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Abstract
This study analyzed whether extended molecular profiling can predict the development of epidermal growth factor
receptor (EGFR) gene T790M mutation, which is the most frequent resistance alteration in non-small cell lung cancer
(NSCLC) after treatment with the first-/second-generation (1G/2G) EGFR inhibitors (tyrosine kinase inhibitors [TKIs]),
but only weakly associated with clinical characteristics. Whole exome sequencing (WES) was performed on
pretreatment tumor tissue with matched normal samples from NSCLC patients with (n = 25, detected in tissue or
blood rebiopsies) or without (n = 14, negative tissue rebiopsies only) subsequent EGFR p.T790M mutation after
treatment with 1G/2G EGFR TKI. Several complex genetic biomarkers were assessed using bioinformatic methods.
After treatment with first-line afatinib (44%) or erlotinib/gefitinib (56%), median progression-free survival and
overall survival were 12.1 and 33.7 months, respectively. Clinical and tumor genetic characteristics, including age
(median, 66 years), sex (74% female), smoking (69% never/light smokers), EGFR mutation type (72% exon 19 dele-
tions), and TP53 mutations (41%) were not significantly associated with T790M mutation (p > 0.05). By contrast,
complex biomarkers including tumor mutational burden, the clock-like mutation signature SBS1 + 5, tumor ploidy,
and markers of subclonality including mutant-allele tumor heterogeneity, subclonal copy number changes, and median
tumor-adjusted variant allele frequency were significantly higher at baseline in tumors with subsequent T790M
mutation (all p < 0.05). Each marker alone could predict subsequent development of T790M with an area under the
curve (AUC) of 0.72–0.77, but the small number of cases did not allow confirmation of better performance for
biomarker combinations in leave-one-out cross-validated logistic regression (AUC 0.69, 95% confidence interval:
0.50–0.87). Extended molecular profiling with WES at initial diagnosis reveals several complex biomarkers associated
with subsequent development of T790M resistance mutation in NSCLC patients receiving first-/second-generation TKIs
as the first-line therapy. Larger prospective studies will be necessary to define a forecasting model.
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Introduction

Epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors (TKIs) have revolutionized the treat-
ment of advanced EGFR-mutated non-small cell lung
cancer (NSCLC) with prolonged overall survival (OS)
compared with platinum-based doublet chemotherapy in
several phase III trials [1–5]. Head-to-head compara-
tive studies have shown that the third-generation (3G)
TKI osimertinib is superior compared with the first-
generation TKIs [5] and is now the preferred the first-
line TKI in these patients according to most treatment
guidelines [6].
EGFR p.T790M is the most common resistance

mutation arising after treatment with the first- and
second-generation TKIs, such as erlotinib, gefitinib,
and afatinib, occurring in 50–60% of patients. It has
major therapeutic importance, because it confers sensi-
tivity to next-line osimertinib [7,8]. Interestingly, real-
world analyses have shown an OS of 36–41 months
for patients receiving earlier generation EGFR TKI
followed by osimertinib [9,10], which is at least as
good as that of upfront osimertinib in the FLAURA
study [5]. However, the practicability of a sequential
TKI strategy is limited by the fact that the development of
the T790M resistance mutation and eligibility for next-line
osimertinib cannot be reliably predicted based on clinical
features or basic molecular tumor characteristics before the
start of the first-line treatment, because the corresponding
correlations are weak [11]. The aim of this exploratory
retrospective analysis was to explore whether deep
molecular profiling using whole exome sequencing
(WES) of tumor tissue at initial diagnosis could facili-
tate a more reliable prediction of the subsequent devel-
opment of EGFR p.T790M for patients with EGFR
mutated NSCLC receiving first-/second-generation
EGFR TKI as the first-line therapy.

Patients and methods

Patient population
Included in this study were patients with EGFR mutated
NSCLC who (1) received first-/second-generation
TKI as the first-line treatment in the Thoraxklinik
Heidelberg between 2014 and 2018; (2) had known
EGFR p.T790M status at the time of TKI resistance,
either T790M-positive (‘T790Mpos’), based on a
positive tissue or liquid rebiopsy, or T790M-negative
(‘T790Mneg’), based on a negative tissue biopsy only,
to minimize the effect of false negative results known

to occur in up to 1/3 of cases undergoing circulation
tumor DNA only testing [12]; and (3) had available
tumor tissue and normal (i.e. germline) DNA samples
for WES. Among 79 primarily identified patients,
39 could be analyzed (49%). WES could not be
performed in the remaining cases because of insufficient
quantity or quality of tumor DNA or because normal
control samples were not available. Ethical approval
was provided by the ethics committee of Heidelberg
University (S-935/2021).

Histopathological methods
Microscopic analysis of the following parameters
was performed by two experienced pathologists who
were blinded to the genetic results: predominant
growth pattern/grading according to the current WHO
classification of thoracic tumors, nuclear cytology, stroma,
inflammation, immunohistochemical staining of TTF1
and Ki-67 (if available), and necrosis. Inflammation in
most cases was lymphoplasmacytic. A qualitative
statement was rendered based on light microscopic
impression. A mild inflammatory infiltrate was defined
as scattered and rarely aggregated lymphocytes and
plasma cells. A marked inflammatory infiltrate was
defined by the extensive presence of lymphocytes and
plasma cells constituting a prominent feature of the
tumor. Cases falling between mild and marked were
classified as moderate. Results were subsequently ana-
lyzed using the Fisher exact test with Bonferroni cor-
rection for multiple testing.

Molecular methods
WES was performed using 100 ng DNA with the
Twist Exome 2.0 plus Comprehensive Exome Spike-in
(Illumina, San Diego, CA, USA) on a NovaSeq sequencer
(Illumina) with an average coverage of 170�. Somatic
variants were kept after WES of matched normal blood or
tissue samples from the same patients using 100 ng DNA
with the same method and an average coverage of 50�.

Statistical analysis and bioinformatics
Alignment was performed using the Illumina DRAGEN
Bio-IT platform version 4.0.3 with the genome assem-
bly GRCh37. Somatic variants were filtered with a
PASS filter, including exonic and splice regions with
variant allele frequency ≥5% and coverage ≥100 reads.
Tumor mutational burden (TMB) of mutations per

mega-base (MB) was calculated as the count of muta-
tions using the sum of missense and synonymous vari-
ants divided by the target region length, defined by the
count of MB covered with at least 100 reads.
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The classification of mutations belonging to
established mutational (single-base substitution [SBS])
signatures and the enrichment analysis of various path-
ways in the detected mutations according to the
Molecular Signatures Database were conducted as
published [13].
Samples were subject to segmented copy-number

(CN) evaluation and subclonality analysis using
Sclust [14] excluding sex chromosomes and using the
default software parameters. Somatic mutations and
CN changes were classified in clonal (p ≥ 0.05)
and subclonal (p < 0.05). Subclonal TMB (scTMB)
and fraction of subclonal CN changes were calculated
based on this classification.
Genome-wide copy-number alterations were also

calculated using Sequenza [15] using the default
parameters. Subsequently, loss of heterozygosity (LOH),
large-scale transitions, telomeric allelic imbalance, and
homologous recombination deficiency (HRD) scores for
each sample were calculated using scarHRD [16]. The
HRDsum score solution was chosen based on the histo-
pathologically determined tumor purity by selecting
the best solution for the given purity and ploidy as
described previously [17]. Thereby, the corrected tumor
ploidy was also determined for the given histopathologi-
cal tumor purity. Chromosome arm losses were defined
as published [18]: in short, we searched for coherent
losses of both alleles in the CN identified by Sequenza
that span at least 80% of the chromosome arms.
Gene amplifications and deletions were calculated

based on the total CN from Sequenza corrected for
the histopathologically determined tumor purity, as
described previously. A gain of two or more copies
from the predominant CN was regarded as amplification,
whereas a loss of two or more copies was regarded as
deletion.
Tumor-adjusted variant allele frequency (TVAF) was

calculated for each mutation using the following formula:

TVAF¼ h

q
VAF:

The factor h was set to 0.5 if heterozygosity was lost
in the region of the mutation and set to 1 if not. The
factor q is a corrected variant of the pathological tumor
purity p taking into account copy number CN ≠ 2 in
the region of the mutation:

q¼ CN
CN�pþ2 1�pð Þp:

A large discrepancy between bioinformatically and
histopathologically determined tumor purity was

observed (median bioinformatic estimation: 30% ver-
sus 50% histopathologically, median delta 16%);
therefore, the latter was used in this study.
Mutant allele tumor heterogeneity (MATH) score

was calculated as published [19,20]. Read counts
supporting the resistance mutation were identified
using bam-readcount [21].
Statistical analyses and figure generation were

performed using Python 3.10.10 with scipy [22],
numpy [23], Matplotlib [24], seaborn [25], and
Pandas [26]. Significance between groups for each
biomarker was evaluated using the Wilcoxon rank-sum
tests for continuous variables and using Fisher tests for
binary variables. p values for the association of bio-
markers with T790M status were corrected using the
Benjamini–Hochberg method and evaluated using a
false discovery rate (FDR) of 10%. Correlations were
calculated according to Pearson. Combinations of bio-
markers were evaluated using the logistic regression
from scipy [22]. Receiver operating characteristic
(ROC) curves were created using sklearn and the
R package pROC [27] for area under the curve (AUC)
intervals. Survival analyses based on Cox proportional-
hazard models were performed using the R packages
survival [28] and survminer [29] with the Wald test for
significance testing.

Results

Patient characteristics
Overall, 39 (49%) patients with NSCLC who fulfilled
the study criteria could be identified, among 79 poten-
tially suitable patients, as tumor and normal tissue WES
were not available for 40 cases due to insufficient quan-
tity or quality of tumor DNA, or because no normal
control samples were available. The clinical characteris-
tics of patients analyzed with WES are given in Table 1,
whereas the characteristics of all 79 patients are given in
supplementary material, Table S1. Median age was
66 years with a predominance of female (74%) never/
light-smokers (<10 pack-years, 69%). Median pro-
gression-free survival (PFS) of the first-/second-gen-
eration TKI treatment was 365 days (range, 62–
3,546 days). The EGFR p.T790M resistance mutation
was detected in 25 of 39 patients (64%) in the cohort.
The third-generation TKI osimertinib was given as
the second-line treatment to 19 patients (49%) and
led to an additional median PFS of 248 days (range,
9–1,962 days). Individual progressions are shown in
Figure 1. None of the clinical characteristics or basic
molecular features (EGFR mutation type and presence
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of TP53 mutations) at baseline was significantly associ-
ated with the subsequent development of EGFR
p.T790M in our cohort (Table 1 and Figure 1).

Histopathological features
Nine predefined histopathological features were evalu-
ated by two experienced pathologists (supplementary

material, Table S2). The association of the histopatho-
logical features with the resistance mechanisms was
not significant after correcting for testing multiplicity
(FDR = 5%). Nonsignificant higher immune infiltra-
tion was observed when the resistance was mediated
by T790M mutation compared with other resistance
mechanisms (moderate-to-strong lymphocyte infiltra-
tion in 73% versus 30% of cases, p = 0.0069).

Table 1. Characteristics of patients with WES of tumor and normal tissue.
All study patients WES patients (n = 39) T790Mpos (n = 25) T790Mneg (n = 14) p value

Age, median (IQR) 66 (56–75) 66 (54–75) 62 (58–75) 0.86
Sex, female, n (%) 29 (74) 19 (76) 10 (71) 0.75
ECOG PS 0/1, n 20/19 14/11 6/8 0.43
Never/light smokers, n (%) 27 (69) 19 (76) 8 (57) 0.22
Stage IV at initial diagnosis, n (%) 29 (74) 17 (68) 12 (86) 0.22
Brain metastases, n (%) 10 (26) 6 (24) 4 (29) 0.74
EGFRmut: del19/L858R/other, n 28/9/2 21/3/1 7/6/1 0.07
TP53 mutated/wild type 16/23 12/13 9/5 0.25
PFS of 1L EGFR TKI, median (IQR), mo 12.1 (8.6–25.5) 13.6 (9.4–25.5) 9.2 (5.8–18.7) 0.70
OS, median (IQR) 33.7 (16.7–65.5) 38.7 (17.8–60.5) 23.3 (15.4–76.4) 0.69

1L, first line; ECOG PS, Eastern Cooperative Oncology Group performance status; IQR, interquartile range; mo, months; n, number.

Figure 1. Swimmer’s plot of patient cohort. Patients are separated by their individual resistance mechanism. As part of standard of care
practices, third-generation EGFR inhibitor osimertinib was only given to patients with detection of the EGFR p.T790M resistance
mutation.

4 of 10 M Menzel et al

© 2024 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2024; 10: e354



Molecular features
As the samples were taken before the development of
the resistance mutation, we expected an absence
of reads supporting the EGFR p.T790M mutation. For
confirmation, we interrogated each sample for the
occurrence of EGFR c.2369C>T. While there were
some reads observed with this mutation in 15 samples
from both the T790Mpos and T790Mneg groups, the
VAF was below 1% in all cases, and no significant differ-
ence was found between the T790Mpos and T790Mneg
groups (mean 0.17% versus 0.18%, p = 0.85).
To identify biomarkers that predict the development

of T790M resistance mutations, we evaluated a multi-
tude of complex biomarkers based on the WES data of
both patient groups (Figure 2). NSCLC is known to
harbor TP53 comutations [30], which we identified
belonging to pathogenic and likely pathogenic catego-
ries in 21 cases (54% of the cohort patients, 48% in
T790Mpos, and 64% in T790Mneg), yet they did not
display a significant difference between both groups
(Figure 2 and supplementary material, Table S2).
While there were several other mutations present in
both groups, we did not identify statistically significant
differences for any mutation between T790Mpos and
T790Mneg cases (supplementary material, Table S3).
However, considering mutations collectively as a

whole with TMB as a surrogate measure, there was a
significant difference, with the T790Mpos cases show-
ing a median TMB of 2.7 versus 2.2 in the T790Mneg
cases (p = 0.03, Figure 2), indicating that a higher
mutational burden increases the likelihood for the
subsequent development of the EGFR p.T790M
resistance mutation. Further, the scTMB was num-
erically higher in the T790Mpos group (median
1.7 versus 1.2), but the result was not statistically
significant (p = 0.07).
Furthermore, we evaluated different complex

biomarkers referring to tumor heterogeneity. The
MATH score, a recently introduced measure of tumor
heterogeneity [19], revealed a significant difference
between both groups with the T790Mpos group
expressing significantly higher tumor heterogeneity
(median 0.29 versus 0.23, p = 0.03). Besides, we
recalculated the MATH scores from a retrospective
study [18] comparing tissue samples of rebiopsies at
the time of TKI failure for tumors with the T790M
resistance mutation against other resistance mutations
and found no significant difference between T790Mpos
and T790Mneg (0.33, 0.35, p = 0.97, supplementary
material, Table S4). The median VAF of somatic muta-
tions acts as another surrogate marker for tumor hetero-
geneity. To subtract the effects of tumor purity and LOH

Figure 2. Clinical and molecular patient characteristics. Each column corresponds to an individual patient. Statistical comparisons of
patient characteristics between the T790Mpos and T790Mneg groups were performed using the Wilcoxon rank-sums and Fisher exact
tests, with the statistical significance indicated in the figure.
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at mutation sites, we calculated a TVAF and
observed a significantly higher median TVAF of 33 in
the T790Mpos group compared with 16 in the
T790Mneg group (p = 0.02).
The evaluation of SBS mutational signatures

showed the occurrence of multiple signatures (SBS2,
SBS1 + 5, SBS4, SBS13, SBS30, SBS92, and SBS96;
see supplementary material, Table S2) in the study
cohort, but only a single signature (SBS1 + 5, clock-like
mutational process) was significantly different between
both groups occurring with a median percentage of
53 in the T790Mpos group versus 40 in T790Mneg
(p = 0.03, Figure 2).
In 15 (38%) cases, we observed discrepancies larger

than 30% between the bioinformatically and histopatho-
logically determined tumor purity (supplementary
material, Table S2). As the bioinformatically deter-
mined tumor ploidy using Sequenza is set as a func-
tion of tumor purity, we, therefore, adjusted the ploidy
estimation to adhere to the histopathologic tumor
purity. In the resulting ploidy estimates, we observed a
significant difference between the groups (Figure 2)
with a median ploidy of 4 in the T790Mpos group
versus 2.1 in T790Mneg (p = 0.02). The majority
(80%) of tumors in the T790Mpos group showed a
genome duplication compared with only four (29%)
tumors in the T790Mneg group (p = 0.0002).
Genome instability (GI) was measured using the

HRDsum score, which was also adjusted for the histo-
pathologically determined tumor purity as described
previously [17]. GI in the T790Mpos group was
numerically higher with a median HRDsum score of
22 versus 9 in the T790Mneg group, yet not statisti-
cally significant (p = 0.059). We further evaluated the
CN changes in both groups as the fraction of regions
altered, which did not differ between the groups
(p = 0.46, supplementary material, Table S2).
However, the fraction of subclonal CN did reveal a
significantly higher occurrence of subclonal CN events
in T790Mpos mutated cases with a median of 16% in
the T790Mpos group compared with 4.7%
in T790Mneg cases (p = 0.01).
We evaluated LOH of chromosome arms in both sam-

ple groups and observed several LOH in different sam-
ples (supplementary material, Table S6). However, none
were statistically significant, with the best being chr21 p
with p = 0.16. Furthermore, only a single deep loss of a
chromosome arm was observed in the cohort (chr21 q).

Prediction of T790M development
To build a prediction model of T790M mutations, the
discriminatory properties of the best-performing

biomarkers were assessed. The fraction of subclonal
CN did reveal the highest discriminatory power with an
AUC ROC of 0.77, followed by MATH (0.74), TVAF
(0.73), and the adjusted ploidy (0.72) (Figure 3).
As no single discriminator with clinically satisfac-

tory performance was identified, we continued by
building a model using combinations of biomarkers.
To exclude biomarkers reflecting the same biological
characteristics, we calculated the pairwise correlations
between each marker. The highest correlations were
observed between TMB and scTMB (R = 0.79), between
SBS1 + 5 and HRDsum (R = 0.67), as well as between
TVAF and HRDsum (R = 0.56), whereas no other cor-
relation exceeded R > 0.5 (supplementary material,
Table S7). We, therefore, excluded the combination of
TMB and scTMB, as well as HRDsum with SBS1 + 5
and TVAF from the combined analysis.
We evaluated the performance of a logistic regres-

sion model combining the highly differential features
(TMB, fraction of subclonal CN, MATH, TVAF,
SBS1 + 5, and ploidy) and validated our approach
with leave-one-out cross-validation (LOOC). The model
achieved an AUC of 0.69 (CI 0.5–0.87) for the predic-
tion of T790M mutations in our cohort, which did
not exceed the previously found AUCs of the indi-
vidual parameters. This was probably due to the rel-
atively small number of cases, which caused
unstable behavior of the utilized algorithms. Using
LOOC, we were able to validate the applicability of
the logistic regression model, yet were not able to
define exact weights for the parameters used.

Survival analysis
The association of complex genetic biomarkers with
PFS and OS measured from the application of the
first-line therapy was weak. The only significant
result was a slightly increased hazard ratio (HR) for
higher TVAF (HR = 1.06, p = 0.032, supplementary
material, Figure S1).

Discussion

Considering the long survival of patients with EGFR
mutated NSCLC who received sequential first/second
generation followed by the third-generation TKIs due
to the development of T790M, along with increasing
use of large next generation sequencing (NGS) panels
and WES as routine molecular workup at least in the
larger academic institutions in the foreseeable
future [31], this study analyzed the feasibility of
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EGFR p.T790M prediction using deep genetic profiling
of baseline tissue samples. The main finding was that
subclonal features, such as the MATH score, subclonal
CNV, as well as the ploidy, TMB, and SBS1 + 5 muta-
tional signature, were significantly associated with the
subsequent development of EGFR p.T790M. Of note,
clinical and basic molecular characteristics, like age,

smoking status, the type of EGFR mutation, and the
presence of TP53 mutations, showed no association
with EGFR p.T790M in the study cohort, which could
in part be due to the relatively small number of
patients, but nevertheless underlines the superior per-
formance of complex genetic biomarkers in this
setting.

Figure 3. The ability of individual genetic biomarkers to predict the subsequent development of EGFR p.T790M mutations. Area under
the ROC curve (AUC) for individual genetic biomarkers with statistically significant differences between T790Mpos and T790Mneg
patients.
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Previous studies have identified EGFR exon 19
deletions (up to 75%) and TP53 mutations as significant
discriminators between T790Mneg and T790Mpos
patients [18], but only numerical differences without
statistical significance were noted in our cohort
(Table 1). In contrast to other reports that have focused
on the characteristics of T790Mneg tumors, such as
whole genome doubling [18], to discern them from
T790Mpos cases, our study suggests that properties of
the tumors that eventually develop the T790M resis-
tance mutation are more important at baseline (before
TKI treatment); all significant changes, such as higher
MATH score, subclonal CNV, ploidy, TMB, and
SBS1 + 5 mutational signature, point to either
increased intratumoral heterogeneity and/or increased
activity of mutational processes as a cardinal biologic
characteristic of tumors poised to develop EGFR
p.T790M. Of note, we could not reproduce the finding
of lower TMB for T790Mpos cases in a previous
study [18], as TMB was significantly higher in
T790Mpos patients in our cohort. While the reasons
for this discrepancy are unclear, the TMB estimation
based on WES, as performed in the current study, can
generally be considered more accurate than the panel
NGS-based TMB estimation employed in previous
reports [32].
Another distinguishing characteristic of our study is

that it focused on baseline tumor samples instead of
samples collected at the time of disease progression,
which may provide special opportunities for biological
insights and clinical exploitation. For example,
recalculation of the MATH score at the time of TKI
failure from previously published data [18] showed no
difference between T790Mpos and T790Mneg groups
with uniformly high and similar values (0.35 versus 0.33).
In contrast, MATH scores in our study at baseline
were lower and dissimilar (0.29 versus 0.23,
p = 0.03). This indicates an increase and convergence
of the score with tumor progression, which can
obscure the differences present at baseline. From a
practical viewpoint, an important advantage of testing
at baseline before TKI therapy is the potential ability
to predict the subsequent development of EGFR
p.T790M even before the first-line treatment, which
could be based on a combination of associated
biomarkers. It should also be noted that the scarce
presence of T790Mpos reads at baseline does not have
any predictive value itself, as these have very low
allelic frequencies and are equally present in the
T790Mpos and T790Mneg groups. The most plausible
explanation for their presence is C>T transition artifacts
induced by formalin fixation [33]. One important impli-
cation of these observations is that sequencing of EGFR

itself at baseline is insufficient for the prediction of the
subsequent development of EGFR p.T790M.
Histopathological evaluation did not reveal a strong

discriminator between different resistance mechanisms.
Only the level of immune infiltration reached signifi-
cance by single hypothesis testing. Immune infiltration
appeared to be increased in T790Mpos cases in our
cohort, which stands in contrast to previously
published NGS-based immune infiltration estimates
where increased immune infiltration was observed
for T790Mneg cases [18,34]. Our results could be
influenced by the small cohort size or the difference
in study design as our samples were taken before
the development of the resistance mechanism.
The main limitations of our study are the retrospec-

tive design and the relatively small cohort size, which
precluded the development of a useful forecasting
model. In addition, the high drop-out rate raises ques-
tions about the technical feasibility of WES on a broad
scale. However, it should be noted here that most
dropouts in our study were due to the lack of tumor or
normal tissue or due to the previous use of the scant
tumor tissue available from small biopsies for earlier
scientific projects (27 patients, 34%). Only a small
number of cases (13 patients, 16%) could not be used
due to library quality and DNA quantity. In fact, WES
requires only a small amount of approximately 100 ng
DNA, similar to that needed for panel-based TMB
estimation [35,36] or comprehensive genomic profiling
through large capture-based panels of 400–500 genes,
whose feasibility in the routine setting has already
been demonstrated in several pivotal academic studies,
like those involving MSK-IMPACT [37]. Future studies
could also expand the scope beyond genetic features to
additionally include immunologic characteristics, whose
particular characteristics and role in pathogenesis and
treatment of EGFR-mutated lung cancer are increasingly
recognized [38].
In conclusion, this pilot study indicates an associa-

tion between measures of tumor subclonality observed
in the extended molecular profiling using WES at ini-
tial diagnosis and the subsequent development of the
T790M resistance mutation in NSCLC patients receiv-
ing the first-/second-generation TKIs. Larger prospec-
tive studies are needed to validate these findings and
accurately implement a forecasting model.
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