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Abstract

Objective.—Virtual imaging trials (VITs) enable efficient assessment and optimization of 

medical image devices and techniques via simulation rather than physical studies. These studies 

require realistic, detailed ground-truth models or phantoms of the relevant anatomy or physiology. 

Anatomical structures within computational phantoms are typically based on medical imaging 

data; however, for small and intricate structures (e.g., trabecular bone), it is not reasonable to 

use existing clinical data as the spatial resolution of the scans is insufficient. In this study, we 

develop a mathematical method to generate arbitrary-resolution bone structures within virtual 

patient models (XCAT phantoms) to model the appearance of CT-imaged trabecular bone.

Approach.—Given surface definitions of a bone, an algorithm was implemented to generate 

stochastic bicontinuous microstructures to form a network to define the trabecular bone structure 

with geometric and topological properties indicative of the bone. For an example adult male 

XCAT phantom (50th percentile in height and weight), the method was used to generate the 

trabecular structure of 46 chest bones. The produced models were validated in comparison with 

published properties of bones. The utility of the method was demonstrated with pilot CT and 

photon-counting CT simulations performed using the accurate DukeSim CT simulator on the 

XCAT phantom containing the detailed bone models.

Main Results.—The method successfully generated the inner trabecular structure for the 

different bones of the chest, having quantiative measures similar to published values. The pilot 

simulations showed the ability of photon-counting CT to better resolve the trabecular detail 

emphasizing the necessity for high-resolution bone models.

Significance.—As demonstrated, the developed tools have great potential to provide ground 

truth simulations to access the ability of existing and emerging CT imaging technology to provide 

quantitative information about bone structures.
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Introduction

Anthropomorphic virtual phantoms are an increasingly popular tool in medical imaging 

simulation studies. When combined with accurate computational models of an imaging 

process, virtual phantoms can be used to conduct virtual imaging trials (VITs) to evaluate 

and optimize imaging technologies efficiently and safely via computerized simulation 

(Abadi et al., 2020b). For these simulation results to be capable of driving clinical decisions, 

it is essential that the virtual phantoms provide realistic models of the relevant patient 

anatomy and physiology.

The 4D extended cardiac-torso (XCAT) phantoms were developed in our laboratory to 

provide a series of diverse virtual anthropomorphic models to be used in simulated medical 

imaging applications (Segars et al., 2013). The XCAT phantoms include thousands of 

anatomical features, including many detailed structures of the chest (Abadi et al., 2018b). 

The phantoms have been widely used in imaging research with use in radiation dosimetry 

(Sahbaee et al., 2017a, Sahbaee et al., 2017b, Hoye et al., 2019, Fu et al., 2021) and imaging 

protocol optimization for ionizing imaging modalities such as computed tomography (CT) 

(Tanaka et al., 2019, Abadi et al., 2019a, Abadi et al., 2020_S1_Reference4, Abadi et al., 

2021, Shankar et al., 2022, Sotoudeh-Paima et al., 2022). A current limitation to the XCAT 

phantoms is they do not model the inter-tissue heterogeneity for organs or bones. This 

heterogeneity can convey diagnostic information and therefore is necessary to adequately 

evaluate image quality. Without it, the simulated CT images of the phantoms would not be 

realistic enough to meaningfully inform clinical data acquisition.

In previous work, we improved the realism of our digital XCAT phantom cohort by 

developing a voxel-based power-law noise model to give the characteristic appearance of 

trabecular bone under CT imaging (Abadi et al., 2019b) based on the anatomical images 

of the Visible Human Female (Zhang et al., 2006). The algorithm was able to synthesize 

textures with a similar power-law texture having exponent β = 2.2 in correspondence 

with real anatomical images and resulted in more realistic trabecular bone regions in 

simulated CT images of XCAT phantoms. However, the trabecular bone structure was 

simply approximated using volumetric texture images and, therefore, did not include the true 

underlying anatomy.

At the same time, CT imaging is showing great potential to objectively assess structural 

and physiological abnormalities of bones. The effectiveness of CT is even more promising 

with the emergence of photon-counting CT (PCCT). Though not currently widely available, 

PCCT units allow for medical images with finer resolution and more robust material 

discrimination than previously possible with clinical CT (Hsieh et al., 2020, Flohr et al., 

2020, Sandstedt et al., 2021). Simulations of the relevant anatomy and physiology (Sauer 

et al.) and imaging physics (Abadi et al., 2018a) can be combined in order to determine 

the optimal use of this technology. However, it is important to have models that have 

sufficient phantom-domain detail as the increased image fidelity of PCCT has the potential 

to demonstrate new imaging indications of disease only if the underlying anatomical detail is 

present at the time of CT simulation (Si-Mohamed et al., 2022a, Si-Mohamed et al., 2022b, 

Thomsen et al., 2022).
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In this work, we develop a new, mathematical surface-based mesh method to generate 

realistic chest bone structures (sternum, backbone, ribs, scapulas, and clavicles) with 

accurate morphological and topological detail for the XCAT phantoms. This method defines 

the spatial extent of the complementary bone–marrow structures (shown to scale in Fig. 

1) that are the root cause of the characteristic image texture (Laib and Rüegsegger, 1999, 

Lespessailles et al., 2006, Chappard et al., 2008, da Silva et al., 2014) and provides a 

transition from using image-informed characteristic power law textures to a ground-truth 

model with exact morphology. Enhanced XCAT phantoms with the detailed bone structures 

can be input into the accurate DukeSim CT simulator (Abadi et al., 2018a) to produce CT 

images with a phantom-defined known truth to quantiatively evaluate current and emerging 

CT technologies used for bone disease characterization.

Methods

Overview

Cortical shells from XCAT phantom bones most relevant to cardiothoracic imaging—ribs 

(24), thoracic and lumbar vertebrae (17), scapula (2), clavicles (2), and sternum (1)—were 

used to inform the spatial extent and location of stochastic 3D microstructure surfaces. The 

microstructure surfaces were modified to have geometric and topological properties similar 

to trabecular bone. Trabecular bone structures for anatomy with similar size and bounding 

box dimensions were generated in corresponding subsets to optimize throughput. With 128 

GB RAM, up to 4 total bones from among the ribs, clavicle, sternum per iteration; up 

to 10 vertebrae per iteration; or, up to one scapula per iteration were created in parallel. 

The primary output of the algorithm, for each bone, was triangle meshes defining the 

trabecular and cortical bone volumes. The bone volume output also implicitly defined the 

corresponding red marrow volume for each bone (volume within the bone that is not cortical 

or trabecular). The bone structures were voxelized at 0.10 mm isotropic resolution for a 50th 

percentile adult male XCAT and subject to CT simulation with DukeSim for demonstration.

3D trabecular volume generation for the chest bones

Generation of the inner trabecular structure: Each of the XCAT bones used started from 

their NURBS surface definitions and were exported to an .STL file format. This file format 

contains a numbered list of vertex coordinates and a list of relationships between adjacent 

vertex numbers that describe the faces of a surface. The cortical thickness for each of the 

bones was determined to be approximately 0.25 mm (Dyson et al., 1970). Per-vertex surface 

normals from the outer cortical shell were inverted and displaced inward by 0.25 mm to 

create a surface to represent the inner-cortical boundary.

The distinction between cortical and trabecular bone was temporarily necessary to define an 

efficient, lightweight set of surfaces that include well-defined volumetric regions of marrow 

and bone. From the vertex values of the inner-cortical surface of each bone, a bounding 

box (having dimensions BΔx, BΔy, BΔz mm) was determined and used to create three arrays 

containing sets of X, Y, and Z coordinates reshaped into an array with a linear sampling 

density in each direction of ρx,y,z = 5 samples per mm (to be able to capture trabecular bone 

struts of thickness 0.25 mm (Dyson et al., 1970, Whitehouse et al., 1971b, Whitehouse and 
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Dyson, 1974, Blain et al., 2008). A small buffer length ε = 0.5 mm and total size ρx,y,z · 

(BΔx + 2ε, BΔy + 2ε, BΔz + 2ε) were used to represent the sampling locations in a way that 

allows for efficient vectorization. The components of the sampling array were combined into 

the term Rn, given the evaluation location for each wave n and basis direction, with each 

generated 3-vector qn. The vector qn had a random unit direction uniformly distributed over 

the solid angle 4π about the geometric center of the bone and random phase θn uniformly 

distributed over the range (0,2π]. This was then used to evaluate the function G at each 

sampling point:

G = 2
N ∑

n = 1

N
cos Rn ⋅ qn + θn .

(1)

The trabecular-only bone volume ratio D was used to define the value of the level set 

iso-value:

ξ = − 2 ⋅ erf−1(2D − 1),

(2)

which denotes the numerical contour value at which an isosurface implicitly described by G 
is extracted. The output for each bone were structures as shown in Fig. 2.

Given surface definitions for the outer-cortical boundary and the inner-cortical boundary 

components of a bone, we implemented an algorithm to generate the trabecular 

bone structure using stochastic bicontinuous structures (Soyarslan et al., 2018, M 

Moerman, 2018). The generated stochastic microstructures were discrete 2-manifolds (i.e., 

triangular mesh surfaces), which were watertight (having well-defined volume and no self-

intersections) and high genus (large number of distinct “handle” structures).

To extract continuous structures in the shape of the bone from the initial mesh, PyMeshLab 

(Zhou et al., 2016, Muntoni and Cignoni, 2021) was used for cutting volumes of the 

cube-shaped trabecular bone structure that are outside the bone of interest (the Boolean 

intersection operations). The output of each Boolean operation was a surface composed 

of one or more connected components. The largest connected component was taken to 

represent the trabecular bone structure mesh.

Output mesh repair and modification—Repair and modification of the meshes 

was performed automatically using postprocessing scripts within PyMeshLab. Any output 

mesh which had non-manifold topology (e.g., combinatorially non-manifold vertices and 

non-manifold edges), non-watertight geometry (e.g., “holes” that would prevent direct 

calculation of the volume inside the surface), and non-manifold geometry (e.g., self-

intersecting faces) was first analyzed for non-manifold vertices, which were split without 

vertex displacement (combinatorially split) to avoid modifying connectivity. Any remaining 

non-manifold edges were repaired by removal of each face incident on each non-manifold 

edge and closing any holes, resulting in a structure that was topologically 2-manifold with 
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non-watertight geometry. Self-intersecting faces were selected along with all border edges 

(i.e., edges which belong only to one face) and were removed from the mesh, after which 

the border edges and all incident faces were removed from the mesh, giving a discrete 

2-manifold with non-watertight geometry and no self-intersections. Holes in the mesh were 

then iteratively closed by alternately patching border edges and repairing any incidental 

non-manifold topology caused by this repair process, with the size of the holes allowed to be 

closed increasing by an order of magnitude each time.

Each resulting discrete surface was topologically 2-manifold with genus O(105) and had 

watertight geometry. Each surface was then subject to a geodesic remeshing with 0.020 

mm node displacment constraint. The average edge length of a representative trabecular 

surface was 0.25 mm with an average volume of 23000 mm3. The Euler characteristic 

of each surface was calculated (typically O(−105), which allowed for quick calculation 

of the zeroth, first, and second Betti number (higher-order Betti numbers were 0). These 

measures were calculated for both the trabecular-only bone structures as well as full (cortical 

and trabecular) bone structures. These measures also provided information for the marrow 

structure, since these bone and marrow structures are topological duals(Pontrjagin, 1934, 

Laib and Rüegsegger, 1999, Lespessailles et al., 2006, Chappard et al., 2008, da Silva et al., 

2014).

Properties of the repaired and remeshed surface were then measured using the shape 

diameter function (SDF) as described by Shapira (Shapira et al., 2008) and made available 

with PyMeshLab (Muntoni and Cignoni, 2021). Each vertex of the surface had 120 rays 

cast centered about the inverted (inward-pointing) vertex normal vectors and randomly 

distributed over a cone angle of 120° with peeling iteration set to the minimum acceptable 

value. The average ray length was calculated per vertex and stored along with the vertices 

and faces as a polygon mesh (.PLY) vertex quality attribute (double-precision, scalar), along 

with the outward-pointing set of vertex normals.

Vertices were treated differently as a function of their “thickness” value T. Thickness values 

less or equal to than empirically-observed (Kuhn et al., 1990, Goulet et al., 1994) thickness 

values (Tmesh vertex i − Tanthropomorphic ≤ 0) for trabeculae were not modified—they are 

specifically considered later to fine-tune topological and geometric properties of the mesh; 

thickness values greater than reported (Tmesh vertex i − T anthropomorphic = 2δ > 0) were each 

translated along their inward-normal by one-half the difference between the excess thickness 

and the anthropomorphic value (NewPositionmesh vertex i = OldPositionmesh vertex i + δ · 

(InwardNormalmesh vertex i)).

The resulting meshes had thickness value distributions calculated again via the SDF(Shapira 

et al., 2008), with distributions closer to anthropomorphic geometry but having a number 

of (small) very thinly-connected regions. These thin structures were used to tune the 

connectivity parameter of the mesh which is the genus (number of “handle” structures 

on the mesh divided by its volume giving a result generally between 1–8 handles/mm3 in 

agreement the equivalent results of “Euler # per mm3” as reported by Goulet (Goulet et 

al., 1994). When the connectivity value was too high, the thinnest structures were thinned 

and remeshed further until their connectivity was restricted to individual topologically 
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and geometrically non-manifold vertices. The vertex was repaired by via geometric vertex 

splitting, thereby decreasing the genus of the mesh with relatively small effect on the mesh 

volume.

Phantom-specific bones

Cortical and trabecular bone volume—As mentioned previously, the outer cortical 

shell of the phantom bones were used to define the inner-cortical surface by inverting their 

vertex normals and displacing along them each set of vertices by 0.25 mm (Treece et al., 

2010). The inner cortical shell was used as a bounding volume for the trabecular structures 

generated in the shape of the bounding box of each bone. A Boolean intersection operation 

was implemented to extract the part of the cube structure that occupied the same volumetric 

space as the bone. The resulting output mesh aligned exactly with the inside faces of the 

inner cortical boundary (a property of the exact Boolean operations proposed by Zhou (Zhou 

et al., 2016)). Any topologically non-manifold vertices in the output mesh were repaired via 

zero-displacement splitting, resulting in a manifold mesh. Any small connected components 

not connected to the full structure (i.e., structures not directly connected to the largest 

structure) were removed from the mesh.

For the ribs, which are curved structures, the trabecular structures were generated in a 

cylindrical coordinate system (Fig. 3.A.) and warped to match the shape of each rib without 

disturbing the structures (Fig. 3.B.).

The bone-shaped trabecular volume was then subject to a Boolean union operation with the 

cortical volume (where cortical volume was defined as “outer cortical surface” minus “inner 

cortical surface”) and unioned with the trabecular surface:

Total bone = (Outer cortical surface ∖ Inner cortical surface ) ∪ (Trabecular surface) .

(3)

The resulting total bone surface was again subject to non-manifold vertex repair by zero-

displacement vertex splitting, resulting in a manifold mesh that describes the trabecular bone 

volume in one connected structure.

Trabecular-complement red marrow volume—The dual structure (Total bone)C 

(Pontrjagin, 1934) of each bone volume includes the marrow volume. The marrow surface 

was generally defined implicitly in this process to aid in fast and robust voxelization of 

the surfaces and reduce the memory footprint of these structures; however, because of the 

exact nature of the Boolean operations performed previously, the double-precision marrow 

structure fits exactly inside the bone structure and is shown alongside a cortical-only and 

trabecular-only visualization of XCAT virtual adult male 50th percentile vertebrae T9 in Fig. 

4.

External model validation

To ensure that the generated trabecular bone models were in agreement with the range of 

typical values in a healthy adult male population, topological and geometric features of the 
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models were calculated and compared to reported values. Both CT imaging and histological 

data were used in this comparison: the histology data was used to assess the adherence 

of the models to the expected overall population-level ground truth. The CT imaging data 

was used to compare the observed simulation HU values to what is expected based on 

clinical observations. The histological validation step took place prior to the image-based 

consistency check, which was after voxelization but prior to CT simulation.

Observed quantities included: trabecular bone volume per combined trabecular–marrow 

volume (BV/TV, dimensionless), trabecular bone surface area per combined trabecular–

marrow volume (BS/TV, mm−1), number of “handle” structures per cubic millimeter (Genus/

mm3, 1/mm3, Conn.D), trabecular bone surface area per trabecular bone volume (BS/BV, 

mm−1), trabecular thickness (Tb.Th, mm), and the complementary marrow thickness (or 

trabecular separation, Tb.Sp, mm). All quantities were calculated based on the original 

triangulated surface models. Values were averaged across all similar bone types (e.g., ribs).

All properties were readily calculated on CPU-based systems except Tb.Th and Tb.Sp, 

which were calculated primarily using an NVIDIA Tesla K80 since the task involved 

per-vertex ray-tracing.

CT Image acquisition

The example 50th percentile adult male XCAT phantom with added bone structures 

was imaged using the scanner-specific CT simulator DukeSim. The virtual acquisitions 

were done by modeling commercial photon-counting detector (PCD) CT (NAEOTOM 

Alpha, Siemens) and conventional energy-integrating detector (EID) CT (FORCE, Siemens) 

scanners at a CTDIvol of 40 mGy, with a pitch of 0.8, and a rotation time of 0.5 s. The PCCT 

images were acquired at two spatial resolution modes: (1) ultra-high resolution with beam 

collimation of 120×0.2 mm (PCD UHR) and (2) high resolution with beam collimation 

of 144×0.4 mm (PCD HR). The EID acquisitions used a beam collimation of 0.96×0.6 

mm. All acquisitions utilized a tube voltage of 120 kV, and the PCD acquisitions used 

detector thresholds of 20 and 65 keV. The images were reconstructed using a vendor-specific 

reconstruction software (ReconCT, Siemens) with a FOV of 400 mm. All acquisitions were 

reconstructed with two renditions. The first used reconstruction settings optimized for bone 

quantification: the smallest slice thickness available (0.2 mm for PCD UHR, 0.4 mm for 

PCD HR, and 0.75 mm for EID), a sharp kernel (PCD: Br56, EID: Br49), and a 1024×1024 

matrix size (McCabe et al., 2023). The second used reconstruction settings to represent a 

general chest-abdomen-pelvis scan: a slice thickness of 1.0 mm, a smooth kernel (PCD: 

Br40, EID: Br36), and a 512×512 matrix size. Kernels between scanners were chosen based 

on matching MTF curves.

Results

Generated trabecular bone models

The method successfully generated the inner trabecular structures for the different bones of 

the chest. Figures 5–7 show 3D renderings of the structures; the renderings were produced 

using the Blender modeling software (www.blender.org). Figure 5 shows the inner structures 
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generated for all 46 bones of the 50th percentile male XCAT phantom. Figure 6 shows a 

close-up of the trabecular bone for the vertebrae. Figure 7 provides an illustration of how the 

method can generate variable trabecular bone structures.

Model validation

The model validation process used published data acquired from micro-CT, histology, and 

scanning electron microscopy of human trabecular bone in the torso. Due to sometimes 

extreme differences in reported values between studies, even within the same modality, all 

reported values are listed as a range.

The values observed for this validation were geometric and topological properties of the 

trabecular bone structures including trabecular bone volume (Bone Volume, BV), trabecular 

bone surface area (Bone Surface, BS), combined trabecular and marrow volume (Total 

Volume, TV); connectivity density (Conn.D), trabecular thickness (Tb.Th), and marrow 

thickness (Tb.Sp)—these values are summarized in Table 1 as a reference for the additional 

derived metrics as reported in Tables 2–6.

Quantification of the bone structure properties from both the models and from available data 

are included in Tables 2–6. General values for the quantities used for validation can be found 

in the “Pooled” row at the bottom of Table 6.

Each of Tables 2–6 refer to a particular type of bone (vertebrae, ribs, etc.). Measurements 

of the modeled parameters are included in the upper portion of each table under the heading 

“Modeled”. These values were calculated from the voxelized ground-truth models at a 

0.01mm resolution using BoneJ (Doube et al., 2010). The mean (μ) was reported for all bone 

metrics. If the mean value of the model did not fall within the empirical range, the percent 

error (ε) was reported in the table.

The lower portion of each of Tables 2–6 reports empirical observations of the same 

geometric and topological properties for the bones; in the case of some of the less common 

parameters being unavailable, pooled statistics are included for comparison. The pooled 

statistics are reported in Table 6. The quantiative measures from the modeled bones can be 

seen to agree considerably with the published values. For the sternum and scapula, they can 

be seen to vary more from empirical measurements of BS/BV, ratio of the trabecular surface 

area to the trabecular volume. Additional operations (mesh decimation or smoothing) may 

be needed to better match this measure by reducing the trabecular surface area while 

preserving the volume.

Simulated CT and PCCT images of the bone structures were also found to be in good 

agreement with the histologically observed values for BV/TV, BS/TV, Conn.D, BS/BV, and 

Tb.Th to the extent that data was available for each quantity and type of bone modeled 

here. Modeled vertebral bone density (BV/TV) was measured to be approximately 13% 

by volume; BS/TV varied from 1–2 mm−1; Conn.D from 1–5 mm−3; BS/BV from 10–20 

mm−1; trabecular thickness (Tb.Th) from 0.05–0.35 mm; and marrow thickness (Tb.Sp) 

from 0.5–4.0 mm. The simulated images are shown in Figs. 7–8. The PCCT images were 

better able to resolve the trabecular structures of the phantom when compared to the EID 
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images, demonstrating that it is indeed necessary to have a model at such a high resolution 

for future medical imaging simulations focused on bone and bone texture.

Software package

The complete software required to produce the bone models was developed as standalone 

Podman(Kurtzer et al., 2017) and Docker(Merkel, 2014) images with the minimum 

necessary runtime environment (totaling ~ 10 GB as a compressed archive). Most features 

of the software run in a reasonable amount of time on a CPU-based machine; however, a 

NVIDIA Tesla K80 GPU board was necessary to calculate some physical properties of the 

bone tissue (like local thickness) within a reasonable amount of time. Use of pre-generated 

models does not specifically require a highly parallel computing architecture. Using GPU, 

the bone structure generation process was several orders of magnitude faster than with CPU 

and has been optimized for GPU computation to maximize throughput.

The stand-alone application will be distributed like the XCAT software. The bone models 

it produces can be read by the XCAT program as user-defined objects with user-defined 

materials to add within the anatomies for simulations.

CT simulation

Simulated CT images from the voxelized phantom can be seen below in Fig. 8 for both 

PCD and EID CT. Photon counting detectors appear to be able to resolve the trabecular 

structures with higher fidelity than standard energy integrating detectors and are better able 

to distinguish between marrow and trabecular tissue. This demonstrates the necessity of a 

high-resolution anthropomorphic model of trabecular bone when evaluating properties of 

bone tissue under CT imaging.

Discussion

In this work, we developed a procedure to generate realistic computational trabecular bone 

structures of the torso with an exactly-known ground-truth morphology which are suitable 

for use in simulated medical imaging. The method can be used to generate trabecular bone 

structures variable in density, local thickness, and connectivity for phantoms of differing 

body habitus or bone shape. Through alteration of the method’s parameters, models for 

disease such as osteoporosis can also be generated. This work presents the first use of 

this new tool for generation of bone structures of the torso and subsequent CT and PCCT 

simulation.

Additionally, this work brings us closer to the goal of achieving fast, robust, and 

representative generation of realistic small-scale morphology that is adherent to known 

clinical texture properties of CT-imaged bone structures—and which are readily available to 

the entire XCAT phantom cohort. This effort also assists in the goal of realizing realistic 

simulated chest imaging for not only ionizing imaging modalities but any simulated imaging 

modality which can benefit from a sub-clinical resolution bone tissue morphology (e.g., 

magnetic resonance imaging, positron emission tomography).
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Prior work has consisted of smaller 3D models and image-domain synthesis efforts; 

however, smaller-scale 3D models were intended to represent small regions of bone and 

complementary marrow structures (rather than for 46 bones on the scale of an adult male 

torso). Similarly, image-domain-only synthesis of realistic textures used as a stand-in for 

exactly-known morphology enables the correct appearance under current imaging, but does 

not provide a phantom-domain direct correspondence to histological ground-truth. Plus, as 

imaging methods are improved, such as in photon-counting CT, texture models fall apart in 

not providing the underlying structure which can now be resolved.

A critical consequence of this work is that the results shown here indicate that imaging-

based quantification of trabecular and cortical structures are almost universally prone 

to overestimating the spatial extent of the bone structures (i.e., these measurements are 

biased such that attempts at quantification of these structures from simulated or clinical 

images alone leads to a consistently hyper-thick estimation which is only apparent when 

compared to histological data—or, in this case, known ground-truth morphology. The larger 

implication of the image-based overestimation of bone density for computational simulation 

and phantom work is that validation of any proposed model that purports to be realistic 

must be validated by an external source of information. That external information must 

also not be directly supplied to the simulator. Failure to validate with a truly external 

source of information can lead to circularity and compromise efforts to create a reproducible 

validation of a proposed model.

This work had several limitations. First, the computational demand of some of the methods 

used in generating the trabecular bone structures may limit the accessibility of this model in 

terms of both model generation and simulation, which may in turn limit its usability. Second, 

additional operations may be needed to better match the bones for the sternum and scapula 

in terms of the surface area and volume of the generated trabecular structures. Additionally, 

there was not incorporation of realistic bone structure anisotropy that matched body habitus 

and inter-vertebral stress gradients (e.g., load-bearing orientation) as would be seen in vivo.

In future work, it will be possible to address the issue of the relative isotropy of the bone 

structures generated here. Specifically, topology optimization using finite element analysis 

will allow for patient-specific application of loads due to general body habitus and patient-

specific inter-vertebral position—this will allow for incremental changes to the trabecular 

structure morphology to remove material from locations of low stress and reinforce locations 

of high stress. Because this optimization technique mimics the actual physiological changes 

that occur due to loading and unloading of bone tissue, it may be possible to use it to create 

anisotropic bone structures that are unique to individual patients.

Additionally, the trabecular structures generated here are also randomly oriented. 

This results in some characteristic trabecula orientations and thicknesses that are not 

representative of what would be found in vivo. It is possible to use an approach known 

as “topology optimization”(Zhou et al., 2019, Wu, 2018, Hoshina et al., 2018, Oh et al., 

2021, Kegl, 2000, Abdi et al., 2014, Holmberg et al., 2013, Cheng, 1995, Brittain et al., 

2011, Sokołowski, 2003, Maute and Ramm, 1995, Yago et al., 2020) in order to give the 

bone structures generated a realistic (functionally-informed) anisotropy. This approach is 
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motivated by Wolff’s law(Turner, 1992, Frost, 2001, Rubin and Hausman, 1988, Jang and 

Kim, 2008, Frost, 1990, Cowin, 1986, Pearson and Lieberman, 2004, Teichtahl et al., 2015, 

Ruff et al., 2006, Mullender and Huiskes, 1995) which is supported by observations of bone 

microstructures gradually reinforcing over time due to repetitive load stimulus. Additionally, 

this approach has allowance for a reduction of material in under-utilized regions. Loads may 

be applied to each vertebra (cortical–trabecular–marrow model) on the region of contact 

with the superior intervertebral disc and assigning the inferior intervertebral disc contact 

region to be a fixed boundary condition.

Conclusion

This work enables the generation and post-hoc parameter modification of a set of 

computational models of human trabecular bones of the chest for use in virtual imaging 

simulations. Enhanced phantoms with detailed models of the bones can provide a vital tool 

to evaluate emerging imaging techniques such as photon-counting CT that offer improved 

spatial resolution and reduced noise.
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Figure 1: 
Ninth thoracic vertebrae (T9) shown to scale as an opaque cortical shell in (A) and with a 

region of cortical bone cut away (B) to show the trabecular bone and red marrow structures 

(C).
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Figure 2: 
A shows an output stochastic cube structure that is approximately 20% the volume of 

its convex hull; B shows the same cube with color added to indicate approximate local 

thickness as determined using the shape diameter function (SDF). C shows the structure in 

A but procedurally thinned in locations where the connecting struts of the structure were too 

thick to model trabecular bone. D shows the same morphology as C but again with added 

color indicating that the disparities in the size of trabecular struts have been resolved using 

the SDF as proposed by Shapira (Shapira et al., 2008).
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Figure 3: 
Example rib structure shaping. The calculation time benefits from generating the bone 

surface in a small, axis-aligned region and smoothly warping it to follow the contour of each 

individual rib.
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Figure 4: 
XCAT virtual adult male 50th percentile T9 trabecular bone as produced by the method. 

Cortical, trabecular, and marrow volumes are shown in two views. The trabecular bone 

volume as a fraction of the total bone volume was 19%.
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Figure 5: 
Trabecular bone model for 46 bones of the chest generated for the XCAT adult male 

phantom.
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Figure 6: 
Trabecular bone generated for the XCAT vertebrae.
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Figure 7: 
Close-up view of the trabecular bone model generated with variable trabecular bone volume 

fractions (trabecular volume divided by the total bone volume) of 50% (left) and 65% 

(right).
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Figure 8: 
Simulation comparison of photon-counting detector (PCD) PCCT versus conventional 

energy-integrating detector (EID) CT. Different acquisition parameters are detailed in white 

at the bottom of each image. The top row represents a routine chest reconstruction, and the 

bottom row utilizes optimized reconstruction parameters for bone quantification.

Sauer et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2024 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sauer et al. Page 25

Table 1:

Symbols for common bone geometric and topological property measurements

Svmbol BV BS TV Conn.D Tb.Th Tb.Sp

Units mm3 mm2 mm3 mm−3 mm mm

Description 
Trabecular 

volume
Trabecular 
surface area

Trabecular+Marrow 
volume

Genus / 
Trabecular 

volume

Trabecular 
length

Marrow 
length
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Table 2:

Mean value (μ) of empirical and modeled topological properties of human vertebral trabecular bone. The 

percent error for the model (ε) was calculated if μ fell outside the empirical range.

Vertebra (T1–L5)

Modeled

BV/TV (%)
BS/TV (mm

−1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

μ=13.1 μ=3.7 μ=5.1 
ε = 2.0%

μ=28.3 
ε = 1.1%

μ=0.16 μ=0.76

Empirical

BV/TV (%)
BS/TV (mm

−1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

μ=[8–27] 
(Maquer et al., 2015, 
Banse et al., 2002, 
Merz and Schenk, 
1970, Goulet et al., 
1994, Ulrich et al., 
1999, Hildebrand et 
al., 1999)

μ=[1.6–4.5]
(Goulet et al., 
1994)

μ=[2–5]
(Odgaard and 
Gundersen, 
1993)

μ=[12–28] 
(Whitehouse et al., 
1971a, Kuhn et al., 
1990, Ulrich et al., 
1999, Hildebrand et al., 
1999)

μ=[0.10–0.17]
(Hildebrand et 
al., 1999)

μ=[0.66–1.0]
(Hildebrand et 
al., 1999)
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Table 3:

Mean value (μ) of empirical and modeled topological properties of human rib and clavicular trabecular bone. 

The percent error for the model (ε) was calculated if μ fell outside the empirical range.

Rib and clavicle

Modeled BV/TV (%) BS/TV (mm −1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

Rib μ=15.3 μ=3.6 μ=2.5 μ=23.3 μ=0.19 μ=0.51

Clavicle μ=16.9 μ=3.9 μ=2.5 μ=22.8 μ=0.20 μ=0.57

Empirical BV/TV (%) BS/TV (mm −1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

Rib with Pooled 
Statistics 

μ=[13–27] 
(Goulet et al., 
1994)

μ=[1.6–4.5] 
(Goulet et al., 
1994)

μ=[2–5]
(Odgaard and 
Gundersen, 1993)

μ=[10–27] 
(Goulet et al., 1994, 
Hildebrand et al., 
1999)

μ=[0.15–0.20]
(Whitehouse et al., 
1971a)

μ=[0.4–0.88]
(Goulet et al., 
1994)
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Table 4:

Mean value (μ) of empirical and modeled topological properties of human sternum trabecular bone. The 

percent error for the model (ε) was calculated if μ fell outside the empirical range.

Sternum

Model 

BV/TV (%)
BS/TV (mm

−1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

μ=10.8 μ=3.4 μ=2.0 μ=31.0
ε=34%

μ=0.14 μ=0.56

Empirical 

BV/TV (%)
BS/TV (mm

−1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

μ=[9–17] 
(Maquer et al., 
2015, (Arbabi, 2009, 
Whitehouse, 1975, 
Ulrich et al., 1999)

μ=[1.6–4.5] 
(Goulet et al., 
1994)

μ=[2–5] 
(Odgaard and 
Gundersen, 1993)

μ=[17.6–23.1] 
(Arbabi, 2009, 
Whitehou se, 1975, 
Ulrich et al., 1999)

μ=[0.088–0.150]
(Whitehouse, 1975, 
Ulrich et al., 1999, 
Ulrich et al., 1999)

μ=[0.4–0.88]
(Goulet et 
al., 1994)
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Table 5:

Mean value (μ) of empirical and modeled topological properties of human scapular trabecular bone. The 

percent error for the model (ε) was calculated if μ fell outside the empirical range.

Scapula

Model BV/TV (%) BS/TV (mm −1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

μ=14.6 μ=4.4 μ=3.7 μ=30.2
ε=12%

μ=0.17 μ=0.66

Empirical BV/TV (%) BS/TV (mm −1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

Scapula with 
Pooled 
Statistics 

μ=[7–25] 
(Li et al. 2015)

μ=[1.6–4.5] 
(Goulet et al., 
1994)

μ=[2–5]
(Odgaard and 
Gundersen, 1993)

μ=[10–27] 
(Goulet et al., 1994, 
Hildebrand et al., 1999)

μ=[0.12–0.18]
(Li et al. 2015)

μ=[0.54–1.18]
(Li et al. 2015)
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Table 6:

Mean value (μ) of empirical and modeled topological properties of human trabecular bone of the torso.

Pooled trabecular bone

Empirical BV/TV (%) BS/TV (mm −1 ) Conn.D (mm −3 ) BS/BV (mm −1 ) Tb.Th (mm) Tb.Sp (mm)

Pooled 

μ=[13–27] 
(Goulet et al., 
1994)

μ=[1.6–4.5] 
(Goulet et al., 
1994)

μ=[2–5]
(Odgaard and 
Gundersen, 1993)

μ=[10–27] 
(Goulet et al., 1994, 
Hildebrand et al., 
1999)

μ=[0.10–0.19] 
(Goulet et al., 1994, 
Hildebrand et al., 
1999)

μ=[0.4–0.88] 
(Goulet et al., 
1994)
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