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Abstract
Motivation: Language models are routinely used for text classification and generative tasks. Recently, the same architectures were applied to
protein sequences, unlocking powerful new approaches in the bioinformatics field. Protein language models (pLMs) generate high-dimensional
embeddings on a per-residue level and encode a “semantic meaning” of each individual amino acid in the context of the full protein sequence.
These representations have been used as a starting point for downstream learning tasks and, more recently, for identifying distant homologous
relationships between proteins.

Results: In this work, we introduce a new method that generates embedding-based protein sequence alignments (EBA) and show how these
capture structural similarities even in the twilight zone, outperforming both classical methods as well as other approaches based on pLMs. The
method shows excellent accuracy despite the absence of training and parameter optimization. We demonstrate that the combination of pLMs
with alignment methods is a valuable approach for the detection of relationships between proteins in the twilight-zone.

Availability and implementation: The code to run EBA and reproduce the analysis described in this article is available at: https://git.scicore.uni
bas.ch/schwede/EBA and https://git.scicore.unibas.ch/schwede/eba_benchmark.

1 Introduction

Protein language models (pLMs) are becoming more
popular by the day. These models capture deep “semantic
relationships” between different residues in a protein by ana-
lyzing their context within the sequence, resulting in neural
networks capable of generating meaningful representations at
the residue level. These representations, also denoted as
embeddings, are vectors in high dimensional space that can be
used for a variety of downstream machine learning applica-
tions (Ferruz et al. 2022, Lin et al. 2022). Recently, pLMs
were also leveraged for establishing homologous relationships
between sequences. While this is achievable with standard
alignment tools (Potter et al. 2018), whenever the comparison
falls into the so-called twilight zone (Rost 1999), the pairwise
signal gets blurry. This is where pLMs shine by capturing rela-
tionships far beyond simple sequence comparisons, uncover-
ing otherwise undetected evolutionary relationships that can
guide, for example, protein annotation or structure prediction
efforts.

For detecting such relationships with pLMs, protein
sequences are commonly projected into an high-dimensional
space by averaging their per-residue embeddings (Heinzinger
et al. 2022, Hie et al. 2022, Schütze et al. 2022). However,

the meaning of distance in this space is still unclear. In Hie
et al. (2022), the Euclidean distance in the averaged embed-
ding space was used to quantify sequence similarity, which in
turn was used to generate an evolutionary landscape of ho-
mologous proteins by connecting sequences to their k-nearest
neighbors. The distance between the average representations
was used again in Heinzinger et al. (2022) to establish distant
homology relationships between CATH domains (Sillitoe
et al. 2020). Performance was improved by contrastive learn-
ing to re-project the average embedding representation into a
space where similar CATH domains cluster closely together.
A similar approach was adopted by Hamamsy et al. (2023) to
build TM-vec, a tool able to predict TM-scores. However,
representing a sequence by averaging its per-residue embed-
dings has limitations. An example is given by multidomain
proteins, where a loss of signal can be expected when
averaging per-residue embeddings from distinct domains that
potentially evolved independently (Schütze et al. 2022).
Furthermore, even for single domain sequences, average-
based similarity metrics inherently lose information on order
and are affected by comparisons of residues without any evo-
lutionary relationship. An example is shown in Fig. 1, where
the average representation of a sequence is equidistant from a
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protein with the same structure and another one with a
completely different fold.

These problems can be alleviated by methods constructing
explicit alignments at the cost of added computational com-
plexity. Two examples of embedding-based alignment (EBA)
methods were introduced by Bepler and Berger (2021) and
Hamamsy et al. (2023). In Bepler and Berger (2021), a lan-
guage model was trained using both sequence and structural
information. They showcase a “soft alignment” generated
with a weighted sum of all the possible pairwise residue dis-
tances. The resulting score predicted homologous relation-
ships between SCOP (Andreeva et al. 2019) domains. On the
other hand, in Morton et al. (2020), a network fed with resi-
due embeddings was trained on protein structures to generate
dynamic alignment parameters, such as the score and gap
penalty matrices.

In our work, we introduce an EBA that, given two sequen-
ces, leverages the distance of all possible pairs of residue
embeddings to generate a “similarity matrix” that is then
used as a score matrix in a classical dynamic programming
alignment. As we observed that residue-level embeddings are
not always comparable across sequences, we also include a
step to enhance the signal of the similarity matrix using the
distributions of residue embedding distances of the compared
proteins (Supplementary Fig. S6). The score obtained with the
alignment is able to capture structural similarity even in the
sequence-similarity twilight zone (Rost 1999), outperforming
other pLM methods and classic sequence-based approaches in
the detection of distant homologies. Such an approach allows
the generation of reliable protein sequence and structure
alignments at low sequence similarity, opening the door to the
annotation and interpretation of protein sequences without
clear homologs of known structure and function.

The idea behind our approach is similar to Hamamsy et al.
(2023), however, the absence of any training and parameter
optimization makes our method robust to generalization and
easy to interpret. Furthermore, the method is not bound to a
specific language model, therefore any pLM can be utilized,
leaving a choice based on the requirements of specific scien-
tific applications. Another similar method is pLM-BLAST
(Kaminski et al. 2023), which was developed at the same time
as our method. However, we demonstrate that our proposed
signal enhancement method can greatly improve the

performance of such language model embedding alignment
approaches.

2 Materials and methods

The methods described in this section rely on the assumption
that residues with similar characteristics and context will have
similar embeddings, therefore, they will be close in the embed-
ding space. Benchmarks have been performed with three pre-
trained state of the art pLMs: ProstT5 (Heinzinger et al.
2023), ProtT5-XL-UniRef50 (ProtT5) (Elnaggar et al. 2022),
and esm1b_t33_650M_UR50S (ESM-1b) (Rives et al. 2021).
Both ProtT5 and ESM-1b are based on the transformer archi-
tecture (Vaswani et al. 2017) and trained on UniRef50 (Suzek
et al. 2014) in a self-supervised fashion to predict masked
amino acids. ProstT5 is based on ProtT5 and encodes both se-
quence and structural information by leveraging the 3Di-
tokens generated by Foldseek (van Kempen et al. 2023). The
residue-representations generated with these models are vec-
tors belonging to spaces with 1024 (ProstT5, ProtT5) and
1280 (ESM-1b) dimensions. It has been shown that, based on
their position in the embedding space, amino-acids can be
clustered according to biochemical and biophysical properties
(Rives et al. 2021, Elnaggar et al. 2022).

2.1 Average distance

Averaging per-residue embeddings is a simple and widely
used approach to derive a fixed size representation for
sequences of variable length (Heinzinger et al. 2022, Hie et al.
2022, Schütze et al. 2022). Once the sequences are projected
in this fixed size space, it is possible to compute the distance
between them; we refer to this approach as the average dis-
tance (AD) method. Any distance metric can be used for this
purpose and in this work, driven by preliminary analysis, we
use Euclidean distances. AD is computationally efficient and
captures meaningful relationships between proteins (Bepler
and Berger 2021, Hie et al. 2022, Schütze et al. 2022).

2.2 Embedding-based alignment

EBA aims to fully utilize the information encoded in the per-
residue embeddings provided by pre-trained language models.
Two protein sequences are compared by constructing a simi-
larity matrix, which is used as a score matrix to build an

Figure 1. Comparison of three proteins—Thymidylate kinase from Aquifex Aeolicus VF5, human thymidylate kinase, and Rad50 ATPase from Pyrococcus

furiosus (PDB ids: 4S35, 1NMY, and 1FU2 chain A)—using sequence and structure based scores. While 4S35 and 1NMY share a very similar fold (TM-

score¼ 0.82), the 1F2U structure is different (TM-score¼ 0.30). However, the average representation of the protein sequence in the center (PDB id:

4S35) has approximately the same distance in the embedding space (AD¼ 1.41) to both other proteins. In this example, the AD is not able to distinguish

the two cases, while our EBA assigns a much higher score to the pair of sequences with a similar fold. The proteins in this example share low sequence

identity: 15% for 1F2U-4S35 and 29% for 4S35-1NMY. Both the AD and EBA scores in this example were computed using the ProtT5 language model and

the Euclidean distance metric.
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explicit alignment. The alignment score is finally used to de-
fine protein similarity. Given two sequences A and B, with
lengths n and m, respectively, the per-residue embedding simi-
larity matrix SMn�m is built by computing the similarity score
SMi,j for each possible pair of residues:

SMi;j ¼ e�dðri;rjÞ; (1)

with dðÞ: the desired distance metric, ri: embedding of residue
i 2 A, rj: embedding of the residue j 2 B. All the analysis in
this work were performed using Euclidean distance as dðÞ.

2.2.1 Signal enhancement
The signal in the similarity matrix is enhanced by comparing
the similarity of each pair of residues with the scores of all
pairs involving the amino-acids of the two proteins under
consideration. Given a pair of residues (i, j) with a similarity
score SMi;j, we compute the Z-score with respect to both the
elements in the same row (SMi;�) and column (SM�;j). We fi-
nally convert each element of the similarity matrix to the aver-
age of the computed Z-scores.

xrðiÞ ¼
1
m

Xm
k

e�dðri;rkÞ rrðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
k

ðe�dðri;rkÞ � xrðiÞÞ2
vuut ;

(2)

xcðjÞ ¼
1
n

Xn

k

e�dðrk;rjÞ rcðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k

ðe�dðrk;rjÞ � xcðjÞÞ2
vuut ;

(3)

with xr=cði=jÞ and rr=cði=jÞ being the average and standard de-
viation computed for the row/column i/j.

zrði; jÞ ¼
e�dðri;rjÞ � xrðiÞ

rrðiÞ
zcði; jÞ ¼

e�dðri;rjÞ � xcðjÞ
rcðjÞ

: (4)

Each element of the enhanced similarity matrix is then com-
puted as:

SMenhði;jÞ ¼
zcði; jÞ þ zrði; jÞ

2
: (5)

2.2.2 Global and local dynamic alignment
Both Needleman–Wunsch (NW) and a Smith–Waterman
(SW) were implemented using SMenh as score matrix. Gap
penalties were set to 0 for NW and to 2 for SW. Furthermore,
we subtracted a constant, K ¼ 2, to SMenh for the SW imple-
mentation used in the example showcased in Section 4.6. For
NW global alignment, the EBA similarity score is normalized
as follows: given the resulting alignment score salign, the EBA
similarity score is defined as:

EBAmin=max ¼
salign

lmax=min
; (6)

where lmin=max is the length of the shorter/longer sequence in-
volved in the comparison. The alignment score salign is sym-
metric with respect to the sequences salignðA;BÞ ¼ salignðB;AÞ.

The symmetry is broken after normalization according to the
length of one of the two sequences, similarly to the normaliza-
tion adopted for the computation of TM-score for structure
comparison (Zhang and Skolnick 2004).

3 Benchmark

3.1 Structural similarity analysis

We benchmarked AD and EBA in capturing structural simi-
larities in the absence of clear sequence similarity. For that,
we gathered protein pairs of known structure with low se-
quence identity using PISCES (Wang and Dunbrack 2003)
(default parameters, with the exception of: “Maximum pair-
wise percent sequence identity”: 30% and “Minimum chain
length”: 75). The resulting 19 599 pairs exhibit detectable ho-
mology (Hhsearch, Steinegger et al. 2019, e-value threshold
10�4) but are only remotely related (sequence identity
< 30%). Performances of EBA and AD were measured as
Spearman correlation coefficients between the predicted simi-
larity/distance and structural similarity, expressed as the TM-
score (Zhang and Skolnick 2005).

3.2 CATH annotation transfer analysis

To assess EBA capabilities for transferring CATH domain
annotations, we used the lookup and test set from Heinzinger
et al. (2022). In Heinzinger et al. (2022), annotations from a
lookup set of 66K CATH domains were transferred to a test
set of 219 elements. As described in ProtTucker (Heinzinger
et al. 2022), the lookup set was built making sure that the se-
quence similarity to the test set is very low (HVAL< 0, Rost
1999) and that for each element in the test set at least one se-
quence with an identical label can be found in the lookup set.
Our number of matching domain annotations between the
test set and the lookup set agrees with the ProtTucker number
except for three missing cases in the Topology category.
Given a domain in the test set, the annotation of the domain
with the higher EBA score across those in the lookup set is
transferred. We carried out this analysis for each of the four
CATH categories using EBA. We computed the accuracy of
the annotation transfer as:

Accuracyðy; ŷÞ ¼ 1
nsamples

Xnsamples

i

1ðy ¼ ŷÞ: (7)

Results were compared to the scores reported in Heinzinger
et al. (2022) for AD, ProtTucker (Heinzinger et al. 2022), and
HMMER (Potter et al. 2018) and the ones reported in
Hamamsy et al. (2023) for TMvec, Foldseek, and MMseqs2.

3.3 SCOP annotation transfer analysis

To assess EBA performances in transferring SCOP annota-
tions, we used the dataset illustrated in van Kempen et al.
(2023). Protein domains in SCOPe 2.01 (Andreeva et al.
2019) were clustered at 40% sequence identity, resulting in
12, 211 non-redundant domains: SCOPe40. The clustered
sequences were retrieved from https://github.com/steinegger
lab/foldseek-analysis. We used EBA for scoring all possible
pairs of domains within this data set, with the goal of identify-
ing sequences belonging to the same family, super family and
fold. Then, for each query, we computed the sensitivity up to
the first false-positive, defined as a match to a different
fold. Our results were compared to the scores reported in
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van Kempen et al. (2023) for the following methods:
Foldseek, Foldseek-TM, DALI (Holm and Sander 1993),
CLE-SW (Wang and Zheng 2008), and MMseqs2 (Steinegger
and Söding 2017). With the exception of MMseqs2, these
methods rely on structural information.

3.4 HOMSTRAD alignment quality

To assess alignment quality we used the HOMSTRAD data-
base (Mizuguchi et al. 1998). HOMSTRAD encompasses ex-
pertly curated structural alignments of homologous proteins
within 1032 protein families. We reproduced the analysis per-
formed in van Kempen et al. (2023) and compared our results
to: Foldseek, Foldseek-TM, DALI, CLE-SW and MMseqs2.
Again, the data were retrieved from https://github.com/steineg
gerlab/foldseek-analysis. For each family, the pairwise align-
ment of the first and last member was collected, resulting in
1032 pairs of sequences. Using the HOMSTRAD alignments
as ground truth, we computed both sensitivity and precision
for the aligned residues in each pair and averaged the results
across the families.

sensitivity ¼ tp
tpþ fn

precision ¼ tp
tpþ fp

; (8)

with tp/fp being the number of true/false positives and fn the
number of false negatives.

4 Results

4.1 EBA captures structural similarity in the twilight

zone

We benchmarked EBA, as described in Section 3.1, against
the following methods:

• EBA without signal enhancement (EBAplain) (Section
2.2.1)

• Average distance (Section 2.1)
• ProtTucker (Heinzinger et al. 2022)
• TM-vec (Hamamsy et al. 2023)
• pLM-BLAST (Kaminski et al. 2023)
• HHalign (Steinegger et al. 2019)
• Needleman–Wunsch with a BLOSUM matrix, normalized

sequence similarity

We compared the predicted similarities/distances to the
TM-scores computed with TM-align (Zhang and Skolnick
2005). The asymmetric nature of TM-score allows to perform
the analysis using both the score normalized by the length of
the longer or the shorter sequence, TMmin and TMmax, respec-
tively. The choice of the score depends on the type of similar-
ity one would like to investigate. The scores reported in
Table 1 show the Spearman correlation computed using both
TMmin and TMmax, normalizing the EBA score consistently
with the TM-score normalization.

Our results indicate that EBA outperforms all other
approaches, independently of the underlying language model.
Table 1 shows that the signal enhancement step significantly
contributes to the performance of EBA by comparing it to the
version based on raw similarity scores: EBAplain. The strong
impact of the signal enhancement suggests that raw distances,
and thus the similarity scores, need to be contextualized as
they are not necessarily comparable among different pairs of
sequences. This is done by substituting the raw similarity of

each residue pair with its pseudo Z-score, as described in
Section 2.2.1. This approach extracts the signal by assigning
high values to residue pairs with high similarity with respect
to other pairs involving the same residues. A comparison
worth mentioning is the one with pLM-BLAST, which aligns
based on cosine similarity of residue pLM embeddings. While
here we show the results of pLM-BLAST-local which may ex-
plain it’s particularly poor performance when correlated to a
global measure such as the TM-score, the results from their
benchmarking effort (Kaminski et al. 2023) still revealed that
EBA outperforms pLM-BLAST-global for homology detec-
tion in the twilight zone. Also interesting is the comparison
with a classical NW alignment performed using a BLOSUM
matrix (Henikoff and Henikoff 1992). Since the alignment al-
gorithm is the same as in EBA, here we are directly comparing
our similarity matrix to a classical BLOSUM matrix. The fact
that this method is outperformed even by EBAplain highlights
the highly informative nature of the embedding distances.
Details concerning the methods used as comparison can be
found in (Supplementary Section S1).

4.2 Length normalization

The estimation of similarity between two proteins is affected
by their difference in length. Whenever this difference is large,
the choice of the normalization becomes an important factor.
An example is shown in Fig. 2, where we consider a pair of
sequences with the same length (pair 1) and a second pair in
which one sequence is approximately double the size of the
other (pair 2). In the first example, since the sequences have
the same length, the normalization is irrelevant: TMmin ¼
TMmax and EBAmin ¼ EBAmax. In the second pair on the other
hand, the shorter protein is entirely contained in the longer
one. In this case, EBAmin and EBAmax offer two different
perspectives. The normalization according to the shorter se-
quence results in a large score (EBAmax ¼ 9:54), reflecting the
fact that the shorter sequence successfully aligned through its
whole length. However, the longer sequence is only partially
aligned, therefore the normalization according to its length
results in a lower score (EBAmin ¼ 4:41). We observed that in
all the annotation transfer analysis the best performances are
obtained by normalizing the EBA score by the length of the
longer sequence in the comparison. We therefore suggest us-
ing EBAmin for this kind of analysis.

Table 1. Spearman correlations between the similarity/distance

predictions of the listed methods and TM scores.a

TMmin TMmax

ProstT5 ProtT5 ESM-1b ProstT5 ProtT5 ESM-1b

EBA 0.92 0.90 0.87 0.86 0.84 0.80
EBAplain 0.56 0.72 0.64 0.20 0.54 0.52
TM-vec 0.81 0.82
pLM-BLAST 0.58 0.60
AD �0.65 �0.46 �0.46 �0.49 �0.39 �0.39
ProtTucker �0.46 �0.38
HH-align 0.82 0.77
Needleman–

Wunsh
0.61 0.43

a Where possible, we showcase the methods performances for ProstT5,
ProtT5 and ESM-1b. The EBA scores are normalized according to the TM
scores, we therefore compare EBAmin with TMmin and EBAmax with TMmax.
Since the other methods provide only one score, the same prediction is
compared to both TMmin and TMmax. The expected correlation for
similarity scores is positive, while for distances is negative. Best correlation
values for TMmin/max in bold.
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4.3 EBA successfully transfers CATH annotations

Table 2 shows CATH annotation transfer performance of
EBA vs. other sequence-based, pLM-based and structure-
based methods. ProtTucker, which is trained and optimized
for this task, outperforms AD for the ProtT5 pLM. However,
EBA on ProtT5 surpasses this performance for both topology
(T) and homology (H) label transfer, despite not relying on
training or parameter optimization for any specific task. EBA
with ProstT5 as the underlying pLM offers the best perform-
ances overall across all these methods, surpassing both classic
sequence profile based tools and Foldseek, which relies on

structural information. As normalization for this analysis, we
used the length of the longer sequence in each comparison,
therefore EBAmin. With this normalization, selecting the
higher similarity scores ensures to value both similarity and
sequence coverage in the comparison.

4.4 EBA competes with structure-based methods

As described in Sections 3.3 and 3.4, we benchmarked EBA
against state of the art structure-based methods for annota-
tion transfer and alignment quality. Consistently with the
other benchmarks in this paper, the best performer in the

Figure 2. (A) The correlation between EBAmin/max and TMmin/max for the analysis performed using ProtT5. A color gradient shows the length ratio of the

sequence pairs: r ¼ lmin/lmax. Where lmin is the length of the shorter sequence and lmax the length of the longer one. (B) Two pairs of sequences with very

different r. Pair one is not affected by the length normalization, while pair 2 score changes drastically between EBAmin and EBAmax.

Table 2. Accuracy computed for the CATH annotation transfer analysis as in Heinzinger et al. (2022).a

ProstT5 ProtT5 ESM-1b Not pLMs-based

EBA EBAplain AD EBA EBAplain ProtTucker TM-vec AD EBA EBAplain AD Foldseek HMMER MMseqs2

C 91 79 86 87 82 88 89 84 89 75 79 77 70 53
A 84 66 75 77 68 77 80 67 78 59 61 73 60 33
T 78 55 63 74 63 68 71 57 70 54 50 59 59 21
H 88 61 67 85 74 79 81 64 77 61 57 77 77 25

a The reported EBA and EBAplain values are normalized according to the length of the longer sequence in each comparison: EBAmin. Best performance for
each CATH category in bold.

Embedding-based alignment 5



SCOP annotation transfer analysis is EBAmin-ProstT5. While
the three pLMs have relatively similar performances in this
analysis (Supplementary Fig. S3), EBAmin-ProstT5 increas-
ingly has an edge over the other two in the classification of
superfamilies and folds. This is not too surprising since
ProstT5 includes structural information despite needing only
sequence as input. Notably, EBA and DALI are the best per-
formers in terms of family annotation transfer, closely fol-
lowed by Foldseek and Foldseek-TM (Fig. 3A). The
performances of EBA slightly drops in the superfamily classifi-
cation, where it performs as good as Foldseek-TM, and drops
again in the fold classification, in which it offers results simi-
lar to Foldseek. Notice that Foldseek-TM uses TM-align to
re-align high-scoring hits generated with Foldseek.

In the alignment quality benchmark, consistently with the
other analysis, the signal enhancement improves the perform-
ances with respect to EBAplain. EBA-ProstT5, outperforms
EBA-ProtT5 and EBA-ESM-1b and as Fig. 3B shows, EBA-
ProstT5 has similar performances to the best structure-based
methods: DALI, TM-align, Foldseek-TM, and Foldseek, with
a slight disadvantage compared to the best structural aligners
in precision, and an advantage compared to Foldseek in recall
(Supplementary Table S4). A direct comparison of the F1
scores of the alignments generated with EBA, DALI, and
Foldseek for each HOMSTRAD family can be found in

Supplementary Fig. S5. Overall, EBA performances are at the
level of structure-based methods. Nowadays having structural
information is easier thanks to AlphaFold (Jumper et al.
2021), however having good models is not always a given.
Furthermore, EBA offers an evolutionary perspective together
with the structural one, and allows the comparison of proteins
with disordered regions. The main drawback compared to
very fast methods like Foldseek and MMseqs2 is the compu-
tation time, which with the current implementation averages
a comparison every 0.02 s on a CPU assuming pre-computed
embeddings (Supplementary Section S2). Uncompressed stor-
age of these embeddings requires 4 � l �N bytes with l being se-
quence length and N the pLM specific embedding dimension.
In the example of ProstT5, this requires 7.5GB to store all of
SCOPe40. However, storage requirements can be avoided by
computing embeddings on the fly, which on average, takes
around 0.02 s per protein sequence on GPU, which is much
faster than structure prediction.

4.5 The meaning of EBA scores

We quantify the meaning of EBA scores by estimating
Bayesian posterior probabilities in SCOPe40. We performed
the analysis on EBAmin scores computed with ProstT5 for all
sequence pairs in SCOPe40. The posteriors are used as a

Figure 3. Cumulative sensitivity distribution for the annotation transfer analysis on the SCOPe40 dataset for: family, superfamily, and fold. The sensitivity

is computed as the area under the ROC curve up to the first FP. With TPs being matches within the same group and FPs being matches between

different folds. The reported score is EBAmin with ProstT5 as underling language model. Structure-based methods are shown with a dash-dot line and

sequence/pLM-based ones are shown with a continuous line. (B) Alignment quality expressed as sensitivity versus precision for the HOMSTRAD

benchmark. With sensitivity being: TP residues in alignment/query length and precision being TP residues/alignment length. Structure-based methods are

marked with an x, while the sequence/pLM-based ones are marked with a dot. (C) Posterior probability of belonging to the same group in the annotation

transfer analysis on the SCOPe40 database. The posterior probabilities are again computed using EBAmin with ProstT5 as underling language model.
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certainty measure of being in the same fold, superfamily or
family given an EBAmin score and are defined as:

P XjEBAminð Þ ¼ PðEBAminjXÞPðXÞ
PðEBAminjXÞPðXÞ þ PðEBAminjXÞPðXÞ

: (9)

With X representing the event of two domains belonging to
the same fold, superfamily, or family, X the complementary
event, PðXÞ/PðXÞ the prior probability associated to that
event and PðEBAminjXÞ/PðEBAminjXÞ the likelihood of
EBAmin given X/X. As EBAmin has no upper bound, data
points corresponding to the top 0.01% scores have been re-
moved from the analysis. This gives prior probabilities of
0.0082, 0.0036, and 0.0009 for being in the same fold, super
family and family respectively. A steady shift toward higher
EBAmin scores can be observed for the posterior distributions
when going from fold toward family in the SCOP hierarchy
(Fig. 3C). EBAmin scores with posterior probability >0.5 indi-
cate that two sequences are related at a given hierarchy level
with a reasonable certainty which leads to an EBAmin thresh-
old of 3.5 for fold, 4.6 for super family, and 6.5 for family.
These values are specific for the ProstT5 pLM, and posterior
distributions for other pLMs are available in (Supplementary
Fig. S2).

4.6 Domain permutation detection

The similarity matrix described in Section 2.2 can also be
used to generate local alignments, unlocking applications
such as domain annotation or the identification of circular
permutations. As a proof of concept, we implemented a SW
local alignment with our similarity matrix as input. We used
it on an example from the BaliBase2 database (Bahr et al.
2001) exhibiting a circular permutation where the two
domains have modest sequence similarity (19% and 26% se-
quence identity). Notably, our local alignment correctly maps
the domains as depicted in Fig. 4. The presence of gap penal-
ties and negative scoring values for residues mismatches is im-
portant for the correct behavior of the local alignment. In

principle, parameters optimization could lead to further
improvements of our approach for specific applications, but
we leave this open for future exploration.

5 Conclusions

In this work, we showcase the potential of combining pLM
representations and classical alignment methods for establish-
ing distant homology relationships. Our EBA approach is
able to identify structural similarities between proteins in the
twilight zone, where pairwise sequence identity goes far below
30%. Our results indicate that, in such applications, pLM-
based score matrices are a more robust option when com-
pared to classic alternatives. This may be due to the ability of
pLMs to capture not only residue biochemical characteristics
but also their context in the full proteins. Despite the absence
of additional training or parameter optimization, EBA outper-
forms other state of the art pLM-based methods, classical
approaches and even structure-based tools (Table 1). The ab-
sence of any sort of re-training and optimization not only
makes the approach extremely generalizable but also allows
to leverage different pLMs, which makes it adaptable to this
fast evolving field. This was demonstrated by the inclusion of
the recently released ProstT5 in our analysis without the need
of any algorithmic modification. Interestingly, among the
benchmarked pLMs, ProstT5 is the one that benefits the most
from our proposed Z-score-based signal enhancement, which
boosts EBA-ProstT5 performance to even surpass structure-
based methods. EBA computation times are higher than the
fast average-based methods and highly optimized tools like
MMseqs2 and Foldseek. While still reasonably fast for the
alignment or comparison of well-defined sets of sequences,
this may become limiting for very large-scale analyses. One
way to overcome this is to carry out a pre-filtering step by first
identifying putative close sequences using AD and then a
higher-resolution alignment with EBA, which has a better
time complexity than TM-align (Supplementary Fig. S1). This
optimization approach was also proposed in similar works,
such as: Hamamsy et al. (2023) and Kaminski et al. (2023).

In our work, we generated a pairwise alignment, however,
the same score matrix (SMenh) can be employed for a multiple
sequence alignment (MSA). This would allow for the con-
struction of MSAs involving highly divergent and dissimilar
sequences, providing, for example, better inputs for deep
learning methods that rely on MSAs, such as AlphaFold
(Jumper et al. 2021). Recently, a pLM-based MSA method
was proposed by McWhite and Singh (2022). Here, the
authors generate MSAs by clustering and ordering amino acid
contextual embeddings.

The rising popularity of EBA methods (McWhite and Singh
2022, Hamamsy et al. 2023, Kaminski et al. 2023) highlights
their potential. We believe that the rapid development of such
methods will soon further transform protein bioinformatics;
opening new doors into the modeling and annotation of pro-
teins, beyond the detection horizon of current state-of-art
tools.
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