS were generated, but only four of these were ahead of the earliest TP EWS
and they only occurred in two of the seven waves. EWS information shown was generated by a leading indicator time series using the maximum logistic growth rate with a filter applied derived from the
dominant Pango lineage (‘Dominant Pango lineage max LGR’, as described in the ‘Phylogeny-derived leading indicators investigated’ section in the Supplementary Material). The specific parameters used in
the TFP Scanner to derive this leading indicator are shown in the first column of Table 2.

Table 1: Early warning signals (EWS) generated by selected phylogeny-derived leading indicator for COVID-19 waves of infection in the UK.

Articles
two geographic aggregations: country level, and the finer
administrative level 2 (adm2) scale. EWS lead times
were shorter (and lag times longer), and the number of
false positives was higher at the finer scale geographic
aggregation (see Supplementary Material for details),
indicating that adm2 is too fine in this case.
Best performance on lea
number of false positive

Leading indicator Dominant Pango lineage

Transmission Fitness Polymorphism (TFP)
Scanner parameter

Minimum cluster age 7 days

Maximum cluster age 56 days

Minimum number of descendants 20

Cluster filter

LGR p-value limit ≤0.01
LGR threshold to determine replacement of
sub-clusters with parent clusters

85%

EWS generation

‘Robust’ Z-score threshold for generating EWS 0.00

Parameters used in Transmission Fitness Polymorphism (TFP) Scanner and subsequent va
basis of a selection of ranking criteria. The dominant Pango lineage max logistic growth
days across the seven epidemic waves (range from a 20-day lead time to a 7-day lag) and
only occurred in two of the seven waves. This compares with the mean simple LGR lead
EWS, 16 of which were ahead of the earliest TP EWS. In all waves, the earliest TP EWS wa
the dominant Pango lineage max LGR leading indicator is shown in Table 1 and for o

Table 2: Parameters for best performing phylogeny-derived leading indicato
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Discussion
We have demonstrated that this method for analysing
SARS-CoV-2 phylogenomic data and extracting statistics
would have produced early warning signals (EWS) for
COVID-19 epidemic waves of hospital admissions in the
UK.
d time and
s

Best performance on lead time Range of values investigated

max LGR Simple logistic growth rate
(LGR) mean

See Supplementary Table S2 in Supplementary
Materials

14 days 7, 14, 28 days

56 days 56, 84 days

20 20, 50, 100, % of samples

No limit ≤0.01, ≤0.05, no limit

85% 60%–100% with 5% increments, and no
replacement

0.00 0.00–5.00 with 0.05 increments

riable cluster filters used in generating the two leading indicator time series selected as the best performing on the
rate (LGR) leading indicator generated a mean earliest true positive (TP) early warning signal (EWS) lead time of 5.4
a total of eight false positive (FP) EWS were generated, but only four were ahead of the earliest TP EWS and they

ing indicator which had a mean earliest TP EWS of 6.4 days (range 24-day lead to 6-day lag) and generated 20 FP
s ahead of significant increases in COVID-19 hospitalisations. More detailed Information on the EWS performance of
ther highly ranked leading indicators in Table 3.
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Best values by
wave across all
parameter sets

Best parameters for individual ranking and filter criteria

Ranking criteria

Rank by Lead
time

Lead
time

Lead
time

Lead
time

Lead
time

Lead
time

Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time Lead time

Which waves
included in
ranking an
filters

All All New
variant
driven

New
variant
driven

New
variant
driven

New
variant
driven

All All New
variant
driven

New
variant
driven

All All All New
variant
driven

New
variant
driven

New
variant
driven

All All New
variant
driven

All

False positive
limit

All All All All 10 10 5 10 2 5 2 5 10 2 5 0 2 0 0 0

Which false
positives

All All All All All Before
1st TP

All All All All Before 1st
TP

Before 1st
TP

Before 1st
TP

Before 1st
TP

Before 1st
TP

All All Before 1st
TP

Before 1st
TP

All

Restriction
on individual
wave lead
times?

No Yes No Yes No No No No No No No No No No No No No No No No

Number of
parameter
sets

40,720 19 40,720 19 12,066 13,554 2134 6998 2924 7164 1473 3143 10,313 3700 7642 995 319 608 1087 20

TFP Scanner parameters

Leading
indicator

Mean
simple
LGR

Mean
simple
LGR

Mean
LGR

Mean
LGR

Mean
GAM
LGR

Mean
GAM
LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Dominant
Pango
lineage
max LGR

Cluster min
age

14 14 7 7 14 14 7 7 7 7 7 7 7 7 7 7 14 14 14 28

Cluster max
age

56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 84 56 56 56 56

Cluster min
descendants

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Cluster filter variables

LGR p-value
limit

No
limit

No
limit

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.01

Parent/sub-
cluster
replacement
LGR
threshold

85% 90% 60% 60% 80% 80% 85% 85% 85% 85% 85% 85% 85% 85% 85% 75% 85% 90% 90% 90%

EWS
threshold

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.05 0.00 0.00 0.70

Earliest TP EWS lead (−ve) or lag (+ve) days

B.1.177 6 6 6 6 6 10 10 7 7 7 7 7 7 7 7 7 7 9 9 9 23

Alpha −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6 −6

Delta (1) −24 −24 −24 −24 −24 −24 −24 −20 −20 −20 −20 −20 −20 −20 −20 −20 −20 −20 −24 −24 −4

Delta (2) −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 7 5 5 5 7

Delta (3) −9 −9 −9 −1 −1 −1 −1 −9 −9 −9 −9 −9 −9 −9 −9 −9 0 2 2 2 2

Omicron
BA.1

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8 6 6 6 8

Omicron
BA.2

−19 −17 −17 −19 −19 −19 −19 −17 −17 −17 −17 −17 −17 −17 −17 −17 −17 −17 −17 −17 11

Mean across
all waves

−6.6 −6.4 −6.4 −5.6 −5.6 −5.0 −5.0 −5.4 −5.4 −5.4 −5.4 −5.4 −5.4 −5.4 −5.4 −5.4 −3.0 −3.0 −3.6 −3.6 5.9

Mean across
variant driven
waves

−10.8 −10.3 −10.3 −10.8 −10.8 −10.8 −10.8 −9.3 −9.3 −9.3 −9.3 −9.3 −9.3 −9.3 −9.3 −9.3 −8.8 −9.3 −10.3 −10.3 2.3

(Table 3 continues on next page)
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Best values by
wave across all
parameter sets

Best parameters for individual ranking and filter criteria

(Continued from previous page)

Number of FP EWS

B.1.177 0 5 5 1 1 5 5 4 4 4 4 4 4 4 4 4 5 2 4 4 0

Alpha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delta (1) 0 14 14 17 17 6 6 2 2 2 2 2 2 2 2 2 0 0 0 0 0

Delta (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delta (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Omicron
BA.1

0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 0

Omicron
BA.2

0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean across
all waves

0.0 2.9 2.9 3.1 3.1 2.3 2.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.7 0.6 0.9 0.9 0.0

Mean across
variant driven
waves

0.0 3.8 3.8 5.3 5.3 2.8 2.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.5 0.5 0.5 0.0

Number of FP EWS before earliest TP

B.1.177 0 1 1 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Alpha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delta (1) 0 14 14 14 14 6 6 2 2 2 2 2 2 2 2 2 0 0 0 0 0

Delta (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delta (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Omicron
BA.1

0 1 1 0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0

Omicron
BA.2

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean across
all waves

0.0 2.3 2.3 2.1 2.1 1.7 1.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0

Mean across
variant driven
waves

0.0 3.8 3.8 3.8 3.8 2.3 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

Precision or positive predictive value (PPV)

B.1.177 1.0 0.6 0.6 0.8 0.8 0.6 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.7 0.7 1.0

Alpha 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Delta (1) 1.0 0.7 0.7 0.5 0.5 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Delta (2) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Delta (3) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Omicron
BA.1

1.0 0.8 0.9 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 0.9 0.9 0.9 1.0

Omicron
BA.2

1.0 1.0 1.0 0.7 0.7 0.3 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean across
all waves

1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 0.9 0.9 1.0

Mean across
variant driven
waves

1.0 0.9 0.9 0.8 0.8 0.7 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Rankings are determined by the sum of the earliest TP EWS lead times across different sets of SARS-CoV-2 epidemic waves and a range of filters based on the number of FP EWS. There is some subjectivity in selecting a single parameter set for each
ranking criteria as more than one parameter set may achieve the same ranking score. Tables containing the highest ranked parameter sets for each of the criteria sets in this table can be found in the Supplementary Material.

Table 3: ‘Best’ parameter sets based on range of earliest true positive (TP) early warning signal (EWS) lead time and false positive (FP) EWS criteria.
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One of the best leading indicators we found is the
largest cluster logistic growth rate (LGR) amongst the
dominant Pango lineage. This generated EWS ranging
from a lead time of 20 days to a lag time of 7 days (see
Table 1), with a mean lead time of 5.4 days. The lead
time is dependent on our definition of the wave start
date, which is conservative as it represents the inflection
point between two wave peaks. However, this conser-
vatism is offset to some extent by the use of hospital-
isations rather than cases, which occur earlier but are
less consistently measured. However, it can be seen in
Fig. 2 that the earliest true positive (TP) EWSs also occur
prior to significant increases in reported cases.

Leading indicators based on Pango lineages implic-
itly incorporate expert assessment of the impact of
genomic mutations on the virus variant’s potential to
infect humans. It is therefore perhaps unsurprising, and
reassuring, that it ranks amongst the best leading in-
dicators. While our analysis is retrospective, we simu-
lated real-time analysis by only incorporating data
available at each step in the time series. The labour
intensive process of Pango lineage assignment, upon
which this particular leading indicator relies, is unlikely
to continue indefinitely. In any case, other leading in-
dicator types that are not dependent on prior variant
classification, such as the mean cluster simple LGR, also
produced similar, and sometimes better, lead times,
albeit with higher levels of false positive (FP) EWS.
Encouragingly, the best leading indicators when ranked
on performance across multiple waves also compare
well to the best performance achieved when ranked by
individual waves.

Our results show that EWS lead time can be sen-
sitive to the threshold set for the number of FP EWS.
For the majority of leading indicator types investigated,
it is possible to generate longer EWS lead times if more
FP EWS are tolerated. While FP EWS are undesirable
and should ideally be minimised, we envisage the role
of our EWS generation method as being an interme-
diate stage in surveillance strategy rather than a final
determinant in policy decisions. Identification of fast-
growing pathogen variants should serve as a prompt
for in-depth analysis of the epidemiological and
genomic characteristics of the clusters driving the
generation of the EWS. In such a surveillance strategy
workflow, health agencies place greater importance on
lead time than the number of FP EWS. This may mean
that leading indicator types and parameter sets other
than those highlighted in our results may be more
practically useful. However, the balance we struck be-
tween the two factors (lead time and FP EWS) resulted
in lead times that were within 4 days of the best lead
time amongst parameter sets that generated at least
one TP EWS for all seven epidemic waves investigated,
regardless of the number of FP EWS. Therefore, the
improvement in lead times by allowing a larger num-
ber of false positives may be relatively limited.
However, the filtering and ranking criteria we used are
not exhaustive and so there may be other leading in-
dicators and parameter sets within the 1.38 million
produced that generate better EWS results.

O’Brien & Clements27 showed that the reliability of
leading indicators, supported by critical-slowing-down
theory,28,29 varies with COVID-19 wave. Dablander
et al.30 also found that such leading indicators failed to
identify the second COVID-19 wave in Europe, which
they posit is due to the violation of the key assumption
that there is a separation in the timescales such that the
dynamics of the epidemic settle down to a quasi-
equilibrium from which there is a slow drift towards
the critical point, i.e. Rt = 1. We also saw variability in
EWS performance across waves in our parameter sets
with the earliest TP EWS ranging from a lead time of 20
days (for the first Delta wave) to a lag time of 7 days (for
B.1.177) (see Table 1). However, the leading indicators
that we investigated do not rely on critical-slowing-down
theory and the mechanisms driving this variability are
different. The performance of genomic EWS will also
depend sensitively on sequence sampling activity which
was highly variable over the course of the pandemic.
There is also some indication that our method is more
successful for waves that are primarily driven by new
genomic variants (Alpha, first Delta and Omicron BA.2
EWS lead times range from 6 to 20 days) compared with
waves likely resulting from a resurgence of existing
genomic variants (1-day lag and 9-day lead time for
second and third Delta waves respectively) due to factors
such as varying levels of non-pharmaceutical in-
terventions (NPIs). However, this conclusion requires
the exclusion of two waves driven by new genomic
variants: 1) B.1.177 (7-day lag time), for which we have
limited data ahead of the wave start date and further-
more a substantial difference in transmissibility for this
lineage is doubtful31; and 2) Omicron BA.1 (6-day lag
time), which produced a much more rapid increase in
cases and hospitalisations than other variants. Further-
more, the difference in transmissibility of BA.1 was
abundantly clear from international data long before the
wave began in the UK, which was not considered in our
analysis, but arguably comprises a clear genomics-based
EWS. While the EWS lead time differential between
these two types of wave is not definitive, we would
expect there to be a difference given that the EWS are
derived from relative growth rates. These should be
more pronounced when there is a new genomic variant
outcompeting an existing predominant variant due to a
higher level of transmissibility. When a genomic variant
is already predominant amongst the prevailing in-
fections, there is less likely to be a difference in growth
rates of comparable localised outbreak clusters. There-
fore the EWS generated by our methodology will be
weaker and delayed, leading to shorter lead times or
longer lag times. Further work could be undertaken to
incorporate NPIs into the methodology.
www.thelancet.com Vol 100 February, 2024
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Fig. 3: Link between early warning signal (EWS) lead time and number of false positive (FP) EWS. (a) Mean number of FP EWS against
mean earliest true positive (TP) EWS date for full range of parameter sets. Mean calculated using all UK SARS-CoV-2 infection waves and,
separately, the waves driven by new genomic variants: Alpha, Delta (1st wave), Omicron BA.1 & BA.2. (b) Repeat of (A) but only for two leading
indicators (dominant Pango lineage max logistic growth rate (LGR) and mean Simple LGR–see Supplementary Material for full definitions) and
only for the waves driven by new genomic variants. (c) Mean EWS results for each phylogenomic-derived leading indicator type.
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It has been suggested that localised minor outbreaks
are often seen in the period after a critical transition, i.e.
when the time-varying reproduction number (Rt) moves
from <1 to >1, and prior to an epidemic wave.32 Our
methodology is driven by the rapid identification of
SARS-CoV-2 phylogenetic clusters with a growth
advantage over other contemporary clusters. These
clusters are by definition small relative to the size of an
epidemic wave and we believe the leading indicators we
investigated are detecting these localised minor out-
breaks that are indicative of a critical transition of Rt

ahead of the epidemic wave. However, for a majority of
waves the EWS generated not only precede the wave
start (inflection) dates, but also the estimated critical
www.thelancet.com Vol 100 February, 2024
transition points for Rt (see Fig. 2 and Table 1). The rise
in hospitalisations before the critical transition in Rt at
first appears counterintuitive. However, the Rt estimate
shown in Fig. 2a results from an aggregation of in-
fections caused by all SARS-CoV-2 variants in circula-
tion at the time and at the national level. It has been
shown that different variants have different levels of
transmissibility33 and so it is possible for some variants
to have an Rt > 1 in geographically localised clusters
while the value aggregated over the UK population is
less than 1. Our interpretation is therefore that the EWS
are being generated by localised clusters that have an
Rt > 1 and that this precedes the transition of the esti-
mated Rt above 1 for the population as a whole.
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Following the emergence of Omicron BA.1, lineage
dynamics have become more complex and co-circulation
of multiple lineages with a growth advantage has
become more common-place. The scanning methodol-
ogy should be robust to identification of EWS from
multiple co-circulating lineages. Growth statistics of a
given clade of virus are measured relative to all co-
circulating lineages, and do not presume a single
incumbent reference lineage. Provided that multiple
lineages are not emerging within exactly the same
geographic area at the same time, they should trigger
distinct EWS, although the robustness of this approach
may be sensitive to the scale of geographic aggregation
being used. The optimum geographic scale for use in
cluster matching within the Transmission Fitness
Polymorphism (TFP) Scanner remains an open ques-
tion, and depends on stochastic epidemiological dy-
namics and correlated sampling.

SARS-CoV-2 testing and genomic sequencing pol-
icies in the UK varied during the period investigated25

and sample density in the UK has subsequently been
significantly reduced. We expect that our EWS genera-
tion method is sensitive to sample density changes.
Further modelling and theoretical analysis is needed to
evaluate this sensitivity. This could include down-
sampling of existing data and/or filtering for only clin-
ical samples, to replicate the current sequencing policies
in the UK, and observing the impact on EWS lead times.
Once a greater understanding of this relationship has
been established, the method could also be applied to
other countries with sequencing capacity and sampling
policies that differ from those in the UK.

Many countries are increasingly using wastewater
surveillance as part of their epidemic preparedness
strategies given the low cost and relative ease in sample
collection across populations.34 Further work could
examine the performance of EWS generated using a
subset of SARS-CoV-2 sequences collected from
wastewater samples compared with EWS generated
from sequences originating from diagnostic test
samples.

The best phylogeny-derived leading indicators
compared favourably against the highest ranked leading
indicators from a range of non-phylogeny-derived time
series (listed in Supplementary Table S6 in the
Supplementary Material). However, to make compari-
son of performance between phylogeny-derived and
non-phylogeny-derived leading indicators possible it was
necessary to adopt a different methodology. The precise
parameters for the strongest performing phylogeny-
derived leading indicators were different under the
two methodologies, although broadly the same leading
indicator types performed well under both. It should be
noted that our focus has been on developing a method
that generates EWS from leading indicators derived
from the SARS-CoV-2 genome using the TFP Scanner.
We have therefore not optimised the method for the
non-TFP Scanner datasets and so these data sets may
generate better (or worse) EWS using other methods.

In conclusion, we have demonstrated the ability to
generate early warning signals (EWS) for epidemic
waves of SARS-CoV-2 in the UK using leading in-
dicators derived from the analysis of phylogenetic trees,
and more fundamentally the analysis of pathogen ge-
nomes. The best performing leading indicator in terms
of lead time and number of false positive EWS was the
maximum logistic growth rate amongst phylogenetic
clusters after filtering for the dominant Pango lineage.
Other leading indicators that did not require the prior
assignment of Pango lineage also performed similarly
well in terms of lead time albeit with a greater number
of false positive EWS. In our view, this method for
generating EWS shows potential to be incorporated into
surveillance strategy, in particular as a prompt for
further genomic analysis, but given the reduction in
testing and sequencing since the end of the period
investigated, further work is required to determine the
sensitivity of the method to the sampling frame (clinical
or community sources) and sample size.

Contributors
EV conceived this study and oversaw the analysis. EV and KD contrib-
uted to the study design. KD performed the analysis and led the writing
of the paper. EV and OB developed the Transmission Fitness Poly-
morphism (TFP) Scanner that was used in the analysis. All authors
contributed to the review and editing of the manuscript. KD and EV
accessed and verified the data, and no authors were precluded from
accessing the data. All authors share responsibility for the final decision
to submit for publication. All authors have read and approved the final
version of the manuscript.

Data sharing statement
All code and data used in this study is publicly available online. The
Transmission Fitness Polymorphism Scanner R package can be found
here https://github.com/mrc-ide/tfpscanner. The additional code used
in the analysis presented in this article can be found here https://github.
com/KieranODrake/Early_Warning_Signal.

Declaration of interests
All authors declare no competing interests.

Acknowledgements
This study was funded by the Wellcome Trust 220885_Z_20_Z. We
thank the Cloud Infrastructure for Microbial Bioinformatics (CLIMB)24

for the set of 288 SARS-CoV-2 phylogenetic trees used in our analysis
and the members of the COVID-19 Genomics UK (COG-UK) Con-
sortium, which produced the genomic data populating these trees.
COG-UK is supported by funding from the MRC (part of UK Research
and Innovation [UKRI]), the NIHR and Genome Research Limited,
operating as the Wellcome Sanger Institute. We thank the UK Health
Security Agency for new hospital admissions data obtained via the UK
Coronavirus Dashboard (coronavirus.data.gov.uk). We thank Christo-
pher Jarvis (London School of Hygiene & Tropical Medicine) for
providing a summary analysis of the CoMix Survey results. We also
thank the UK Government Scientific Pandemic Influenza group on
Modelling (SPI-M) and Public Health England for data used to calculate
infection positivity rates and PCR Ct values. We acknowledge compu-
tational resources and support provided by the Imperial College
Research Computing Service (http://doi.org/10.14469/hpc/2232).
www.thelancet.com Vol 100 February, 2024

https://github.com/mrc-ide/tfpscanner
https://github.com/KieranODrake/Early_Warning_Signal
https://github.com/KieranODrake/Early_Warning_Signal
http://coronavirus.data.gov.uk
http://doi.org/10.14469/hpc/2232
www.thelancet.com/digital-health


Articles
Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
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