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Developmental metformin exposure does not
rescue physiological impairments derived from
early exposure to altered maternal metabolic
state in offspring mice
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ABSTRACT

Objective: The incidence of gestational diabetes mellitus (GDM) and metabolic disorders during pregnancy are increasing globally. This has
resulted in increased use of therapeutic interventions such as metformin to aid in glycemic control during pregnancy. Even though metformin can
cross the placental barrier, its impact on offspring brain development remains poorly understood. As metformin promotes AMPK signaling, which
plays a key role in axonal growth during development, we hypothesized that it may have an impact on hypothalamic signaling and the formation of
neuronal projections in the hypothalamus, the key regulator of energy homeostasis. We further hypothesized that this is dependent on the
metabolic and nutritional status of the mother at the time of metformin intervention. Using mouse models of maternal overnutrition, we aimed to
assess the effects of metformin exposure on offspring physiology and hypothalamic neuronal circuits during key periods of development.
Methods: Female C57BL/6N mice received either a control diet or a high-fat diet (HFD) during pregnancy and lactation periods. A subset of dams
was fed a HFD exclusively during the lactation. Anti-diabetic treatments were given during the first postnatal weeks. Body weights of male and
female offspring were monitored daily until weaning. Circulating metabolic factors and molecular changes in the hypothalamus were assessed at
postnatal day 16 using ELISA and Western Blot, respectively. Hypothalamic innervation was assessed by immunostaining at postnatal days 16
and 21.

Results: We identified alterations in weight gain and circulating hormones in male and female offspring induced by anti-diabetic treatment
during the early postnatal period, which were critically dependent on the maternal metabolic state. Furthermore, hypothalamic agouti-related
peptide (AgRP) and proopiomelanocortin (POMC) neuronal innervation outcomes in response to anti-diabetic treatment were also modulated
by maternal metabolic state. We also identified sex-specific changes in hypothalamic AMPK signaling in response to metformin exposure.
Conclusion: We demonstrate a unique interaction between anti-diabetic treatment and maternal metabolic state, resulting in sex-specific effects
on offspring brain development and physiological outcomes. Overall, based on our findings, no positive effect of metformin intervention was
observed in the offspring, despite ameliorating effects on maternal metabolic outcomes. In fact, the metabolic state of the mother drives the most
dramatic differences in offspring physiology and metformin had no rescuing effect. Our results therefore highlight the need for a deeper un-
derstanding of how maternal metabolic state (excessive weight gain versus stable weight during GDM treatment) affects the developing offspring.
Further, these results emphasize that the interventions to treat alterations in maternal metabolism during pregnancy need to be reassessed from
the perspective of the offspring physiology.

© 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

ACC acetyl-CoA carboxylase

AgRP agouti-related peptide

AMPK AMP-activated protein kinase

ARH arcuate nucleus of the hypothalamus
BBB blood—brain barrier

BSA bovine serum albumin

cD control diet

GDF15 growth differentiation factor 15

GDM gestational diabetes mellitus

GWG gestational weight gain

HFD high-fat diet

HOMA-IR  homeostatic model assessment for insulin resistance
LKB1 liver kinase B1

Mate1 multidrug and toxic extrusion 1

MRL Max-Rubner Laboratory

mTOR mammalian target of rapamycin

mTORC1 mTOR complex 1

NPY neuropeptide-Y

Oct organic cation transporter

P postnatal day

PBS phosphate-buffered saline

PCOS polycystic ovary syndrome

PFA paraformaldehyde

PI3K phosphatidylinositol 3-kinase

POMC proopiomelanocortin

PVH paraventricular nucleus of the hypothalamus
ROI region of interest

RP reversed-phase

RT room temperature

SEM standard error of the mean

SGA small for gestational age

TBS-T Tris-buffered saline containing 0.1% Tween-20
UK United Kingdom

1. INTRODUCTION

Maternal gestational diabetes mellitus (GDM) rates continue to rise
worldwide, affecting as many as one in six pregnancies. The global
prevalence of GDM in 2021 was 14% [1] and interestingly it was high
both in low- and high-income countries (12.7% and 14.2%, respec-
tively). In Europe, the overall prevalence of GDM is estimated at around
10.9%, displaying a consistently increasing trend in most countries,
such as Germany, with more than 50,000 cases documented in 2018
[2,3]. These high rates of GDM are of special concern, since glucose
intolerance during pregnancy negatively affects both the mother’s and
the baby’s health [4]. In utero exposure to hyperglycaemia is associ-
ated with impaired glucose metabolism in childhood [5] and increased
offspring adiposity [6]. This increases the risk of developing obesity in
later life, @ phenomenon known as developmental programming.
Treatment options for GDM are relatively limited and their molecular
side effects are not completely understood. Initial intervention relies on
lifestyle changes related to diet and exercise [7]. If this is insufficient to
normalize maternal glycemia, treatment with insulin therapy is typically
prescribed. Critically, insulin itself does not cross the placental barrier
[8,9], and the resulting positive effects on the foetus generally result
from reducing the maternal blood glucose levels and subsequent fetal
glycemia. However, in recent years, the development of oral anti-
diabetic therapeutics has led to their potential use for the treatment
of GDM. The use of the oral biguanide metformin as a first line therapy
has dramatically increased in the last years, with more than 85% of
GDM pregnancies opting for metformin at first diagnosis in the United
Kingdom (UK) [10]. Treatment with metformin prior to intervention with
insulin is already accepted in the UK (https://www.nice.org.uk/
guidance/ng3) [11], and its use in special cases as an off-label pre-
scription is suggested in Germany [12]. This is prompted by current
clinical evidence suggesting comparable safety between metformin
and insulin on maternal and neonatal outcomes [13], although primary
outcomes with metformin treatment were not superior to placebo [14]
and there is still limited knowledge of the long-term consequences to
the offspring.

Unlike insulin, metformin can cross the placenta [15,16] and can
reach the fetus with similar levels as seen in maternal circulation.
However, studies on the effects of intrauterine metformin exposure
on offspring metabolic health are limited. Clinical studies have shown

that children exposed to metformin in ufero have more subcutaneous
fat at the upper arm at 2 years of age [17] and are larger by measures
of weight, arm and waist circumferences and BMI at 7—9 years of
age when compared to insulin-exposed children [18]. Recently,
maternal metformin treatment has been associated with a higher BMI
in 9-year-old boys [19] [] [21], thus suggesting a potential adverse
effect of metformin exposure to offspring metabolic health. In addi-
tion, studies in pregnant people with polycystic ovary syndrome
(PCOS) on metformin therapy have reported an increased body
weight and BMI in 6-month-old children which persisted until 4 years
of age [22], alongside an increased obesity risk in metformin-
exposed children [23]. Moreover, an increased risk of being born
small for gestational age (SGA) [24] was also observed in children
with prenatal metformin exposure. Altogether, these data suggest a
potential developmental programming role for metformin, as high-
lighted in recent reviews [25,26].

Animal studies of maternal metformin exposure recapitulate some of
the findings observed in humans, although some opposing findings
have been reported. A lower birthweight but increased offspring weight
and fat accumulation when exposed to a high-fat diet (HFD) later in life
was found when metformin was administered to pregnant dams on a
regular diet [27]. However, when metformin was administered to diet-
induced obese dams it had a protective effect on the offspring
metabolic phenotype [28]. Furthermore, gestational metformin inter-
vention in obese pregnant mice increased adiposity in adult male
offspring [29] and did not prevent obesity-related changes in the fetus
or the placenta [30]. However, other studies reported that metformin
exposure during gestation or during lactation alone, on chow-fed
dams, had an ameliorating effect on glucose tolerance in adult male
mouse offspring by increasing their beta-cell insulin secretion [31,32].
Similarly, maternal metformin treatment had a protective effect against
lactational-HFD metabolic liver defects in male offspring [33]. Lacta-
tional metformin has also been shown to reduce the weight of pups
born to chow-fed mothers. However metformin could not rescue the
lactational HFD-induced increase in body weight and adiposity [34].
Still, there is a lack of studies assessing the impact of maternal
metformin exposure on offspring’s brain physiology, thus highlighting
the need for additional studies on this topic.

One of the main targets of metformin’s action is AMP-activated protein
kinase (AMPK) signaling, the consequences of which are still to be

2 MOLECULAR METABOLISM 79 (2024) 101860 © 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.molecularmetabolism.com


https://www.nice.org.uk/guidance/ng3
https://www.nice.org.uk/guidance/ng3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

elucidated in the developing brain. Amongst its actions, AMPK
signaling directs axonal growth during development. AMPK activation
prevents phosphatidylinositol 3-kinase (PI3K) transport to the neuronal
growth cone resulting in a lack of neurite specification and polarization
[35]. Furthermore, AMPK overactivation inhibits axonal outgrowth in
hippocampal [36] and cortical neurons [37], thus demonstrating its
ability to regulate neuronal structure.

The hypothalamus is the main brain center involved in the regulation of
body energy homeostasis. The neuronal connectivity in the hypothal-
amus is established during the first postnatal weeks in mice [38].
Specifically, agouti-related peptide (AgRP) and proopiomelanocortin
(POMC) axonal projections originating in the arcuate nucleus of the
hypothalamus (ARH) develop from postnatal day (P) 6 and reach all
their target hypothalamic nuclei by P18 [39]; a timepoint whereby
hypothalamic nuclei resemble their adult structure. Thus, the perinatal
period is a critical developmental window in which environmental
factors, such as maternal nutrition, may alter neuronal development
that subsequently lead to physiological changes in the offspring that
could predispose them to metabolic disorders [40]. As previously re-
ported in mouse models, AgRP and POMC hypothalamic innervation
patterns can be disrupted by maternal HFD intake during lactation [41]
and by maternal high-fat-high-sucrose diet during both pregnancy and
lactation [42]. Further, genetic alterations to AMPK signaling, specif-
ically in POMC and AgRP neurons, can also alter metabolic responses
[43]. Interestingly, maternal nutritional state is also associated with
changes in hypothalamic development in humans [44,45]. However,
how exposure to anti-diabetic drugs during this critical developmental
period influences the formation of neuronal circuits, and subsequent
offspring metabolic regulation, is still to be clarified.

In this study, we hypothesized that metformin exposure, during the
early postnatal period, impacts the development of hypothalamic
neuronal circuits by altering AMPK signaling in the developing brain,
which may result in long-lasting effects on brain function and whole-
body energy homeostasis. We aimed to test this hypothesis in the
context of maternal obesity and maternal gestational weight gain
models, as both conditions contribute to the development of GDM but
may result in different outcomes to the mother and offspring. Indeed,
we show that the offspring response to anti-diabetic treatment is
dependent on the maternal metabolic state in a sex-specific manner.
Using a targeted nutritional intervention paired to specific periods of
brain development we show a unique interaction of metformin
treatment with maternal metabolic state on physiological outcomes in
the offspring. Pharmacological treatment for GDM is usually pre-
scribed considering maternal glycemic parameters during preg-
nancy, however, our results suggest that pre-pregnancy metabolic
conditions can determine anti-diabetic treatment effects in the
offspring.

2. MATERIAL AND METHODS

2.1. Mouse model

All mice were bred at an on-site animal facility at the Max-Rubner
Laboratory (MRL) at the German Institute for Human Nutrition
Potsdam-Rehbruecke (DIfE). Mice were housed in individually venti-
lated cages (IVC) cages with ad libitum access to food (unless other-
wise stated) and sterile non-acidified water with a 12-hour on/off light
cycle and constant room temperature (22 + 2 °C). All experiments
were approved by the competent authorities (Landesamt fiir Arbeits-
schutz, Verbraucherschutz und Gesundheit; animal ethics application
number 2347-7-2021) and were conducted in compliance with the
ARRIVE guidelines and the European Directive 2010/63/EU.
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Wild-type C57BL6/N male and female mice (Charles River, Strain
#027) were used for postnatal hypothalamic tissue collection for the
gPCR studies across development. Wild-type C57BL6/N female mice,
as well as Rosa26-LSL-TdTomato (Jackson Laboratory, strain
#007905) female mice maintained on a C57BL6/N background, were
used for all maternal exposure experiments. At 4 weeks of age, after a
week of acclimation to housing conditions, female mice were housed
in pairs and fed either a control diet (CD) (#EF D12450B LS, Ssniff) or a
high-fat diet (HFD) (#EF D12492, Ssniff) for 8 weeks before mating.
The CD contained 67% kcal/carbohydrates, 13% kcal/fat and 20%
kcal/proteins while the HFD contained 21% kcal/carbohydrates, 60%
kcal/fat and 19% kcal/protein. Food intake and body weight were
monitored weekly and water intake was ensured by weekly refilling of
the water bottles. After 7 weeks, females were fasted overnight for
16 h to assess HOMA-IR. Those HFD-exposed females whose HOMA-
IR was two standard deviations below the mean of all HFD-fed females
were excluded from the study.

At 12 weeks of age, wild-type or TdTomato'™"™® females were mated
with age-matched wild-type or Agrp-Cre/Pomc-Cre expressing males to
produce AgRPUTOmat o poMCHATOmaA gffenring, respectively. The same
diet was kept throughout gestation and food intake and body weight
were measured every two days. Upon parturition (here defined as PQ),
half of the mothers receiving CD were switched to HFD (CD/HFD), while
the other half of the mothers receiving CD were kept on CD (CD/CD). The
HFD-fed dams were kept on HFD during lactation as well (HFD/HFD).
Maternal body weight, food intake and water intake were daily
measured during the lactation period. Litter size was adjusted to 5—8
pups per litter at postnatal days 0—1. Offspring were sacrificed at P16 or
P21 with a minimum of 3 litters represented in each group.
AgRP!@Tomat o poMGtaTOmate offenring mice were ear-snipped at P14
and genotyped by PCR using the following primers: AgRP-IRES-Cre
(common forward 5'-GATTACCCAACCTGGGCAGAAC-3’;  wildtype
reverse 5'-GGGCCCTAAGTTGAGTTTTCCT-3' and mutant reverse 5'-
GGGTCGCTACAGACGTTGTTTG-3'), Pomc-cre (common forward 5'-TGGC
TCAATGTCCTTCCTGG-3’; wildtype reverse 5'- CACATAAGCTGCATCG
TTAAG-3’ and mutant reverse 5'- GAGATATCTTTAACCCTGATC-3') and
LSL-TdTomato (wildtype forward 5'-AAGGGAGCTGCAGTGGAGTA-3’;
wildtype reverse 5'-CCGAAAATCTGTGGGAAGTC-3’; mutant forward 5'-
CTGTTCCTGTACGGCATGG-3' and mutant reverse 5'-GGCATTAAAG-
CAGCGTATCC-3'). The cycling conditions used were: step 1: 95 °C for
5 min; step 2: 95 °C for 30 s; step 3: 64 °C for AgRP-cre, 56 °C for
POMC-cre or 61 °C for LSL-TdTomato for 30 s; step 4: 72 °C for 1 min
(steps 2—4 repeated for 35 cycles); step 5: 72 °C for 5 min. PCR products
were separated on a 1% agarose gel.

2.2. Anti-diabetic treatment administration

As depicted in Figure 1A, pharmacological interventions took place
during the lactation phase starting from P4 to P21, matching the early
postnatal period in which the hypothalamic neuronal projections are
established, which in mice represents a time window opportunity for
intervention. Treatments were given daily in the afternoon prior to
onset of the dark phase. Lactating females were randomly split into
three groups: vehicle, insulin and metformin, although in AgRptdTomate
and POMCT™© conorts no insulin treatment group was included.
The metformin-treated group consisted of dams receiving metformin
hydrochloride (HCI) (#FM25131, Biosynth Carbosynth) into the drinking
water (3 mg/ml) and the offspring were daily injected with metformin
(200 mg/kg; i.p.), to ensure that they receive a similar dose of met-
formin as they would get in utero, as previous studies have shown the
metformin levels reaching into the pups’ circulation through the breast
milk are almost undetectable [32]. The dose of metformin was chosen
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based on previous studies [32] to reach an equivalent concentration in
circulating blood to humans who have a prescribed metformin dose of
2 g/day. The insulin-treated group consisted of dams receiving an i.p.
injection of 10 Ul/kg long-acting insulin (100 UI/mL; Huminsulin basal,
PZN #02526491, Lilly), calculated to reflect the dosage of 0.8 Ul/kg/
day used in pregnant humans [46] based on the allometric body
surface method [47], and pups received saline injections (10 pl/g; i.p.).
The control group (vehicle) of dams had access to autoclaved non-
acidified drinking water and pups received daily saline injections
(10 pl/g; i.p.) as a control intervention for i.p. injections. Thus,
experimental offspring generated were divided into nine groups:
gestational and lactational CD + vehicle (CD/CD/VEH), gestational and
lactational CD + insulin (CD/CD/INS), gestational and lactational
CD + metformin (CD/CD/MET), gestational CD and lactational
HFD + vehicle (CD/HFD/VEH), gestational CD and lactational
HFD + insulin (CD/HFD/INS), gestational CD and lactational
HFD + metformin (CD/HFD/MET), gestational HFD and lactational
HFD + vehicle (HFD/HFD/VEH), gestational HFD and lactational
HFD + insulin (HFD/HFD/INS) and gestational HFD and lactational
HFD + metformin (HFD/HFD/MET).

2.3. HOMA-IR determination

Tail blood was collected from fasted female mice in EDTA-coated tubes
(#16,444, Sarstedt) and glucose levels were measured using a gluc-
ometer (Contour Care, Ascensia). Blood was centrifuged at 2,500 g for
20 min at 4 °C and supernatant was stored at —80 °C. Plasmatic
insulin levels were determined using the Ultra-sensitive mouse insulin
ELISA kit (#90082, Lot# 21APUMI623A, Crystal Chem). The HOMA-IR
was then calculated as: [fasting insulin levels (uU/mL) x fasting
glucose levels (mg/dL)/405].

2.4. Tissue collection

Mouse offspring were sacrificed at the same time of day on P16 or
P21. Mice were transcardially perfused with ice-cold phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde (PFA) in borate
buffer (pH 9.5) (#441244, Sigma—Aldrich) under deep anaesthesia
using pentobarbital (400 mg/kg; i.p.) diluted in isotonic sodium chlo-
ride solution (#1021010, Deltamedica). Whole brains were harvested,
postfixed for 4 h in 4% PFA and cryoprotected in 20% sucrose in PBS
overnight at 4 °C. The brains were then frozen and stored at —80 °C
until further processing.

Cre-negative mouse offspring were sacrificed at P16 by decapitation
and brain regions were freshly dissected, snap-frozen on dry ice and
stored at —80 °C. Blood glucose levels were determined from trunk
blood using a glucometer (Contour Care, Ascensia).

2.5. Quantification of plasma hormone levels

Trunk blood from P16 offspring was collected in EDTA-containing
tubes. After centrifugation at 2,500 g for 20 min at 4 °C, plasma
was aliquoted and stored at —80 °C. Insulin levels were determined
using the Ultra-sensitive mouse insulin ELISA kit (#90082, Lot
21APUMI623A, Crystal Chem), leptin levels were measured using the
Mouse Leptin ELISA kit (#90030, Lot 210CML444, Crystal Chem), total
ghrelin was quantified using the Rat/Mouse Ghrelin (Total) ELISA Kit
(#EZRGRT-91K, Lot 3799697, Millipore), and GDF15 levels were
measured using the mouse/rat GDF-15 quantikine ELISA kit
(#MGD1500, R&D systems) according to the manufacturer’s procedure
guidelines. A SPECTROstar Nano microplate reader (BMG labtech) was
used to measure absorbance.

2.6. AgRP and o-MSH fiber density measurement

Frozen brains from P16 and P21 wild-type progeny were cut into
30 um-thick coronal sections using a sliding microtome (#400410,
Slide 4004 M, pfm medical) and serial sections were stored at —20 °C
in glycerol-containing PBS solution until further use. Brain sections
including the hypothalamus were first permeabilized with 0.3% glycine
and 0.03% SDS for 10 min each and blocked with 0.125% Triton-X
and 3% normal donkey serum in K-PBS for 1 h at room temperature
(RT). Sections were then immunostained with rabbit anti-mouse AgRP
antibody (1:4,000, #H-003-53, Phoenix Pharmaceuticals) and sheep
anti-mouse o-MSH antibody (1:40,000, #AB5087, Merck) in Signal-
Stain solution (#8112, Cell Signaling) for 72 h at 4 °C. Next, the slices
were incubated with Alexa Fluor 488 donkey anti-rabbit (1:1,000,
#A21206, Invitrogen) and Alexa Fluor 633 donkey anti-sheep (1:1,000,
#A21100, Invitrogen) antibodies for 1 h at RT. Finally, stained slices
were mounted and coverslipped with Vectashield Antifade mounting
medium containing DAPI (#VEC-H-1200, Biozol).

Representative sections of the anterior PVH (from bregma —0.83 mm
to —0.95 mm) and the posterior PVH (from bregma —1.07
to —1.23 mm) of each animal were imaged by a blinded experimenter
to the groups using 16 z-stacks with an optimal thickness of 1.5 pm.
Images were acquired on a Zeiss confocal microscope equipped with a
20x objective. Image quantification analysis was performed using
ImageJ software v2.1.0 (National Institute of Health). First, z-stacks
were compressed into a single plane on the z-axis using the maximum
intensity projection function and a region of interest (ROl) was manually
drawn around the limits of the anatomical region. Then, the tissue
background signal was removed by subtracting the mode value based
on the histogram of signal intensity obtained for each image channel
and the resultant image was thresholded and converted to a binary
image. Next, the area containing immunostained pixels was measured
and divided by the total area of the analysed ROI to obtain the per-
centage of stained area as an indicator of labeled fiber density. If
multiple sections were present in the correct region for each animal,
the average percentage of area was calculated. Data were then nor-
malised to the mean of the control group (CD/CD/VEH).

2.7. POMC and AgRP neuronal cell count

Frozen brains of AgRPU™™ or poMCH™™ p16 mice were sliced
into 30 pm-thick coronal sections using a sliding microtome
(#400410, Slide 4004 M, pfm medical) and serial sections were stored
in glycerol-containing PBS solution at —20 °C until further use. Brain
sections including the hypothalamus were first permeabilized with
0.3% glycine and 0.03% SDS for 10 min each and blocked with
0.125% Triton-X and 3% normal donkey serum in K-PBS for 1 h at RT.
For AgRPToMa° glices were immunostained with rabbit anti-mouse
AgRP antibody (1:4,000, #H-003-53, Phoenix Pharmaceuticals) and
goat anti-TdTomato antibody (1:4,000, #AB8181-200, Sicgen), while
slices of POMCT™a% were incubated with sheep anti-mouse ¢-MSH
antibody (1:40,000, #AB5087, Merck) and goat anti-TdTomato anti-
body (1:4,000, #AB8181-200, Sicgen) in SignalStain solution (#8112,
Cell Signaling) for 72 h at 4 °C. Then, the slices were incubated either
with Alexa Fluor 488 donkey anti-rabbit (1:1,000, #A21206, Invitrogen)
or Alexa Fluor 488 donkey anti-sheep (1:1,000, #A11015, Invitrogen)
secondary antibodies for labelling AgRP or o«-MSH, respectively; and
Alexa Fluor 633 donkey anti-goat (1:1,000, #A21082, Invitrogen)
secondary antibody for TdTomato labelling for 1 h at RT. Finally,
stained slices were mounted and coverslipped with Vectashield Anti-
fade mounting medium containing DAPI (#VEC-H-1200, Biozol).
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16 z-stacks of 1.5-pum optical thickness of representative sections of
the rostral ARH (from bregma 1.31 mm to —1.55 mm) and mid ARH
(from bregma —1.67 mm to —1.97 mm) of each animal were acquired
using a Zeiss confocal microscope equipped with a 20x objective.
Neuronal cell counts were performed using ImageJ software v2.1.0/
1.53 g (National Institute of Health) and in-house macros to auto-
matically detect and count tdTomato + cells. First, z-stacks were
converted into maximum intensity projection images. Then, each im-
age was binarized using FIJI's Moments threshold algorithm and im-
ages were segmented using “despeckle” and “watershed” plugins to
define individual cells. For automated cell number counting within each
manually drawn ROI, the “Analyze particles” command was run with
the following criteria: circularity of 0.10—1.0, size from 40 umz to
infinity. For quality control, all images were checked afterwards and
tdTomato-positive cells were also manually counted.

2.8. Analysis of protein expression by Western Blot

Hypothalamus samples were homogenized in RIPA lysis buffer in the
presence of protease (#5892970001, EASYpack, Roche) and phos-
phatase (#4906837001, PhosSTOP, Roche) inhibitors and centrifuged
at 15,808 g for 20 min at 4 °C. Total levels of protein were determined
using the Pierce BCA assay kit (#23225, Thermo Fisher). Twelve 1.g of
protein suspended in 5x loading buffer was separated by SDS-
polyacrylamide gel electrophoresis (10% gels) and then transferred
to PVDF membranes (#IPVH00005, Immobilon-P, Merck). Membranes
were blocked with 5% bovine serum albumin (BSA) in Tris-buffered
saline containing 0.1% Tween-20 (TBS-T) for 1 h at RT and then
primary antibodies (Table 1) diluted in TBS-T were incubated overnight
at 4 °C, followed by incubation with IRDye 680 goat anti-rabbit (#611-
144-022, Rockland) and IRDye 800 goat anti-mouse (#610-145-121,
Rockland) secondary antibodies for 1 h in the dark at RT. Detection of
fluorescence bands was carried out on an Odyssey Infrared Imaging
Scanner (LI-COR Biosciences) and relative protein expression was
quantified using Image Studio Lite software.

2.9. Determination of serum metformin levels by HPLC analysis
Metformin-treated dams were sacrificed after weaning by decapitation
under isoflurane anaesthesia and trunk blood was collected. After
centrifugation of blood samples at 2,500 g for 20 min at 4 °C, serum
was stored at —80 °C. Metformin levels in serum were analysed by
reversed-phase (RP) HPLC following a one-step protein precipitation
protocol (adapted from Chhetri et al. [48]).

Table 1 — Antibodies used for Western Blot.

Antigen Host Dilution Supplier Catalog n°.

Acetyl-CoA Rabbit 1:1000 Cell Signaling Technologies #3662
carboxylase (ACC)

AMPK-o Rabbit 1:500 Cell Signaling Technologies #2532

GAPDH Mouse 1:2500 Santa Cruz Biotechnology  sc-365062

LKB-1 Rabbit 1:1000 Cell Signaling Technologies #3047

mTOR Rabbit 1:1000 Cell Signaling Technologies #2972

phospho-Acetyl-CoA  Rabbit 1:1000 Cell Signaling Technologies #3661
Carboxylase (Ser’®)

phospho-AMPKa. Rabbit 1:1000 Cell Signaling Technologies #2535
(Thr”z)

phospho-LKB1 Rabbit 1:1000  Cell Signaling Technologies #3482
(Ser*?8)

phospho-mTOR Rabbit 1:1000  Cell Signaling Technologies #2971
(Ser?8)

B-Actin Mouse 1:2500 Santa Cruz Biotechnology  sc-47778

B-Tubulin Mouse 1:5000 BD Biosciences #556321
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Stock solutions (1 mM) of metformin HCI (#FM25131, Biosynth Car-
bosynth) and buformin HCI (#HY-B2099A, MedChemExpress) were
prepared in distilled water. Buformin HCl was used as the internal
standard. To determine the detection limit of metformin, untreated
mouse serum samples were spiked with increasing concentrations of
metformin (0.5—50 pM). Buformin aliquots (2.5 pl) were added to
117.5 pl of serum samples collected from metformin-treated dams to
a final concentration of 20.8 pM. For protein precipitation, 5 pl
perchloric acid (60%) was added and mixtures were centrifuged at
9,400 g for 3 min at 4 °C. An aliquot (20 p) of the collected super-
natants was used for HPLC analysis.

The HPLC system (Summit, Dione, Idstein, Germany) was equipped with
a pump (P 680A LPG-4), an autosampler (ASI-100T), a thermo stated
column compartment (TCC-100) with eluent preconditioner, a photodiode
array detector (UVD 340U), and a LiChrospher 100 RP-18 column
(250 x 4 mm i.d., 5 um) combined with a corresponding guard column
(Merck, Darmstadt, Germany). The column temperature was kept at
30 °C. The mobile phase contained 34% acetonitrile and 66% of the
aqueous phase composed of 10 mM potassium phosphate buffer, pH 5.2,
and 10 mM sodium dodecyl sulfate. The flow rate was 1.3 ml min~".
Detection was at 233 nm and UV spectra were recorded in the range of
200—400 nm. For control of the HPLC system and data processing, the
Chromeleon software version 6.40 (Dionex, Sunnyvale, USA) was applied.
Compounds were quantified based on calibration curves (5—100 pM).
Metformin concentrations were calculated according to the percentage
of recovery of the internal standard. The observed limit of detection of
metformin in mouse serum was 5 uM.

2.10. Determination of gene expression by RT-qPCR

To determine the expression of metformin uptake transporters in the
developing hypothalamus, male and female wild-type C57BL6/N mice
born to standard chow-fed dams were sacrificed under isoflurane
anaesthesia at different time points across postnatal development (P6,
P9, P11, P14, P16, P21 and 8 weeks of age). The hypothalami were
freshly dissected, snap frozen and stored at —80 °C. Total RNA from
dissected hypothalamus was isolated with TRIzol reagent [38%
phenol, 0.8 M guanidinium thiocyanate, 0.4 M ammonium thiocyanate,
0.1 M sodium acetate and 5% glycerol] and glycogen (#M6015.0005,
Genaxxon bioscience). Chloroform (#102445, Merck) was used for
phase separation and ice-cold isopropanol (#7343.1, Carl Roth) for
RNA precipitation. After centrifugation at 7,600 g for 15 min at 4 °C,
pellets were resuspended in 30 pu diethyl pyrocarbonate-treated water
before adding DNase 10x buffer (#B43, Fisher Scientific), Superasin
(#AM2696, Fisher Scientific) and DNase | (#EN0521, Fisher Scientific).
RNA concentration was quantified using the Quantus Fluorometer
(Promega). cDNA synthesis was performed using the NZY first-strand
cDNA synthesis kit (#MB12502, NZYtech). Each PCR reaction (20 pl
final volume) was run at 50 °C for 30 min, 85 °C for 5 min, 37 °C for
20 min and then kept at 4 °C. 5 ng of cDNA were used for quantitative
real-time PCR (RT-qPCR) mixed with NZY Speedy qPCR Green Master
Mix (#MB223, NZYtech) and 0.4 pM of primers in a total volume of
10 pl. Primer sequences used are shown in Table 2. Amplification was
performed on Applied Biosystems QuantStudio 12K Flex real-time PCR
system. Relative gene expression was calculated using the g -hAct
comparative method after normalization to the P6 time-point. Gapdh
was used as a housekeeping gene (Table 3).

2.11. Statistical analysis
All data are presented as mean = standard error of the mean (SEM) with
single data points except for the box plots where whiskers are min. to
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Table 2 — Primer sequences used for RT-qPCR.

Gene Forward (5’ to 3') Reverse (5’ to 3')

Gapdh CGACTTCAACAGCAACTCCCACTCTTCC TGGGTGGTCCAGGGTTTCTTACTCCTT
Mate1 (also known as SLC47A1) GCCATCGTTAATGCCATCGGGTA CAGGCCGATCACTCCCAGCTT

Oct1 (also known as SLC22A1) TTGGAGAGTTTGGCTGGTTC CACCAGGAGGCAGAGCTTAC

Oct3 (also known as SLC22A3) ATCCTGAGGCGCGTGGCTAA GCGCTCGTGAACCAAGCAAACAT

max. overlaid with individual data points, the hinges of boxes represent
the 25th and 75th percentiles, and the middle line is the median. When
data are relativized, they are given as a percentage of the group control
(CD/CD/VEH). Statistical analyses were performed using GraphPad Prism
9.2.0 (GraphPad software, La Jolla, CA, USA). Multiple groups were
compared using one-way or two-way ANOVA analysis followed by
Tukey’s post hoc comparisons or two-way ANOVA with repeated
measures followed by Bonferroni post-hoc comparisons when appro-
priate. Unpaired two-tailed Student’s t-tests were used to compare
between two groups. Correlations were calculated using Pearson’s test.
Significant differences were considered when p-value <0.05.

3. RESULTS

3.1. Timing of maternal HFD feeding and anti-diabetic treatments
affect maternal metabolic state

Both gestational weight gain (GWG) and maternal obesity are risk
factors for the development of GDM. In our study (Figure 1A), we used
two different mouse models of maternal metabolic states during
pregnancy and lactation by targeting specific developmental periods
during early life to model both maternal obesity and excessive GWG.
Female mice fed with HFD for 8 weeks prior to mating, during preg-
nancy and lactation were used as a model of maternal obesity. Another
group of females had access to control diet (CD) prior to, and during
gestation, and were switched to HFD at birth; resembling a model of
excessive weight gain during the early postnatal developmental period.
Pregnant people with GDM are generally diagnosed between gesta-
tional weeks 24—28 [49], and when required, pharmacological in-
terventions are given during the third trimester of pregnancy. In the
context of brain development, the lactation period in rodents is the
equivalent period to the third trimester of human pregnancy [50].
Hence, in our study, we administered the anti-diabetic treatments
insulin and metformin, as well as vehicle, from P4 until weaning to the
female mice and their offspring.

Dams exposed to HFD for 8 weeks prior to pregnancy showed an
increase in their body weight from the second week onwards
(Supplementary Fig. 1A), as well as increased food consumption (kcal/
day) during the 8-week pre-pregnancy period (Supplementary Fig. 1B;
Supplementary Table 1). After 7 weeks, HFD-fed females displayed
increased fasting blood glucose levels (Supplementary Fig. 1C),
elevated plasma insulin concentrations (p = 0.05, Supplementary
Fig. 1D) and an increase in the homeostatic model assessment for
insulin resistance (HOMA-IR) (Supplementary Fig. 1E). This indicates
an insulin resistant phenotype induced by HFD feeding prior to preg-
nancy. HFD-fed dams also consistently showed an increased body
weight during pregnancy (Supplementary Fig. 1F). Notably, however,
both CD- and HFD-fed dams gained weight in a similar fashion (Supp.
Fig. 1G). During gestation, HFD-fed dams kept an elevated food intake
(Supplementary Fig. 1H), although their caloric intake was normalized
to that of CD-fed dams on the last days of pregnancy. There were no
significant effects of maternal diet on litter size (Supplementary Fig. 1)

nor on the proportion of males and females per litter (Supplementary
Fig. 1J).

Upon parturition, half of the mothers on CD were switched to HFD.
Maternal body weight and food intake were monitored during the first
three postnatal weeks in all groups to assess the effects of maternal
diet on metabolic state. Maternal diet had a significant effect on
maternal body weight across the postnatal period in all treatment
groups as shown in Figure 1B,C and D (Table 3). Obese mothers (HFD/
HFD) maintained a higher weight than CD/CD mothers, while CD/HFD
dams displayed a dramatic increase in their body weight, reaching
similar levels to HFD/HFD mothers. Specifically, CD/HFD females
displayed an increased body weight gain from P1 to P16, indepen-
dently of the treatment received (Figure 1E), thus resembling a model
of excessive GWG. Regarding their food intake, there were no signif-
icant differences due to maternal diet on the vehicle-treated dams
(Figure 1F), although a modest increase in caloric intake over time was
significant in all groups of dams (Figure 1F,G and H). However,
maternal diet had a different impact on food consumption in both in-
sulin- and metformin-treated dams. Analysis of the cumulative food
intake during the lactation period (Figure 11) revealed a significant
increase in food intake in the CD/HFD mothers exposed to metformin
compared to the vehicle-treated mothers, as well as compared to the
metformin-treated CD/CD and HFD/HFD mothers. This indicates that
metformin exposure alone can promote food consumption in the CD/
HFD mothers. Maternal HFD feeding either during lactation or
throughout gestation and lactation induced elevated blood glucose
levels in the mothers (Figure 1J). This was not rescued by anti-diabetic
treatments. However, metformin exposure lowered circulating insulin
levels in all groups of mothers (Figure 1K) and it also had a counter-
acting effect on the HFD-induced hyperleptinemia in the mothers
(Figure 1L). In addition, we measured the circulating levels of growth
differentiation factor 15 (GDF15) in the mothers, as it is considered a
biomarker for the use of metformin [51]. Accordingly, elevated GDF15
levels were found in the groups of dams treated with metformin
(Figure 1M). Furthermore, increased GDF15 levels in the mothers fed
with HFD during lactation (CD/HFD) regardless of the treatment
exposure were observed (Figure 1M).

In sum, maternal HFD exposure during the lactation period in mice
induced excessive maternal weight gain whereas HFD feeding prior
to pregnancy and throughout pregnancy and lactation induced a
maternal obese phenotype during the first postnatal weeks. Anti-
diabetic drugs did not affect maternal weight gain or end-point gly-
cemia, but metformin lowered circulating insulin and leptin levels in
the mothers. Thus, metformin treatment may be able to restore some
of the maternal metabolic impairments induced by maternal HFD
feeding.

3.2. Metformin in the drinking water leads to clinically relevant
metformin circulating levels in the mothers

To confirm therapeutic levels of circulating metformin in the mothers,
daily water intake was measured during the lactation period. Water
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Figure 1: Maternal HFD intake during lactation leads to excessive maternal weight gain and hyperglycemia at weaning which is not affected by metformin treatment.
(A) Schematic representation of experimental design for maternal dietary exposure, treatment interventions and offspring tissue collection at P16 or P21. (B—D) Maternal body
weight throughout the lactation period in vehicle-treated, insulin-treated and metformin-treated mothers (n = 3—6/group). (E) Maternal body weight gain from P1 to P16 (n = 5—
8/group). (F—H) Maternal food intake throughout the lactation period in vehicle-treated, insulin-treated and metformin-treated mothers (n = 4—6/group). (I) Maternal cumulative
food intake from P1 to P16 (n = 4—6/group). (J) Maternal random blood glucose levels (mg/dl) at weaning (n = 6—13/group), (K) maternal circulating insulin levels (ng/ml) at
weaning (n = 5—8/group), (L) maternal circulating leptin levels (ng/ml) at weaning (n = 6—8/group) and (M) GDF15 plasma levels (pg/ml) at weaning (n = 3—7/group). Light grey
shadowed area represents treatment phase, connecting lines represent mean and SEM is represented as colour-specific surrounding fill area (B, C, D, F, G H). In data plotted as
box plots (E, I, J) whiskers are min. to max., hinges of boxes are 25th and 75th percentiles, and the middle line is the median. In bar graphs (K, L, M), data are expressed as
mean + SEM with single data points. *p < 0.05, **p < 0.01, ***p < 0.001 derived from 2-way ANOVA with repeated measures (diet x time; B, D, F, H), mixed effects model
(diet x time; C, G) or 2-way ANOVA followed by Tukey’s multiple comparisons (diet x treatment; E, I, J, K, L). CD/CD: gestational and lactational control diet-fed mothers, CD/HFD:
gestational control diet and lactational high-fat diet-fed mothers, HFD/HFD: gestational and lactational high-fat diet-fed mothers, P: postnatal day. Mouse and food icons are from
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Table 3 — Two-way ANOVA results for Figure 1.

Panel Source of variation F (DFn, DFd) P value
B) Body weight vehicle-treated mothers Diet F (2, 13) = 9.55 P = 0.003
Time F (4.91, 63.87) = 12.50 P < 0.001
Diet x Time F (42, 273) = 4.40 P < 0.001
C) Body weight insulin-treated mothers Diet F (2, 10) = 5.83 P = 0.021
Time F(3.43,34.3) =724 P < 0.001
Diet x Time F (42, 210) = 2.61 P < 0.001
D) Body weight metformin-treated mothers Diet F (2, 13) = 27.31 P < 0.001
Time F (3.56, 46.21) = 3.70 P =0.014
Diet x Time F (42, 273) = 2.86 P < 0.001
E) Maternal weight change Diet F (2, 47) = 14.00 P < 0.001
Treatment F (2, 47) = 2.31 P=0.111
Diet x Treatment F (4, 47) = 0.66 P = 0.625
F) Food intake vehicle-treated mothers Diet F(2,12) =0.75 P = 0.494
Time F (2.93,35.10) = 11.54 P < 0.001
Diet x Time F (40, 240) = 2.68 P < 0.001
G) Food intake insulin-treated mothers Diet F(2,9) = 6.88 P = 0.015
Time F (5.77,51.90) = 17.99 P < 0.001
Diet x Time F (40, 180) = 2.97 P < 0.001
H) Food intake metformin-treated mothers Diet F(2,13) =17.44 P < 0.001
Time F (6.19, 80.49) = 7.61 P < 0.001
Diet x Time F (40, 260) = 2.70 P < 0.001
I) Maternal cumulative food intake Diet F (2, 36) = 22.70 P < 0.001
Treatment F (2, 36) = 0.85 P = 0.435
Diet x Treatment F (4, 36) = 6.37 P < 0.001
J) Maternal glycemia Diet F (2, 83) = 10.20 P < 0.001
Treatment F (2, 83) = 1.53 P = 0.223
Diet x Treatment F (4, 83) = 0.35 P = 0.841
K) Maternal insulin levels Diet F (2, 34) = 0.99 P =0.382
Metformin F(1,34) =721 P =0.011
Diet x Metformin F(2,34) =0.84 P = 0.441
L) Maternal leptin levels Diet F (2,39 = 18.99 P < 0.001
Metformin F (1,39 =9.75 P = 0.003
Diet x Metformin F (2, 39) = 0.05 P = 0.950
M) Maternal GDF15 levels Diet F(2,27) =0.90 P =0.417
Metformin F(1,27) =10.27 P = 0.003
Diet x Metformin F (2, 27) = 0.86 P = 0.433

intake significantly increased throughout the lactation period in all
groups of lactating dams independently of the treatment group
(Supplementary Figs. 2A, B, C; Supplementary Table 2), but only in
metformin-treated dams there was an impact of maternal diet
(p < 0.01). Analysis of the average daily water intake during lactation
(Supplementary Figure 2D) revealed a significant effect of both dietand
treatment, with a reduction in water intake due to anti-diabetic
treatment, and an increased overall water consumption in the CD/
HFD group of mothers. The estimated daily metformin intake calcu-
lated from water intake (Supplementary Fig. 2E) was higher in the CD/
HFD group of mothers compared to the CD/CD group (p < 0.01), and
the metformin dose calculated according to the water intake and body
weight (Supplementary Fig. 2F) was higher in the CD/HFD mothers
compared to HFD/HFD mothers (p < 0.01).

Critically, despite changes to overall maternal water intake due to
metformin, the resulting effect on circulating metformin levels showed
no difference between dietary intervention groups (Supplementary
Fig. 2G). We therefore conclude that all groups of dams had a
similar exposure to metformin. We could also show that metformin
given in the drinking water elicits serum concentrations within the
therapeutic range found in diabetic patients receiving 2 g/day of
metformin [52]. Overall, there was a significant correlation between
the average daily water intake during lactation and the maternal serum
metformin concentrations (Supplementary Fig. 2H). Consistent with the
known glucose lowering effect of metformin, maternal glucose levels

correlated negatively with metformin serum levels (Supplementary
Fig. 2I). Previous studies report almost undetectable levels of
maternal circulating metformin in breast milk and offspring blood
serum [32,53—55]. We therefore also administered metformin directly
to the pups, to ensure that the offspring received equivalent doses of
metformin, as would be seen in humans. Critically, our initial met-
formin dosage to the offspring (300 mg/kg) resulted in increased
postnatal death (37%) and subsequent experiments were performed
using a lower dose (200 mg/kg) of metformin treatment [56] which
dramatically improved outcomes for pup survival (Supplementary
Table 3).

3.3. Growth and physiological outcomes in offspring exposed to
early overnutrition and pharmacological interventions are dependent
on the maternal metabolic state

Both male and female offspring from HFD-fed mothers in the vehicle
control group weighed less during the first postnatal days than CD/CD
offspring (Figure 2AK, Table 4). Whereas when exposed to anti-
diabetic treatments (insulin or metformin) both male and female
offspring from CD/HFD mothers showed higher body weights
compared to offspring from CD/CD or HFD/HFD mothers. Furthermore,
both insulin and metformin treatment seemed to cause a reduction in
body weight in female offspring from obese mothers (HFD/HFD)
compared to CD/CD female offspring across the early postnatal period.
This effect was not observed in males (Figure 2B,C, L and M).
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Figure 2: Anti-diabetic treatments effects on offspring growth and metabolic hormone levels is dependent on maternal metabolic state. (A—C) Male offspring body weight from
vehicle-treated group, from insulin-treated mothers and from metformin-treated group from P4 to P21 (n = 11—14/group). (D) Male offspring body weight at P16 and (E) body weight
change from P4 to P16 (n = 16—21/group). (F) Blood glucose levels (n = 18—20/group), (G) insulin, (H) leptin, (I) ghrelin and (J) GDF15 plasma levels in P16 male offspring (n = 5—7/
group). (K—M) Female offspring body weight from vehicle-treated group, from insulin-treated mothers and from metformin-treated group from P4 to P21 (n = 10—14/group). (N) Female
offspring body weight at P16 and (0) body weight changes from P4 to P16 (n = 16—21/group). (P) Blood glucose levels (n = 7—18/group), (Q) insulin, (R) leptin, (S) ghrelin and (T) GDF15
plasma levels in P16 female offspring (n = 3—7/group). Connecting lines represent mean and SEM is represented as colour-specific surrounding fill area, dotted line indicates P16 time-
point (A, B, C, K, L, M). In data plotted as box plots (D, E, N, 0) whiskers are min. to max., hinges of boxes are 25th and 75th percentiles, and the middle line is the median. In bar graphs (F, G,
H,1,J,P,Q,R, S, T), data are expressed as mean & SEM with single data points. *p < 0.05, **p < 0.01, ***p < 0.001 derived from 2-way ANOVA with repeated measures (diet x time; A,
B, C, K, L, M) and 2-way ANOVA followed by Tukey’s multiple comparisons (diet x treatment; D, E, F, G, H, I, J,N, O, P, Q, R, S, T), ##p < 0.01 compared to CD/CD/MET (T). CD/CD: gestational
and lactational control diet-exposed, CD/HFD: gestational control diet and lactational high-fat diet-exposed, HFD/HFD: gestational and lactational high-fat diet-exposed.
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Table 4 — Two-way ANOVA results for Figure 2

Panel Source of variation F (DFn, DFd) P value
A) Body weight vehicle group males Diet F (2, 36) = 5.34 P = 0.009
Time F (3.59, 129.3) = 1635 P < 0.001
Diet x Time F (34,612) = 15.37 P < 0.001
B) Body weight insulin-exposed males Diet F (2, 34) = 11.03 P < 0.001
Time F (4.12, 140) = 1279 P < 0.001
Diet x Time F (34, 578) = 8.73 P < 0.001
C) Body weight metformin-treated males Diet F (2, 31) =6.17 P = 0.006
Time F (4.21, 130.6) = 656.90 P < 0.001
Diet x Time F (34, 527) = 6.49 P < 0.001
D) Body weight P16 males Diet F (2, 156) = 6.81 P = 0.001
Treatment F (2, 156) = 15.20 P < 0.001
Diet x Treatment F (4, 156) = 9.30 P < 0.001
E) Body weight change males Diet F(2,158) =9.88 P < 0.001
Treatment F (2, 158) = 25.20 P < 0.001
Diet x Treatment F (4, 158) = 4.92 P < 0.001
F) Glycemia P16 males Diet F (2, 94) = 0.87 P = 0.422
Metformin F(1,94) = 10.21 P = 0.002
Diet x Metformin F(2,94) =0.22 P = 0.804
G) Insulin levels P16 males Diet F(2,31) =478 P =0.016
Metformin F(1,31) =376 P = 0.062
Diet x Metformin F (2, 31) = 0.01 P = 0.989
H) Leptin levels P16 males Diet F (2, 34) = 10.45 P < 0.001
Metformin F(1,34) =211 P = 0.155
Diet x Metformin F (2, 34) = 2.25 P=0.121
1) Ghrelin levels P16 males Diet F (2, 33) =213 P =0.135
Metformin F (1, 33) = 10.32 P = 0.003
Diet x Metformin F (2, 33) = 0.54 P = 0.586
J) GDF15 levels P16 males Diet F (2,23 =3.11 P = 0.064
Metformin F (1, 23) = 0.66 P = 0.423
Diet x Metformin F(2,23) =0.99 P = 0.384
K) Body weight vehicle group females Diet F(2,37)=11.44 P < 0.001
Time F (2.47,91.48) = 1295 P < 0.001
Diet x Time F (34, 629) = 12.23 P < 0.001
L) Body weight insulin-exposed females Diet F (2, 30) = 16.48 P < 0.001
Time F (3.91, 117.40) = 920.40 P < 0.001
Diet x Time F (34, 510) = 8.82 P < 0.001
M) Body weight metformin-treated females Diet F (2, 36) = 6.99 P = 0.003
Time F (3.15, 113.3) = 471.40 P < 0.001
Diet x Time F (34, 612) = 5.42 P < 0.001
N) Body weight P16 females Diet F (2, 160) = 11.40 P < 0.001
Treatment F (2, 160) = 30.10 P < 0.001
Diet x Treatment F (4, 160) = 8.71 P < 0.001
0) Body weight change females Diet F (2, 157) = 5.74 P = 0.004
Treatment F (2, 157) = 37.50 P < 0.001
Diet x Treatment F (4, 157) = 6.05 P < 0.001
P) Glycemia P16 females Diet F (2, 76) = 3.86 P = 0.025
Metformin F (1, 76) = 3.50 P = 0.065
Diet x Metformin F (2, 76) = 1.93 P = 0.152
Q) Insulin levels P16 females Diet F (2, 28) = 3.96 P = 0.031
Metformin F (1, 28) = 0.06 P =0.812
Diet x Metformin F (2, 28) = 0.36 P = 0.702
R) Leptin levels P16 females Diet F (2, 28) = 9.24 P < 0.001
Metformin F (1,28 = 0.04 P =0.838
Diet x Metformin F (2, 28) = 0.69 P = 0.511
S) Ghrelin levels P16 females Diet F (2, 31) = 0.41 P = 0.666
Metformin F(1,31)=9.98 P = 0.004
Diet x Metformin F(2,31)=0.39 P = 0.682
T) GDF15 levels P16 females Diet F (2, 26) = 15.49 P < 0.001
Metformin F(1,26) = 0.21 P = 0.650
Diet x Metformin F(2,26)=1.23 P =0.310

Conversely, the opposite trend was observed from P19 onwards with
an accelerated increase in body weight in all the HFD-fed groups,
regardless of treatment exposure. This was seen in the vehicle group,
where both male and female offspring from CD/HFD and HFD/HFD
groups surpass the CD/CD offspring from P20 to P21 (Figure 2AK;
p < 0.001). This was also seen in the insulin-exposed male offspring,

where the HFD/HFD offspring significantly surpass the CD/CD offspring
from P20 to P21 (Figure 2B; p < 0.01).

We next focused on the analysis of offspring body weight at P16. At
this time-point the effects observed in the offspring are solely influ-
enced by maternal nutrition and anti-diabetic treatment exposure,
since from P16 onwards, pups are able to free-feed by themselves
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[57]. Analysis of male offspring weight at P16 (Figure 2D) revealed a
significant interaction between maternal diet and treatment exposure,
suggesting a differential response to anti-diabetic treatment dependent
on the maternal metabolic state. Compared to vehicle, early metformin
treatment significantly reduced body weight in both CD/CD and HFD/
HFD male offspring (p < 0.001), whereas this effect was not evident in
the CD/HFD males. Maternal insulin exposure significantly reduced
body weight in male offspring from HFD/HFD mothers (p < 0.01) but
promoted growth in CD/HFD male offspring (p < 0.05). Similar findings
were observed in terms of body weight gain (Figure 2E), where met-
formin exposure reduced weight gain in both CD/CD and HFD/HFD
male offspring (p < 0.001), but not in CD/HFD male offspring. An
increased weight gain in the CD/HFD/INS compared to CD/HFD/MET
(p < 0.01) was also observed in males.

Similar to males, P16 females (Figure 2N) displayed a reduction in
body weight when exposed to metformin during lactation compared to
vehicle group in both CD/CD and HFD/HFD groups (p < 0.001), but not
in CD/HFD offspring. Insulin exposure had an opposite effect depen-
dent on the maternal metabolic state, it promoted body weight gain in
the CD/HFD female offspring (p < 0.05), but reduced body weight in
females born to HFD/HFD mothers (p < 0.01). Similar to males, female
offspring born from CD/CD and HFD/HFD dams (Figure 20) exposed to
metformin displayed reduced body weight gain from P4 to P16. Insulin
exposure also had this effect on HFD/HFD female offspring
(p < 0.001), but it increased body weight gain in CD/HFD female
offspring in comparison to metformin treatment (p < 0.001).

Further analysis of the blood glucose levels in P16 males revealed a
significant effect of metformin exposure on reducing glycemia
(Figure 2F). In females, a significant effect of maternal diet exposure
was observed (Figure 2P), with a significant increase of blood glucose
levels in CD/HFD/MET offspring compared to CD/CD/MET (p < 0.05).
This indicates that lactational metformin exposure reduces glycemia in
male offspring, but is not able to normalize the HFD-induced hyper-
glycemia in female offspring. We next assessed the levels of circulating
metabolic hormones relevant for the regulation of whole-body energy
homeostasis in the offspring. Plasma insulin levels were significantly
increased by maternal HFD exposure in both male and female P16
offspring (Figure 2G,Q) as well as circulating leptin levels, which were
significantly increased in male offspring from obese mothers (HFD/
HFD) compared to control group (p < 0.01; Figure 2H) and in both CD/
HFD and HFD/HFD metformin-treated female offspring (p < 0.05 and
p < 0.01, respectively; Figure 2R). However, no significant effect of
metformin on normalizing the maternal HFD-induced hyperinsulinemia
and hyperleptinemia was observed. Interestingly, a significant effect of
metformin on reducing total ghrelin plasma levels was found in both
male and female offspring, independently of maternal diet exposure
(Figure 21,S). In addition, we measured GDF15 levels in the offspring’s
plasma, as it plays a role in postnatal growth, cardiometabolic health
and adiposity [58]. Circulating GDF15 levels were not significantly
affected by maternal HFD or metformin exposure in male offspring
(Figure 2J), but they were significantly higher in female offspring from
both CD/HFD and HFD/HFD mothers, regardless of metformin treat-
ment (Figure 2T).

Overall, early exposure to anti-diabetic drugs compromises offspring
growth, except in offspring from mothers fed with HFD exclusively
during the lactation period. In this case, maternal insulin exposure
promoted postnatal weight gain but metformin-treated offspring did
not differ from vehicle-treated offspring. In addition, early metformin
exposure did not counteract the metabolic impairments induced by
maternal overnutrition in the offspring.
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3.4. Effects of anti-diabetic treatment on hypothalamic
neurocircuits are dependent on the maternal metabolic state

To determine the effects on whole animal physiology mediated by brain
specific changes, we next focused on the effect of the treatment
groups described on the development and function within the hypo-
thalamus, the energy regulating center of the brain. It is known that in
neuronal physiology, changes in AMPK signaling can affect axonal
outgrowth [35], potentially via increased exposure to circulating factors
from the mother crossing into the hypothalamus. Additionally, alter-
ations in AMPK signaling specifically in POMC and AgRP neurons is
known to affect metabolic health in animal models [43]. Further,
maternal overnutrition can specifically affect the development of AgRP
and POMC neuronal projections in the hypothalamus resulting in
changes to metabolism [41,42]. Thus, we next explored the effects of
maternal overnutrition and anti-diabetic drugs exposure specifically on
AgRP and POMC intra-hypothalamic projections in P16 and P21 male
and female offspring.

Our results show an effect of anti-diabetic treatment exposure on AgRP
neuronal projections in the neuroendocrine or anterior portion of the
paraventricular nucleus of the hypothalamus (PVHant) in P16 male
offspring (Figure 3A; Table 5), indicating a reduction of AgRP inner-
vation due to insulin and metformin treatments. Whereas no effect was
observed in P16 females (Figure 3B). Furthermore, a significant
interaction between maternal diet and treatment exposure was seen to
affect o-MSH neuronal projections in the PVHant of P16 males
(Figure 3C), suggesting that insulin and metformin reduce o-MSH
innervation in offspring of control dams, but rescue o-MSH impair-
ments in offspring from obese dams. No differences were observed
regarding o.-MSH fiber density in P16 females (Figure 3D).

No significant effects of maternal diet or treatment exposure on the
density of AgRP-containing fibers onto the pre-autonomic or posterior
portion of the PVH (PVHpost) were seen in P16 offspring
(Supplementary Fig. 3A, B; Supplementary Table 4), although female
offspring from obese mothers (HFD/HFD) seemed to be more affected
than those exposed to HFD during lactation (CD/HFD). No changes
were observed on a-MSH innervation of the PVHpost in either males or
females by P16 (Supplementary Figs. 3C and D).

AgRP fiber density in the PVHant was significantly affected by maternal
diet (p < 0.05) in P21 male offspring (Figure 4A; Table 6). No sig-
nificant effects of maternal diet or treatment exposure were observed
in the PVHant of P21 females (Figure 4B), although a 34% reduction in
AgRP innervation in the offspring from lactational HFD was observed.
o-MSH fiber density in the PVHant was not altered in either males or
females at weaning (Figure 4C,D). Notwithstanding, a potential effect
for maternal insulin treatment on promoting axonal fiber densities was
observed in female offspring from obese mothers.

In the PVHpost of P21 male offspring, lactational HFD reduced AgRP
fiber density by 44% (Supplementary Fig. 4A; Supplementary Table 5),
and this reduction was not rescued by anti-diabetic treatment expo-
sure, although insulin seemed to promote AgRP innervation in male
offspring from obese mothers. P21 females exposed to HFD during
lactation showed a reduction of 30% of AgRP fiber density in the
PVHpost, but no change in those born to obese mothers was observed.
In this case, a significant diet x treatment interaction (p < 0.05) was
observed, indicating a differential effect of anti-diabetic treatments
dependent on the maternal metabolic state. Insulin and metformin
treatment do seem to affect negatively AgRP fiber density in the control
group while they seem to recover AgRP innervation impairments
induced by maternal HFD exposure (Supplementary Fig. 4B,
Supplementary Table 5). No overall changes were observed in o.-MSH
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Figure 3: Effects of maternal overnutrition and anti-diabetic treatments on AgRP and o.-MSH fiber density in the anterior portion of the paraventricular nucleus of the
hypothalamus (PVHant) in P16 offspring. (A, A') Representative images of AgRP projections and their quantification in the anterior paraventricular nucleus of the hypothalamus
(PVH) of P16 male offspring. (B, B’) Representative images of AgRP projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P16
female offspring. (C, C’) Representative images of o-MSH projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P16 male
offspring. (D, D’) Representative images of a.-MSH projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P16 female offspring.
Data are presented as mean + SEM with single data points. Statistical analyses were performed using two-way ANOVA. Scale bar is 100 pum. 3V: third ventricle; PVH: para-
ventricular nucleus of the hypothalamus; CD/CD: gestational and lactational control diet-exposed; CD/HFD: gestational control diet and lactational high-fat diet-exposed; HFD/HFD:
gestational and lactational high-fat diet-exposed.
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Table 5 — Two-way ANOVA results for Figure 3.

Panel Source of variation ~ F (DFn, DFd) P value
A) AgRP fiber density in Diet F(2,42) =0.01 P =0.992
PVHant on P16 males Treatment F(2,42) =3.64 P =0.035
Diet x Treatment F (4, 42) = 0.40 P = 0.805
B) AgRP fiber density in Diet F (2, 40) = 0.46 P = 0.635
PVHant on P16 females  Treatment F(2,40)=0.21 P =0.808
Diet x Treatment F (4,40) =0.76 P = 0.558
C) o-MSH fiber density in  Diet F (2,400 =1.68 P =0.199
PVHant on P16 males Treatment F(2,400=025 P=0.779
Diet x Treatment F (4, 40) = 313 P =0.025

D) o-MSH fiber density in ~ Diet F (2, 41)=0.66 P = 0.521
PVHant on P16 females  Treatment F(2,41) =0.05 P =0.952
Diet x Treatment F@4,41) =164 P =0.182

fiber density in the PVHpost of P21 males (Supplementary Fig. 4C),
whereas a significant interaction of dietand treatment (p < 0.001) was
observed in females (Supplementary Fig. 4D; Supplementary Table 5).
This provides further evidence that anti-diabetic treatment alters o-
MSH fiber density in a maternal metabolic state dependent manner.
Collectively, our results indicate that the most detrimental effects of
maternal HFD feeding during lactation on hypothalamic AgRP neuronal
fiber densities can be observed in females at P21. Further, insulin
treatment in dams fed a HFD prior to mating, and during pregnancy
and lactation, seems to promote axonal outgrowth of both AgRP and
POMC neurons in female offspring by P21. Although maternal insulin
exposure seems to reduce neuronal innervation in control group
offspring. Metformin exposure does not significantly alter axonal
outgrowth, but slightly increases AgRP and ¢.-MSH innervation in P21
female offspring born to HFD-fed dams exclusively during the lactation
period.

3.5. Metformin exposure does not affect AGRP or POMC neuronal
number in the arcuate nucleus

Metformin has been shown to have an age-dependent effect on
neurogenesis resulting in a significant increase of the neural stem cell
pool, specifically with maximal effect upon exposure during the early
postnatal phase [59]. To determine if neurogenesis in hypothalamic
neuronal populations responsible for homeostatic control is affected by
the early exposure, AgRP- and POMC-Cre male animals were crossed
to TdTomato-floxed females to generate offspring with labeled
neuronal populations. In two subregions of the ARH, AgRP neuronal cell
number was analysed (Figure 5A and Supplementary Fig. 5A) with no
significant effect of dietary or pharmacological treatment (Table 7;
Supplementary Table 6). POMC neuronal populations were also
imaged and quantified (Figure 5B and Supplementary Fig. 5B), but no
overall effect of early metformin exposure was uncovered (Table 7). In
the most rostral ARH, a slight but significant decrease in neuronal
number, due to maternal HFD exposure was seen, which was not
restored by metformin (Supplementary Fig. 5B, B’; Supplementary
Table 6). This suggests that early postnatal metformin exposure
does not result in changes to POMC or AgRP cell number in the ARH.

3.6. Early metformin exposure induces sex-specific changes to
hypothalamic AMPK signaling

To determine the lasting impact of metformin exposure on known
intracellular signaling pathways, protein levels of AMPK signaling
components were assayed in the hypothalamus of 16-day-old male
and female mice with metformin treatment from P4—P15. Samples
were collected 16 h after the last metformin exposure, to ensure
long-lasting effects of metformin treatment and not acute pathway
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activation. Analysis of AMPK activation revealed an overall significant
effect of maternal diet exposure on the expression of AMPK in both
male and female offspring (Figures 6A and 7A; Table 8, Table 9).
However, levels of phosphorylated-AMPK were significantly altered
by diet in males (Figure 6B), but only moderately affected by met-
formin exposure (Pmetformin = 0.062) ultimately resulting in no overall
differences to AMPK activation (Figure 6C). Conversely in females, no
change in p-AMPK levels was uncovered (Figure 7B). When
assessing overall AMPK activation as a result, a significant effect of
maternal diet was uncovered (Figure 7C). Therefore, exposure to
altered maternal metabolic states in early development results in
subtle but distinct changes to AMPK signaling pathways with unique
effects between sexes.

We next explored the protein expression levels of liver kinase B1
(LKB1), as it is the main upstream kinase in the AMPK pathway known
to be involved in cell polarity regulation [60,61] and for being a main
target of metformin’s action [62]. No significant changes in the protein
levels of LKB1 or its phosphorylated form were found in P16 male
offspring hypothalamus (Figure 6D,E and F; Table 8). Notwithstanding,
in P16 females, metformin significantly increased the levels of phos-
phorylated LKB1 (Figure 7E), which indicates a significant induction of
LKB1 activation by metformin (Figure 7F), as no changes were
observed in total LKB1 levels (Figure 7D; Table 9).

AMPK has multiple downstream targets, one of which is the
mammalian target of rapamycin (mTOR), which stimulates protein
synthesis. AMPK inhibits mTOR complex 1 (mTORC1) both directly and
indirectly [63], and metformin has been shown to inhibit mTORC1 via
AMPK [64]. In an attempt to elucidate the consequences of maternal
overnutrition and early metformin exposure on AMPK signaling
downstream effectors, we assessed mTOR protein expression. In P16
males, a two-way ANOVA analysis revealed a significant interaction
between maternal diet and metformin treatment in total mTOR levels
(Pinteraction<<0-05), although there was no significant effect of individual
factors (Figure 6G, Table 8). This indicates that mTOR expression might
change differentially to the combination of both maternal diet and
metformin exposure. Maternal diet had a significant effect on the
phosphorylated-mTOR levels, potentially driven by the increase
observed in the HFD/HFD group (Figure 6H), and metformin treatment
seemed to induce mTOR activation (Pmetformin = 0.059) in the hypo-
thalamus of male offspring (Figure 6l). In females, no significant
changes of total mTOR levels (Figure 7G), phosphorylated-mTOR levels
(Figure 7H) or p-mTOR/mTOR ratio were observed (Figure 71; Table 9).
Furthermore, activation of AMPK inhibits fatty acid de novo synthesis
via phosphorylation and inactivation of acetyl-CoA carboxylase (ACC),
and metformin has indeed been shown to reduce ACC activity [65].
Thus, we also assessed ACC phosphorylation levels in the hypothal-
amus of P16 offspring. No changes in total ACC levels were observed
either in males (Figure 6J) or females (Figure 7J), but increased ACC
phosphorylation due to metformin treatment was observed in males
(Figure 6K; Table 8), although not in females (Figure 7K; Table 9).
However, no significant effects of metformin nor maternal diet were
found on the p-ACC/ACC ratio in males (Figure 6L) or females
(Figure 7L).

Overall, despite increased phosphorylation of LKB1 in the hypothala-
mus of P16 female offspring by early metformin treatment, there were
no further significant changes to the AMPK signaling cascade. In
males, although no changes in LKB1 or AMPK phosphorylation, due to
metformin exposure, were detected, slight trends toward increased
mTOR activation and significant ACC phosphorylation were observed.
Maternal overnutrition was found to decrease levels of p-AMPK while
increasing p-mTOR levels in males; whereas in females, maternal
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Figure 4: Effects of maternal overnutrition and anti-diabetic treatments on AgRP and o.-MSH fiber density in the anterior portion of the paraventricular nucleus of the
hypothalamus (PVHant) in P21 offspring. (A, A') Representative images of AgRP projections and their quantification in the anterior paraventricular nucleus of the hypothalamus
(PVH) of P21 male offspring. (B, B’) Representative images of AgRP projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P21
female offspring. (C, C’) Representative images of o-MSH projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P21 male
offspring. (D, D’) Representative images of o.-MSH projections and their quantification in the anterior paraventricular nucleus of the hypothalamus (PVH) of P21 female offspring.
Data are presented as mean + SEM with single data points. Statistical analyses were performed using two-way ANOVA. Scale bar is 100 pum. 3V: third ventricle; PVH: para-
ventricular nucleus of the hypothalamus; CD/CD: gestational and lactational control diet-exposed; CD/HFD: gestational control diet and lactational high-fat diet-exposed; HFD/HFD:
gestational and lactational high-fat diet-exposed.
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Table 6 — Two-way ANOVA results for Figure 4.

Panel Source of variation ~ F (DFn, DFd) P value
A) AgRP fiber density in Diet F (2,34 =342 P =0.044
PVHant on P21 males Treatment F(2,34 =025 P=0777
Diet x Treatment F (4,34) =217 P =0.093
B) AgRP fiber density in Diet F (2,642 =176 P =0.185
PVHant on P21 females  Treatment F(2,642 =115 P =0.325
Diet x Treatment F (4,42 =081 P =0.529
C) o-MSH fiber density in  Diet F(2,37) =190 P=0.164
PVHant on P21 males Treatment F(2,37) =202 P=0.147
Diet x Treatment F@4,37) =044 P=0.779
D) o-MSH fiber density in ~ Diet F (2,44 =194 P =0.155
PVHant on P21 females  Treatment F(2,644) =036 P =0.697
Diet x Treatment F 4,44 =150 P =0.220

overnutrition promoted activation of both AMPK and its upstream ki-
nase LKB1.

Hence, sex-, diet- and metformin-specific effects were found in
various components of the AMPK signaling cascade in the developing
hypothalamus (Figure 8), which ultimately lead to cumulative changes
that may alter hypothalamic function.

3.7. Sex dependent changes in transporters responsible for
metformin access to the brain

Given the sex specific results we have shown to this point, we next
explored if metformin access to the brain during development may be
different between sexes as a putative explanation to the sex differ-
ences noted thus far. In order to reach the brain to elicit changes in
projections and hypothalamic signaling, metformin must gain access
to this privileged tissue. Is it known that metformin is a substrate of
polyspecific organic cation transporters (Octs) in peripheral organs,
such as the liver and kidney, where Octs are the major determinants
for metformin absorption and clearance. Octs, including Oct? and
Oct3, are also expressed in the brain [66], where they contribute to the
absorption and clearance of various physiological compounds.
Recently, Sharma et al. [67] demonstrated that metformin can cross
the blood—brain barrier (BBB) using Oct1 for its transport.

To determine the potential for exposure of the neonatal mouse brain to
metformin during the early postnatal period, we assessed the gene
expression levels of transporters responsible for metformin uptake and
efflux [67,68] in the developing hypothalamus. Expression was
assessed at different time-points during the time window in which the
pharmacological interventions took place in our study. Expression at 8
weeks of age was also assessed (Figure 9; Table 10). Robust changes
in organic cation transporter 1 (Oct7) mRNA expression were seen
from P6 and throughout the lactation period in both males and females.
Oct1 expression in males was reduced from P6 to P9 (p < 0.05),
although its expression was restored by P21 (p < 0.05) and main-
tained until adulthood (p < 0.001) (Figure 9A). By contrast, Oct?
expression in females was reduced from P6 to P9 (p < 0.001) and was
kept low throughout development (Figure 9D). Interestingly, expression
of the organic cation transporter 3 (Oct3) increased across the lacta-
tional period in females, with a robust upregulation from P6 to P9
(p < 0.001), which was maintained until P16. At P21, Oct3 expression
was reduced compared to P9 levels (p < 0.05) (Figure 9E). In males, a
different expression profile was noted, Oct3 decreased across this
period with a significant reduction being reached by P21 (p < 0.01)
(Figure 9B). In adulthood, females displayed a 6-fold increase in Oct3
expression, whereas in males, this response was not evident.
Expression of multidrug and toxic extrusion 1 (MateT), which plays a
role in metformin’s clearance, was also detected in the developing
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hypothalamus of both males and females (Figure 9C,F), although a
dynamic upregulation of its expression across development was only
observed in females; specifically, from P6 to P11 (p < 0.01).

We demonstrated a dynamic gene expression of Oct?, Oct3 and
Mate1, transporters responsible for metformin cell permeability, during
the early postnatal phase in the hypothalamus. Sex-specific patterns of
expression were observed, which could account for differences in
response to metformin between sexes.

4. DISCUSSION

With the increasing occurrence of both pre-pregnancy obesity and
GDM, as well as their co-occurrence, pharmacological interventions in
early development are becoming more common. However, under-
standing the potential long-term consequences of early exposure is still
needed. While many interventions show promise in the immediate
sense, through improved birth outcomes, there is evidence emerging
that anti-diabetic treatments in early development may manifest into
metabolic changes later in life [17,18]. Here we show that dependent
on maternal metabolic state, a variety of metabolic outcomes can
occur after early metformin exposure in mice.

4.1. Anti-diabetic treatment effects in mothers vary due to
maternal metabolic state

In our study, we utilized a model of two different maternal metabolic
conditions during pregnancy and lactation periods by exposing the
dams to HFD during different periods of time and tracking the physi-
ological changes in response to the dietary intervention. Interestingly,
only the lactational HFD model showed a dramatic weight gain remi-
niscent of GWG in humans, whereas the pre-pregnancy HFD-exposed
group showed similar rates of weight gain as the control diet-fed group
throughout pregnancy and a maintenance of body weight, albeit
significantly higher than the control group, during the lactation phase.
While many studies of maternal obesity in animal models rely on the
pre-pregnancy exposure to HFD, we explicitly sought out a way to
mimic gestational weight gain, or this increase in body weight in the
period equivalent to the third trimester of brain development in humans
[50]. We were successful in this model to drive consistent weight gain
in the lactation period, not seen in the other two dietary groups and
could monitor how this metabolic environment, i.e. weight gain above
normal levels, contributes to offspring metabolic outcomes. Given that
more than 50% of all pregnancies show excessive gestational weight
gain regardless of pre-pregnancy body weight, a model for under-
standing how gestational weight gain alone contributes to alterations in
brain development is relevant for continued analysis of neuronal cir-
cuits [69]. Accordingly, lactational HFD exposure alone induced more
metabolic abnormalities in offspring mice than maternal HFD
throughout gestation and lactation [70] and in humans, the maternal
metabolic profile has been shown to have a differential impact on child
neurodevelopment [71].

Interestingly, our results show an increase in food intake in the
metformin-treated mothers exposed to HFD during lactation only,
which may explain the offspring weight loss prevention in this group.
However, this effect of metformin is unexpected, as metformin is
known to produce anorectic effects by modulating the expression of
hypothalamic neuropeptides and leptin receptor [72] [—] [74] and to
reduce feelings of hunger in humans [75]. Nevertheless, the excessive
food consumption in that group of dams did not lead to increased
maternal weight gain or increased blood glucose levels. This may also
indicate an alternative effect of metformin in pregnancy on food intake
and could warrant additional human studies in this regard.
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Figure 5: Metformin does not have an impact on the cell number of the two main arcuate neuronal populations. (A, A’) Representative images of TdTomato-labelled AgRP
neurons and their quantification in the mid-portion of the ARH. (B, B’) Representative images of TdTomato-labelled POMC neurons and their quantification in the mid-portion of the
ARH. Data are presented as mean + SEM with single data points. Blue dots represent males and orange dots represent females. Statistical analyses were performed using two-
way ANOVA. Scale bar is 100 pum. 3V: third ventricle; ARH: arcuate nucleus of the hypothalamus; CD/CD: gestational and lactational control diet-exposed; CD/HFD: gestational
control diet and lactational high-fat diet-exposed; HFD/HFD: gestational and lactational high-fat diet-exposed.

In our study, both models of maternal overnutrition led to hypergly-
cemia by the end of the lactation period, which was not rescued by the
anti-diabetic treatments. However, since blood samples were taken on
the day following the last treatment administration (approximately 16 h
after the last exposure), it is likely that the acute glucose lowering
effect of these drugs is no longer present. It is known that metformin
has a plasmatic half-life of 2—6 h [76], and even though new basal

insulin analogs have a longer half-life, the peak of glucose-lowering
action occurs at 4—5 h [77]. However, it should be noted that in
humans studies which assessed glucose levels at 36 weeks of
gestation, metformin had no glucose-lowering effects [78]. Still, an
effect of metformin on both insulin and leptin circulating levels can be
observed in our study, with metformin being able to normalize the
HFD-induced hyperinsulinemia and hyperleptinemia in the mothers. In
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agreement with this, metformin has been shown to reduce insulin
levels in both lean and obese patients after 3 months of treatment [79].

Table 7 — Two-way ANOVA results for Figure 5.

Panel Source of variation  F (DFn, DFd) P value Both insulin and leptin serum levels were also reduced after a 16-week
A) AgRP neuronal cell  Diet F(2,25) =004 P =0.958 metformin treatment in a dose-dependent manner in mice [80] and
numberinimid ARH = Metformin = F(1,25 =138 P=0252  insylin levels were also reduced in dams exposed to metformin during
Diet x Metformin F@2,29 =022 P=0802" 4,0 |actation period [32]. In addition, metformin treatment led to

B) POMC neuronal cell Diet F (2, 27) = 0.37 P = 0.697 . . . . . .
number in mid ARH  Metformin F(1,27)= 007 P —0789 |pcr_eased mrculat!ng_ GDF15 Iew_als in the n_10ther_s. Consistent with our
Diet x Metformin F(2 27) =020 P=0.823 findings, metformin is known to increase circulating GDF15 levels [81].

The induction of GDF15 levels by metformin was more evident in the
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Figure 6: Comprehensive analysis of the classical signaling pathway of metformin’s mechanism of action in the hypothalamus of P16 male offspring. Relative protein
expression of (A) total AMPKo. levels, (B) phosphorylated-AMPKa:(Thr'"2) levels and (C) AMPK activation ratio; (D) total LKB1 levels, (E) phosphorylated-LKB1(Ser*%®) levels and (F)
LKB1 activation ratio; (G) total mTOR levels, (H) phosphorylated-mTOR(Ser>**3) levels and (I) mTOR activation ratio; and (J) total ACC levels, (K) phosphorylated-ACC(Ser’®) levels
and (L) ACC activation ratio (n = 6/group). Data are presented as mean + SEM with single data points. Statistical analyses were performed using two-way ANOVA. CD/CD:
gestational and lactational control diet-exposed; CD/HFD: gestational control diet and lactational high-fat diet-exposed; HFD/HFD: gestational and lactational high-fat diet-exposed.
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Figure 7: Comprehensive analysis of the classical signaling pathway of metformin’s mechanism of action in the hypothalamus of P16 female offspring. Relative protein
expression of (A) total AMPKo. levels, (B) phosphorylated-AMPKo(Thr'72) levels and (C) AMPK activation ratio; (D) total LKB1 levels, (E) phosphorylated-LKB1(Ser*?®) levels and (F)
LKB1 activation ratio; (G) total mTOR levels, (H) phosphorylated-mTOR(Ser?*“®) levels and (I) mTOR activation ratio; and (J) total ACC levels, (K) phosphorylated-ACC(Ser’®) levels
and (L) ACC activation ratio (n = 6/group). Data are presented as mean & SEM with single data points. Statistical analyses were performed using two-way ANOVA. CD/CD:
gestational and lactational control diet-exposed; CD/HFD: gestational control diet and lactational high-fat diet-exposed; HFD/HFD: gestational and lactational high-fat diet-exposed.

CD/CD and HFD/HFD groups than in dams exposed to HFD during
lactation. This could explain the reduction of food intake observed in
the metformin-treated dams in these two groups, as GDF15 has been
linked to appetite suppression [82].

Metformin administration through the drinking water (3 mg/ml) in our
study led to maternal serum levels from 5 pM to 100 nM, averaging
around 40 puM in all groups, regardless of the maternal dietary inter-
vention. These levels are comparable to previous studies in rodents of
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oral administration of metformin, that report plasma concentrations of
5 uM—180 pM. Moreover, this is similar to circulating levels in
humans of 10—40 pM that result from a therapeutic dose of 500—
2500 mg/day of metformin [52,83]. Importantly, in our study, similar
serum metformin concentrations were reached in all groups of
mothers, despite differences in their total amount of water intake.
Furthermore, as all pups were given intraperitoneal injections of
metformin during the suckling period, they all received the same dose.
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Panel Source of variation ~ F (DFn, DFd) P value Panel Source of variation ~ F (DFn, DFd) P value
A) Total AMPKa. levels Diet F(2,29) =482 P =0.016 A) Total AMPKa: levels Diet F(2,30)=399 P =0.029
(males) Metformin F(1,29) =203 P=0.165 (females) Metformin F(1,30)=0.34 P =0.562
Diet x Metformin F(2,29) =012 P =0.890 Diet x Metformin F(2,630)=026 P=0.776
B) Phosphorylated- AMPKa.  Diet F(2,29) =474 P=0.017 B) Phosphorylated- AMPKa.  Diet F(2,30)=199 P=0.154
levels (males) Metformin F(1,29) =376 P =0.062 levels (females) Metformin F(1,30) =110 P =0.302
Diet x Metformin F(2,299 =220 P=0.129 Diet x Metformin F(2,30)=279 P=0.077

C) pAMPK/AMPK ratio Diet F(2,29) =020 P =0.816 C) pAMPK/AMPK ratio Diet F(2,30)=4.42 P =0.021
(males) Metformin F (1,29 =0.04 P =0.835 (females) Metformin F(1,30)=254 P=0.122
Diet x Metformin F(2,29) =187 P=0.173 Diet x Metformin F(2,30)=032 P=0727
D) Total LKB1 levels Diet F(2,30)=0.65 P =0.530 D) Total LKB1 levels Diet F(2,30)=2.07 P=0.144
(males) Metformin F(1,30) =121 P=0279 (females) Metformin F(1,30) =062 P =0.438
Diet x Metformin F(2,300=1.89 P =0.169 Diet x Metformin F(2,30)=0.05 P=0.952
E) Phosphorylated-LKB1 Diet F(2,30)=1.07 P =0.355 E) Phosphorylated-LKB1 Diet F(2,630) =326 P=0.053
levels (males) Metformin F(1,30)=0.11 P =0.740 levels (females) Metformin F(@,30)=752 P=0.010
Diet x Metformin F(2,30)=0.35 P=0.710 Diet x Metformin F(@2,30)=136 P =0.273
F) pLKB1/LKB1 ratio Diet F (2,300 =068 P=0514 F) pLKB1/LKB1 ratio Diet F(2,630) =265 P=0.087
(males) Metformin F(1,30)=0.34 P =0.566 (females) Metformin F(1,300=6.79 P=0.014
Diet x Metformin F (2,300 =017 P =0.844 Diet x Metformin F(2,30)=045 P =0.640
G) Total mTOR levels Diet F (2,300 =095 P =0.396 G) Total mTOR levels Diet F(2,30)=0.07 P=0.932
(males) Metformin F(1,30)=0.38 P =0.542 (females) Metformin F (1, 30) = 0.004 P = 0.950
Diet x Metformin F(2,30) =353 P =0.042 Diet x Metformin F(2,30)=277 P =0.079

H) Phosphorylated-mTOR  Diet F(2,29) =084 P =0444 H) Phosphorylated-mTOR  Diet F(2,30)=0.67 P =0.521
levels (males) Metformin F(1,29) =148 P =0.233 levels (females) Metformin F(@,30)=012 P =0.736
Diet x Metformin F(2,29) =0.81 P =0.456 Diet x Metformin F(2,30)=2.06 P=0.145
I) p-mTOR/mTOR levels Diet F (2,28 =237 P=0.112 I) p-mTOR/mTOR levels Diet F(2,30)=0.07 P=0.935
(males) Metformin F (1,28 =388 P =0.059 (females) Metformin F(1,30)=0.65 P=0.427
Diet x Metformin F (2,28 =165 P =0.209 Diet x Metformin F(2,30)=0.83 P =0.448
J) Total ACC levels (males) Diet F(2,25 =189 P=0.173 J) Total ACC levels Diet F(2,299=199 P =0.156
Metformin F(1,25) =013 P =0.724 (females) Metformin F(1,29) =071 P =0.408
Diet x Metformin F(@2,25 =221 P=0.131 Diet x Metformin F(@2,29 =017 P =0.842
K) Phosphorylated-ACC Diet F (2,25 =256 P =0.097 K) Phosphorylated-ACC Diet F(2,29) =254 P =0.096
levels (males) Metformin F (1,25 =5.21 P =0.031 levels (females) Metformin F(1,29) =008 P=0.774
Diet x Metformin F(2,25 =166 P=0.211 Diet x Metformin F(@2,29)=013 P=10.875

L) pACC/ACC levels (males) Diet F (2,25 =116 P =0.331 L) pACC/ACC levels Diet F(2,29)=0.06 P=0.941
Metformin F (1,25 =073 P =0.400 (females) Metformin F(1,29) =012 P =0.735
Diet x Metformin F (2,25 =110 P =0.349 Diet x Metformin F(@2,29)=0.09 P=00914

This is important and clinically relevant as the estimated dose of
metformin that can reach the infant through the breast milk is 0.5—
0.65% of the mother’s weight-adjusted dose [83].

4.2. Overall effects of metformin on offspring physiology

If we further probe the effects uncovered specifically in the offspring,
the effects of maternal overnutrition are the primary drivers of physi-
ological difference the benefits of metformin treatment diminish. By
tracking the offspring’s weight, it can be noted that the untreated
offspring exposed to maternal overnutrition, in either model, are
smaller across the early postnatal period, although an elevated body
weight of the offspring exposed to maternal overnutrition appears in
the pre-weaning period (P16—P21) due to the offspring free-feeding
HFD, consistent with previous animal studies [84]. Notably, being
born small for gestational age has been associated with increased fat
mass accumulation in infants [85]. Exposure to anti-diabetic drugs
during the suckling period reduced both male and female offspring
weight by P16, only the offspring exposed to lactational HFD showed
no weight loss with metformin treatment, and they even showed an
increased body weight with maternal insulin exposure. Indeed, any
exposure to anti-diabetic treatment (insulin or metformin) in the
context of maternal GWG resulted in an increased body weight as
compared to the control fed or the maternal obese condition. This
underscores the necessity of including maternal weight trajectory as a
parameter in interventional planning.

Interestingly, human studies of GDM-affected pregnancies show that
children exposed to metformin in utero are smaller at birth than those

whose mothers were treated with insulin [86]. However, metformin-
exposed children do become heavier, with higher BMI, in childhood.
This result warrants an understanding of the post weaning effects of
metformin exposure on growth trajectories and physiology in
adulthood.

The assessment of circulating levels of metabolic hormones in P16
offspring revealed a glucose-lowering effect of perinatal metformin
exposure in male offspring, with no effect of maternal overnutrition,
whereas in females, a hyperglycemic effect of maternal overnutrition
was observed, which was not rescued by metformin exposure. This
glucose-lowering effect of metformin is well known and may explain
the reduced growth trajectory of the offspring treated with metformin.
However, previous research showed no effects of metformin exposure
during lactation on fed glucose levels in P16 male offspring [32]. In our
study, maternal HFD exposure increased the circulating levels of in-
sulin and leptin in both male and female offspring in a dose-dependent
manner, as offspring from HFD-fed mothers throughout pregnancy and
lactation periods displayed higher levels than offspring from lactational
HFD-fed mothers. In line with this, increased serum leptin levels have
also been found in offspring from obese dams [87,88], specifically
from P9 to P18, reflecting a prolonged neonatal leptin surge, which has
been related to long-lasting leptin resistance, fat accumulation and
obesity. Although not statistically significant, metformin seems to
counteract the maternal HFD-induced increase in insulin levels in male
offspring. Previous studies have also shown that maternal metformin
exposure reduces plasma insulin levels in the offspring of obese dams
at weaning [89]. Furthermore, we observed an effect of early
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Figure 8: Overview of maternal overnutrition and early metformin exposure effects on the AMPK signaling cascade in the developing hypothalamus of males and
females. Maternal overnutrition affected differentially AMPK activation in a sex-specific manner. Early metformin exposure increased phosphorylation of the upstream kinase LKB1
in females, whereas downstream components of AMPK signaling were affected in males. Significant effects of diet exposure or metformin treatment on the phosphorylation of the
proteins assessed in the hypothalamus of P16 males (left panel) or P16 females (right panel) are indicated by the black thick arrows. ACC: acetyl-CoA carboxylase; AMPK: AMP-
activated protein kinase; LKB1: liver kinase B1; mHFD: maternal high-fat diet; mTORC1: mammalian target of rapamycin complex 1; OCT: organic cation transporter; P: postnatal

day; TSC1/2: tuberous sclerosis complex 1/2.

metformin exposure on reducing ghrelin levels in both P16 males and
females. Metformin has been shown to inhibit ghrelin release from
primary gastric cells [90], which could be related to its mechanism of
food intake suppression; however, no alterations in ghrelin levels have
been reported in children exposed to metformin in utero [91]. In
addition, we found elevated GDF15 levels in the offspring born to HFD-
fed mothers, especially in females. This could explain the reduction of
body weight observed from P4 to P16 in the offspring with maternal
overnutrition, at least in the vehicle-treated group. However, early
metformin exposure did not significantly alter GDF15 levels in the
offspring. As plasma samples were obtained approximately 16 h after
the last metformin administration and metformin induction of GDF15
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levels is transient, with the highest peak at 4—8 h after metformin
administration [81], it is possible that levels were restored to baseline
levels when analysed.

4.3. Maternal metformin treatment alters hypothalamic
development and AMPK signaling in offspring

It is well established in the metabolic programming field that an
intrauterine obesogenic environment alters the hypothalamic
neuronal connectivity, as ARH-derived axonal projections onto other
intrahypothalamic nuclei develop during the first postnatal weeks in
rodents. Critically, disruption of hypothalamic neuronal structure and
function in early development increases the susceptibility to develop
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Figure 9: Metformin transporters are expressed in the developing hypothalamus. (A) Oct?, (B) Oct3 and (C) Mate? mRNA expression in the hypothalamus across devel-
opment in wild-type male mice (n = 5—8/time-point). (D) Oct1, (E) Oct3 and (F) Mate1 mRNA expression in the hypothalamus across development in wild-type female mice
(n = 4—10/time-point). Data are expressed as mean + SEM with single data points in black dots. *p < 0.05, **p < 0.01, ***p < 0.001 compared to P6, unless indicated. P-
values derived from one-way ANOVA followed by Tukey’s multiple comparisons. P: postnatal day, W: weeks of age.

Table 10 — One-way ANOVA results for Figure 9.

Panel Source of variation F (DFn, DFd) P value

A) Oct1 in males Time F (6, 40) = 5.91 P < 0.001
B) Oct3 in males Time F (6, 40) = 2.94 P =0.018
C) Mate? in males Time F (6, 40) = 0.85 P = 0.540
D) Oct1 in females Time F 6, 41) =19.79 P < 0.001
E) Oct3 in females Time F (6, 40) = 26.27 P < 0.001
F) MateT in females Time F (6, 41) = 4.04 P = 0.003

metabolic disorders and obesity in the offspring. Our results showed
no significant changes after maternal HFD or metformin treatment in
the number of AgRP and POMC neurons in the ARH in P16 offspring,
which is in agreement with previous studies [41,42,84]. Interestingly,
metformin and insulin treatment led to the most dramatic changes in
neuronal projections in both male and female animals in the control
diet condition, reiterating that alterations in glucose and insulin ho-
meostasis in development do impact neuronal circuit development.
Probing diet and treatment effects, we found a subtle role of maternal
overnutrition on AgRP innervation in the PVH. Region-specificity of the
effects of maternal HFD were also observed, with the most detri-
mental effect on the posterior PVH, which is the pre-autonomic
compartment, known to regulate pancreatic secretion, adipose
storage, thermogenesis and peripheral glucose uptake through its
connections to the brainstem [92]. Specifically, male and female
animals showed a larger effect on AgRP reduction in the PVHpost,

that progressed from P16 to P21 in the maternal GWG group. While
metformin does appear to rescue this detriment, in females this
results in elevated AgRP signal compared to controls. As it is not
known what physiological outcomes are linked to an increase above
normal of AgRP innervation, this may be relevant to study further.
With regard to o.-MSH in this region, males display relatively mild, if
any effects, whereas females in the maternal GWG initially show
increased projections, which then progress to a decrease by P21 and
metformin exposure appears to generate the inverse response, i.e.
lower o-MSH projections at P16 and higher at P21 in the CD/HFD
group. In line with our findings, postnatal leptin signaling has been
shown to impact the axonal terminal densities onto the preautonomic
neurons in the PVH [93]. A differential response to anti-diabetic
treatments depending on the maternal metabolic state was
observed particularly in P21 female offspring, where insulin seems to
promote AgRP and a.-MSH innervation in offspring of obese mothers,
supporting its proposed role as a growth factor in early development
[94]. Metformin appears to impair both AgRP and o-MSH fiber
densities in control offspring, whereas a promoting effect is observed
in offspring of lactating HFD-fed dams. A number of studies in the
literature in recent years [41,42,88,95—97] have highlighted effects
on neuronal projections relating to maternal diet clearly indicating a
role of maternal diet as well as interventions impacting glucose and
insulin homeostasis on the development of these neurons. However,
the differences in diet, timing, and treatment result in varying effects
to AgRP and POMC neuronal innervation in the hypothalamus and
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underscore the need for caution when using interventions that will
modify the metabolic parameters of the mother.

At a mechanistic level, as AMPK is one of the main molecular targets of
metformin and plays a key role in axonal growth during development,
we investigated the potential impact of maternal HFD and early met-
formin exposure on hypothalamic AMPK signaling. We observed an
overall reduction in total hypothalamic levels of AMPK induced by
maternal HFD in both males and females, although in females the ratio
of pAMPK/AMPK was enhanced by maternal HFD. Previous studies
showed a reduction in phosphorylated AMPK levels in the developing
hypothalamus due to maternal HFD exposure [98,99] and this reduction
was attributed to increased insulin and leptin, which are known to
inhibit AMPK [100,101]. Although, in our study, we did not detect any
change in AMPK activation in response to metformin, this could be
related to the fact that higher doses of metformin are required to induce
a significant AMPK activation in the hypothalamus, as it is known that
metformin-induced AMPK activation is dose-dependent [102]. In
addition, the highest peak in AMPK phosphorylation dynamics has been
observed 15 min after metformin administration [103]; thus, we might
not have been able to detect the acute effects on AMPK activation as the
hypothalamus was extracted ~16 h after the last metformin admin-
istration. Constitutive AMPK overactivation has also been associated
with an impairment of post-synaptic markers in the mouse brain [104],
so although we were not able to detect significant changes on the
cytoarchitecture of AgRP and POMC neurons after early metformin
exposure, alterations on their synaptic connectivity cannot be excluded.
An induction of LKB1 by early metformin exposure was detected in P16
females. LKB1, one of the main targets of metformin’s action, has been
described to regulate neuronal polarity, thus playing a potential role on
brain development [105]. In addition, mTOR and ACC, downstream ef-
fectors of AMPK signaling were found to be altered by metformin
exposure in the hypothalamus of P16 males. Interestingly, hypothalamic
mTOR and ACC signaling pathways are involved in food intake regulation
[106,107]. Additionally, mTORC1 also regulates axon formation and
polarization in the brain [108,109]. As in our study, increased ACC
phosphorylation was also found in the liver of P16 male offspring with
metformin exposure during lactation [32]. Therefore, early metformin
exposure could potentially have an effect on feeding behaviour in males
through its modulation of ACC signaling, however, this would need to be
further proven in future studies. Overall, the effects seen due to met-
formin treatment represent a state of suppression of food intake
(elevated LKB1 and mTOR for example). However, this immediate effect,
while seemingly positive, suppresses food intake and body weight, and
may predispose the offspring for elevated rates of weight gain and food
intake once metformin is no longer present in circulation. Indeed, studies
in older mice assessing alternating weeks of metformin treatment show
wide variances in food intake behavior in weeks with or without met-
formin treatment [110]. Thus, early exposure to metformin as in our
studies, show elevated activation of signaling proteins in metformin
responsiveness which likely decrease food intake, resulting in the most
dramatic reduction in weight gain in the offspring exposed to maternal
obesity. However, these offspring may then be predisposed to elevated
catch up growth after cessation of treatment. Supporting this is the
evidence in humans that elevated rates of weight gain are seen in the
children with metformin exposure [86].

4.4. Unique sex-specific effects induced by maternal metabolic
state and metformin treatment

Interestingly, our study demonstrates significant sex-specific differ-
ences in many of the parameters analysed as previously discussed.
Specifically, in females a much stronger elevation in GDF15 in the

presence of maternal HFD is noted. Both males and females show an
elevation in leptin due to diet, but only males show a normalization with
metformin treatment, but here only in the context of maternal obesity.
This emphasizes that maternal metabolic state (weight gain versus
weight stable) can impact how the offspring respond to metformin
treatment. This is also reflected in the glycemic response in which all
male animals with metformin exposure show decreased glycemia,
independent of which maternal nutritional paradigm. Females with the
maternal GWG paradigm do not show decreased glycemia with met-
formin, indicating again a physiological interaction of maternal meta-
bolic state, sex and treatment. In both sexes, the body weight response
to treatment in combination with diet shows striking differences.
Indeed, in the context of maternal obesity, a dramatic decrease in body
weight gain across the postnatal period is present. However, if the
mothers are in a weight gain phase in the GWG model, this effect of
treatment on body weight gain is lost, and perhaps even amplifies body
weight in the context of treatment. Therefore, it may be critical in
human pregnancy to determine the rate of weight gain in comparison
to a standardized value, and the intervention of choice (lifestyle,
nutritional or pharmaceutical) should be selected accordingly. Previous
studies have also shown how early-life environment affects the
offspring sexes differently, male offspring being more vulnerable to the
obesogenic effects of maternal hyperglycaemia exposure than females
[111,112], which might be protected due to the role of ovarian hor-
mones [113]. Furthermore, both clinical and animal studies have re-
ported sex-dependent effects of maternal metformin exposure
[32,114,115]. While the underlying mechanism is still unknown, the
differential pattern of expression of Octs in the developing hypothal-
amus between sexes that we show here could be playing a role in the
sex differences we reported in our study.

4.5. Conclusions and key points

Metformin usage during pregnancy is becoming more popular, espe-
cially in low income and rural areas, due to its relatively low cost and
tablet-based route of treatment [116]. Hence, longitudinal studies of
metformin exposure at different stages of development are absolutely
necessary to understand its long-term effects. This needs to be framed
in the context of maternal metabolic state, as we show here clear
indications that maternal obesity or maternal excessive weight gain
alone result in different effects in the offspring. This in compounded by
the fact that dependent on the maternal metabolic state, an interaction
with metformin treatment can result in differing outcomes in the
offspring. Our study provides evidence that early metformin exposure
alters metabolic circulating hormones and induces subtle changes in
intrahypothalamic axonal innervation and the AMPK signaling pathway
during the early postnatal period. Alterations in hypothalamic structure
and function during early life can predispose the offspring to develop
metabolic disorders later in life, thus a follow-up analysis into adult-
hood in mice would help us to understand the long-lasting effects of
metformin exposure. A further analysis of cell-type and hypothalamic
subregion specificity would be necessary to definitively understand the
impact of early metformin exposure in the context of maternal over-
nutrition. Ultimately, understanding the long-term implications of early
developmental exposure to maternal obesity and anti-diabetic treat-
ments, especially those reaching the developing brain, can lead to
informed decisions necessary for GDM treatment.
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