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Hindbrain REV-ERB nuclear receptors regulate
sensitivity to diet-induced ohesity and brown
adipose tissue pathophysiology

Lauren N. Woodie', Lily C. Melink ', Ahren J. Alberto ', Michelle Burrows ', Samantha M. Fortin®,
Calvin C. Chan %, Matthew R. Hayes", Mitchell A. Lazar""

ABSTRACT

Objective: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide
variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but
their role in the DVC has yet to be established.

Methods: Male REV-ERBa/[ floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBo/[3
double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus.
Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy
and metabolically stressed conditions.

Results: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet.
Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose
tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue.
Conclusions: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance

and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.
© 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Obesity is a major public health issue with myriad treatment options
but a lack of highly effective, long-term therapies [1,2]. Although
development of obesity is complex and multifactorial, obesity is a
disease of energy balance dysregulation in the brain [3,4]. While the
neural controls of energy balance are distributed across the brain [5,6],
the dorsal vagal complex (DVC) of the hindbrain is a major integrator of
peripheral and central metabolic signals [5,7]. The DVC is comprised of
the area postrema (AP), nucleus of the solitary tract (NTS), and the
dorsal motor nucleus of ten (DMX). The AP and NTS receive afferent
information regarding macronutrient composition of meals and gastric
distention while the DMX sends efferent signals to peripheral organs
ranging from the heart to the reproductive tract via the vagus nerve
[8—11]. Thus, the DVC as a collective structure is an integral gate-
keeper of regulatory flow between central and peripheral sources of
homeostatic energy signals.

Due to this, the DVC has garnered attention as a central area of action
for weight management pharmaceuticals. Metabolic signals such as
glucagon-like peptide, melanocortin 3 and 4, leptin, insulin, and

calcitonin are highly expressed in the DVC and are targets of interest
for obesity therapeutics [7,12—16]. However, the molecular mecha-
nisms underpinning DVC control of energy balance remains poorly
understood.

REV-ERB o, and [ nuclear receptors are important for maintaining
tissue-specific molecular metabolism [17]. They are transcriptional
repressors that constitute a critical negative arm of the mammalian
circadian clock [17] and directly repress thousands of genes [18—20].
In peripheral tissues, REV-ERBs modulate lipid and glucose handling
and their depletion produces metabolic maladies such as hep-
atosteatosis, dyslipidemia, and impaired glucose and insulin tolerance
[18,21—23]. The central roles of REV-ERBs are primarily behavioral
such that loss of expression in the whole body or brain induces dis-
turbances in sleep, memory, and social behaviors [24—26]. However,
in specific groups of neurons or brain areas REV-ERBs control centrally
mediated metabolic functions and it is unknown whether the DVC is
one of these areas [23,27,28].

Therefore, a critical unmet need of the field is to determine how REV-
ERBs function in the DVC. Therefore, we knocked out REV-ERBoi/f in
the DVC (DVC RDKO) of male mice to determine the effect of RDKO on
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metabolic homeostasis. Here we report that DVC RDKO exacerbates
high-fat diet-induced obesity (DIO) by decreasing basal metabolic rate.
Our results suggest this may be due to decreased brown adipose
tissue (BAT) activity arising potentially from indirect DVC control of
sympathetic nervous system (SNS) outflow.

2. MATERIALS AND METHODS

2.1. Animals and diet

All animal work was approved by the University of Pennsylvania Per-
elman School of Medicine Institutional Animal Care and Use Committee
(IACUC protocol number 804747 issued to Mitchell Lazar). Male
Nr1d1™"Nr1d2™" [29] mice were maintained on a C57BI6/J back-
ground (Jackson Labs, Stock 008661). Mice were bred and maintained
at 20—22 °C on a 12:12 h light:dark cycle with ad libitum access to
food and water unless otherwise noted. The normal chow diet (NCD,
LabDiet, 5010) consisted of 12.7% kcal fat, 28.7% kcal protein, and
58.5% kcal carbohydrates. The high-fat diet (HFD, Research Diets,
D12492) consisted of 60% kcal fat from lard and soybean oil, 20% kcal
protein, and 20% kcal carbohydrates with 5.24 kcal/g. Surgical pro-
cedures were performed on 6—8-week-old male littermates. Sacrifice
and tissue collection were performed 7 h after lights on to capture the
peak time of REV-ERB expression [28].

2.2. Stereotaxic surgery

To perform injections, animals were anesthetized with isoflurane and
secured into the stereotaxis (Stoelting Instruments, 51730U). A sur-
gical plane of anesthesia was confirmed by toe pinch. Depilatory cream
was used to remove animals’ fur on the dorsal aspect of the head and
neck before alternating EtOH and betadine swabs and application of a
surgical drape. Subcutaneous, pre-operative analgesic (5 mg/kg
meloxicam) was administered. A ~1.5 cm incision was made in the
skin on the dorsal aspect of the head and neck and the neck muscles
were carefully retracted. A small window was drilled into the ventral
aspect of the interparietal bone, and the head was positioned at a 5—
10° ventral angle to visualize the DVC. Injections were performed using
Hamilton Neuros syringes (Hamilton, 65460-02) and a Quintessential
Stereotaxic Injector (Stoelting, 53311) using the following coordinates:
ML: 0.3 mm, AP: —7.5 mm, DV: 4.3 mm. REV-ERBa/[3 were knocked
out in the DVC of male Nr1d7™"/Nr1d2" mice via bilateral intra-
parenchymal injection of 50 nL of 5 x 10" GC of AAV8-CMV-Cre
(Addgene, 105538-AAV8) to create DVC RDKO. For the control group,
Nr1d1™""/Nr1d2"" mice received bilateral injections of the same vol-
ume and titer of AAV8-CMV-EGFP (Addgene, 105530-AAV8). Needles
remained in both injection sites for ~ 30 s to ensure penetrance of the
injection and prevent backflow. After needles were removed from the
second injection, neck muscles were repositioned, and skin was su-
tured with absorbable thread. Post-operative analgesic (bupivacaine)
was administered to the skin around the incision site. Animals were
then placed in a clean, warmed cage for recovery and were maintained
at 30 °C for three days post-op with soft diet and water gel (ClearH.0,
72-06-5022 and 70-01-5002 respectively) to supplement ad libitum
NCD and water. Animals were given subcutaneous 5 mg/kg meloxicam
for three days post-op and were weighed and monitored for ten days
post-op. To allow for sufficient surgical recovery and viral expression,
animals were maintained on ad /ibitum NCD and water for 2—4 weeks
post-op before metabolic phenotyping or beginning HFD.

2.3. Metabolic rate measurement
Metabolic rate was determined by in vivo indirect calorimetry in
Comprehensive Lab Animal Monitoring System (CLAMS, Columbus

Instruments) cages. Animals were placed singly in CLAMS cages with
bedding, food, and water that mimicked the home cage environment.
After two days of adaptation, experimental data were collected for
three days. Data were acquired every 15 min by Oxymax software.

2.4. Food intake measurement

Food intake was measured by Biological Data Acquisition (BioDAQ,
Research Diets) cages. Animals were placed singly in BioDAQ cages
with bedding, food, and water that mimicked the home cage envi-
ronment. After two days of acclimation, experimental data were
collected for three consecutive days. Data were acquired at each food
hopper interaction and analyzed by BioDAQ Data Analysis software. An
average of the three consecutive days was determined for each animal
and then summed over the light cycle, dark cycle, and total 24 h.

2.5. RNA extraction, cDNA synthesis, and RTqPCR

For DVC RNA extraction, the area was microdissected from the
brainstem and homogenized with 1 mL of QlAzol Lysis Reagent (Qia-
gen, 79306) using Pellet-Pestel (Kimble, 749540). Intrascapular BAT
and inguinal white adipose tissue (iWAT) was homogenized in 500uL of
QlAzol Lysis Reagent using a TissueLyser system (Qiagen, 85300).
After homogenization, total RNA from both tissues was purified and
collected using RNeasy Mini Kits (Qiagen, 74004). RNA quality and
quantity was determined by NanoDrop (Thermo Scientific, ND-ONE-W).
cDNA was synthesized using High-Capacity cDNA Reverse Transcrip-
tion kit (Applied Biosystems, 4368814). qPCR was run using Power
SYBR Green PCR Master Mix (Applied Biosystems, 4368577) and
QuantStudio 6 Flex Real-Time PCR system and software (Applied Bio-
systems, 4485691). All primers (Appendix) were validated, and qPCR
results were analyzed by standard curve and normalization to 78s.

2.6. RNAscope

For quantification of Nr7d7 in the DVC, brains were rapidly removed
and fixed overnight in 4% paraformaldehyde at 4C. Brains were then
washed 3x with 0.1M phosphate-buffered saline (PBS, pH 7.4) and
transferred to 30% sucrose in 0.1M PBS and maintained at 4C until the
brains sunk. Brains were then embedded in OCT compound, frozen
at —80C, and then sectioned on a cryostat in the coronal plane at
14 pm thickness. Slices were collected on Superfrost Plus slides
(VWR) and stored at —80C until further analysis. RNAscope was per-
formed as previously described [28]. Briefly, RNAscope Multiplex
Fluorescent Reagent Kit v2 (ACDBio, 323110) was used per the
manufacturer’s instructions. Detection was carried out using a custom
probe produced by ACDBIo for Nr7d7 mRNA targeting exons 4 and 5
(Mm-Nr1d1-02-C3, 1097521-C3). Following a series of amplification
steps, sections were mounted with VECTASHIELD PLUS with DAPI
(Vector Labs, H-2000). Slides were imaged on an EVOS FL Auto 2
(Thermo Scientific, AMAFD2000) widefield microscope at 10x
magnification. Images provided are representative views of control and
DVC RDKO sections to confirm lack of robust Nr7d7 expression within
the DVC of the RDKO group.

2.7. Brown adipose tissue histology and immunofluorescence

Freshly isolated BAT was fixed overnight in 4% paraformaldehyde at
4 °C before EtOH dehydration. Tissue was embedded in paraffin and
sectioned at 7 pm. Hematoxylin and eosin (H&E) staining and
immunofluorescence (IF) for tyrosine hydroxylase (TH) was performed
by the Institute of Diabetes, Obesity, and Metabolism Histology Core
using a standard protocol. The antibody for TH staining was obtained
from EMD Millipore (AB1542). Slides were imaged on an EVOS FL
Auto 2 (Thermo Scientific, AMAFD2000) widefield microscope.
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Histological slides were imaged at 20x magnification and IF was
imaged at 40x magnification. Cell number and size in histology
samples and IF signal were analyzed using FIJI Is Just ImageJ
(FIJI, NIH).

2.8. Statistical analysis

Statistical analysis and graphing were performed using GraphPad
Prism 7 software. All data were presented as mean & standard error
measurement (SEM) and statistical significance was set a priori as
p < 0.05. Gene expression, final body weight, food intake, and brown
adipocyte histology and IF were compared using the Mann—Whitney
U-test. Running body weight gain, metabolic rate, and activity were
compared using a repeated measures analysis of variance (RM ANOVA)
with a Tukey post-hoc test. Correlation analyses were performed using
Pearson correlation analysis.

3. RESULTS AND DISCUSSION

3.1. REV-ERBa/f double knockout in the dorsal vagal complex
(DVC RDKO)

Male Nr1d1™/nr1d2™ mice received stereotaxic injections of AAVS-
CMV-EGFP or AAV8 CMV-Cre to create the control and DVC RDKO
groups, respectively. After viral expression and metabolic phenotyping,
the DVC was microdissected from the hindbrain for RTqPCR confir-
mation of the knockout (Figure 1A). REV-ERBa. (Nr7d7) and REV-ERBf
(Nr1d2) exhibited reduced expression in the DVC of DVC RDKO animals
(Figures 1B). REV-ERBa./p are constitutive repressors of the circadian
clock activator, Arnt/ (BMAL1) and the accessory circadian clock
repressor, Nfil3 (E4BP4) [17]. Consistent with reduced expression of
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their repressors, Arnt/ and Nfil3 expression were increased in DVC
RDKO animals (Figure 1C). In situ Nr1d7 expression was found to be
decreased throughout the DVC (Figure 1D).

3.2. DVC RDKO does not impact food intake or body weight on
normal chow diet (NCD)

The DVC is a major regulatory site for food intake, satiety, and energy
balance [5]. Therefore, we hypothesized DVC RDKO would result in
altered food intake and affect body weight. However, DVC RDKO ani-
mals maintained on NCD did not exhibit different food intake when
analyzed over 24 h (Figure 2A). DVC RDKO also did not exhibit
increased body weight (Figure 2B).

3.3. DVC RDKO exacerbates diet-induced obesity and dampens
metabolic activity

We have previously shown that RDKO in the hypothalamus does not
manifest in a metabolic phenotype on NCD [28]. We therefore hy-
pothesized that a metabolic stressor, such as an obesogenic HFD, is
necessary to uncover the metabolic deregulatory effects of DVC RDKO.
To explore this possibility, control and DVC RDKO mice were placed on
a 60% HFD for 12 weeks. We observed increased weight gain in DVC
RDKO mice (Figure 3A). The DVC RDKO animals exhibited similar meal
size, eating frequency, and time spent eating (Supplementary
Figure 1A-E), but displayed a non-significant increase in grams of
food consumed (Figure 3B) and kcal of food consumed (Supplementary
Figure 1F) as compared to HFD-fed controls. We also observed
decreased VO, in the DVC RDKO animals (Figure 3C) with a negative
correlation to body weight when fit to the entire model (Supplementary
Figure 2A), but no correlation to body weight when fit to the control or

Nr1d2

Nr1d1

Relative Gene
Expression (18S)

Relative Gene
Expression (18S)

DVC RDKO
NLES

Control

Nr1d1

Figure 1: REV-ERBaot/f double knockout in the dorsal vagal complex (DVC RDKO). A) Experimental scheme for DVC RDKO generation and tissue processing. B—C) RT-qPCR
analysis of Nr7d1 (REV-ERBu), Nr1d2 (REV-ERB), Amt/ (BMAL1), and Nfil3 (E4BP4) (n = 4—5, mean + SEM). D) Representative images at 10x magnification from RNAscope of
Control and DVC RDKO animals for confirmation of Nr7d7 knockout in the DVC (scale bar 275 pm). B—C) Results were compared by Mann—Whitney U-test. *p < 0.05,

**p < 0.01, ¥**p < 0.001.
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Figure 3: DVC RDKO exacerbates diet-induced obesity and dampens metabolic activity. A) Running body weight gain graph for 12 weeks of HFD (n = 4—5, mean + SEM).
B) Light, dark, and total food intake on HFD (n = 3—4, mean + SEM). C) Oxygen consumption as a measure for metabolic rate on HFD (n = 3—4, mean + SEM). D) Activity
measurements on HFD (n = 3—4, mean + SEM). A&C) Results were compared by repeated measures ANOVA. B) Results were compared by Mann—Whitney U-test. **p < 0.01,

**kp < 0.001.

DVC RDKO groups independently (control: r = —0.542, p = 0.635;
DVC RDKO: r = 0.986, p = 0.1071). This change was not accom-
panied with altered locomotor activity (Figure 3D). We conclude that a
minor increase in food intake coupled with decreased VO, over the
course of HFD exposure exacerbated the DIO phenotype in DVC RDKO.

3.4. DVC RDKO decreases molecular signatures for brown adipose
tissue (BAT) activity

Since decreased VO in the DVC RDKO animals occurred independent
of changes in locomotor activity, we explored other sources affecting
the phenotype. Brown adipose tissue (BAT) quickly oxidizes lipid stores
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to regulate metabolic rate and its activity is regulated by outflow from
the sympathetic nervous system (SNS) [30].

The BAT of DVC RDKO animals had large, unilocular adipocytes
compared to the control group (Figure 4A) and was consistent with
increased size by quantification (Figure 4B). Gene markers for BAT
activity Ppargcia, Ucp1, Prdm16, and Cidea were decreased in the
DVC RDKO group (Figure 4C) with a negative correlation between the
relative expression of these genes and grams of body weight gained on
HFD (Figure 4D). Changes in BAT gene expression were not observed
on NCD suggesting a synergistic effect of DVC RDKO and HFD feeding
on BAT pathophysiology (Supplementary Figure 3A).

Due to REV-ERBs’ role as repressors of the circadian clock, DVC RDKO
may also induce exacerbated weight gain due to desynchrony among
the DVC, the rest of the body, and the external environment. Indeed,
the DVC has been shown to have a robust cell-autonomous clock that
can be altered by HFD feeding [31—33]. However, this possibility re-
quires further study.

3.5. DVC RDKO decreases calcitonin receptor gene expression in
the DVC and tyrosine hydroxylase expression in the BAT

There are established connections between the DVC and BAT [34,35].
Specifically, the NTS of the DVC projects to thalamic regions that
regulate activity in the pre-sympathetic dorsal raphe nuclei (DRN) [35].
Through these neural networks, the DVC can modulate BAT activity in
response to the humoral and neural feeding signals it receives from the
periphery [36—38]. Of the several factors and receptors that mediate
DVC control of energy balance, we measured gene expression for Geg
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(glucagon-like peptide), /nsr (insulin receptor), Lepr (leptin receptor),
and Calcr (calcitonin receptor) from microdissected DVCs in control and
DVC RDKO animals fed HFD. Gcg and Insr exhibited a non-significant
decrease in expression, but Calcr was significantly decreased
(Figure 5A). Direct REV-ERBa/f targets exhibit overexpression upon
RDKO due to release from REV-ERB repressive activity. The mecha-
nism underlying decreases in Gcg, Insr, and Calcr following RDKO is
less clear, but most likely due to loss of REV-ERB repression of direct
regulators of these genes. Indeed, in several other tissues including
liver and heart, loss of REV-ERBs increases the expression of Nfil3
(E4BP4), a powerful transcriptional repressor whose target genes thus
become further repressed in the absence of REV-ERBs [39,40].

The decrease in Calcr (CTR) gene expression was intriguing because
CTRs are G-protein coupled receptors that are often found in complex
with a receptor activating modifying protein (RAMP) to form the het-
erodimerized amylin receptor [41]. Activation of CTRs in the DVC has
been found to regulate not only food intake, but energy expenditure
through indirect NTS projections to the DRN that modulate SNS-
stimulated BAT activity [36—38,42,43]. Therefore, we measured
BAT expression of tyrosine hydroxylase (7h) to determine disruptions in
general SNS outflow and found that 7h RNA and TH protein expression
were decreased in the DVC RDKO animals (Figure 5B—D). Th was also
decreased in inguinal white adipose tissue (i\WAT) suggesting that DVC
RDKO non-specifically dampens SNS tone under HFD-fed conditions
(Supplementary Figure 4A-B). Although full elucidation of this mech-
anism requires additional testing, our data suggests that DVC RDKO
may increase sensitivity to HFD by dampening SNS outflow.
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Figure 4: DVC RDKO decreases molecular signatures for BAT activity on HFD. A) Representative images of BAT from control and DVC RDKO animals after 12 weeks of 60%
HFD feeding. B) Quantification of BAT adipocyte size from 3 technical replicates of 3 biological replicates (7 = 9, mean 4+ SEM). C-D) RTqPCR for BAT activity markers (C) and
correlation of their expression with body weight gain at week 12 (D) (n = 4—5, mean + SEM). B—C) Results were compared by Mann—Whitney U-test. D) Results were analyzed

by Pearson correlation. **p < 0.01, ***p < 0.001.
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4. CONCLUSIONS

DVC RDKO exacerbated DIO due to decreased basal metabolic rate and
markers for BAT activity. We postulate that this was caused by de-
repression of repressors for the key energy balance regulators in the
DVC (Figure 6). This was accompanied by diminished Th expression in
the BAT suggesting decreased activity of the SNS (Figure 6). Definitive
characterization of CTR in the DVC as a potential mechanism for the DVC
RDKO phenotype requires further testing. Follow up studies utilizing
next-generation sequencing techniques and rescue studies should be
performed to determine whether other signaling pathways are impacted
by DVC RDKO. Furthermore, we used a CMV promoter to drive Cre
expression thereby deleting REV-ERBs in all cell types. It is unknown
how specific cell types within the DVC function to affect DIO, energy
expenditure, and BAT activity in our model, and it should be pointed out
that all experiments were performed at 22 °C, which is a thermal
stressor for mice. As obesity and metabolic disease become increas-
ingly prevalent in Western society, it is crucial to understand the central
mechanisms that underlie energy homeostasis. Herein, we uncovered a
role for the REV-ERBoi/3 nuclear receptors in the DVC for maintaining
energy balance and metabolic rate potentially through indirect,
calcitonin-mediated sympathetic outflow to the BAT in a mouse model.
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APPENDIX

RTQPCR Primers
Forward (5’ -> 3’)

Reverse (5’ -> 3)

Nr1d1 GTCTCTCCGTTGGCATGTCT CCAAGTTCATGGCGCTCT
Nrid2 CGGATCACATGGTCGAGGAG TGCTCCTCCGAAAGAAACCC
Amntl CTTTATCAGCTGCACATCACTCAGA GGACATTGCATTGCATGTTGG
Nfil3 GCTCTTTTGTGGACGAGCAT ACCGAGGACACCTCTGACAC
Ppargcia GGACATGTGCAGCCAAGACTCT CACTTCAATCCACCCAGAAAGCT
Ucpt GGCCAGTTGGTTTTCACAGA GGATTGGCCTCTACGACTCA
Prdm16 CAGCACGGTGAAGCCATT CGCGTGCATCCGCTTGTG
Cidea TGCTCTTCTGTATCGCCCAGT GCCGTGTTAAGGAATCTGCTG
Geg CCTTCAAGACACAGAGGAGAACC CTGTAGTCGCTGGTGAATGTGC
Insr AGATGAGAGGTGCAGTGTGGCT GGTTCCTTTGGCTCTTGCCACA
Lepr CTTTCCTGTGGACAGAACCAGC AGCACTGAGTGACTCCACAGCA
Calcr AAGATGGACCCTCATGCCAGTG CTCGTCGGTAAACACAGCCATG
Th TGCACACAGTACATCCGTCATGC GCAAATGTGCGGTCAGCCAACA
18s AGTCCCTGCCCTTTGTACACA CGATCCGAGGGCCTCACTA
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