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Abstract

Process design and optimization continue to provide computational challenges as the chemical 

engineering and process optimization communities seek to address more complex and larger scale 

applications. Software tools for digital design and flowsheet simulation are readily available for 

traditional chemical processing applications such as in commodity chemicals and hydrocarbon 

processing; however, tools for pharmaceutical manufacturing are much less well developed. 

This paper introduces, PharmaPy, a Python-based modelling platform for pharmaceutical 

manufacturing systems design and optimization. The versatility of the platform is demonstrated in 

simulation and optimization of both continuous and batch processes. The structure and features 

of a Python-based modeling platform, PharmaPy are presented. Illustrative examples are shown to 

highlight key features of the platform and framework.
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1. Introduction

Pharmaceutical manufacturing has traditionally been dominated by the batch operating 

mode, which offers flexibility in the use of multi-purpose equipment to execute the various 

steps in the production of active pharmaceutical ingredients (APIs). Especially when 
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considering low-volume, high-value products, producing APIs via a sequence of batches 

of material provides a flexible manufacturing strategy in which after each step, intermediate 

material may be tested while avoiding the material losses associated with the start-up of 

a continuous operation. However, even with these benefits, the transition to continuous 

operation is gaining momentum driven by expected benefits in controllability, safety, content 

uniformity and consistency of product quality, reduction in manual labor and other operating 

and capital costs (Içten et al., 2020; Nagy et al., 2020). Along this trend, several tools 

have been proposed in the last years, aiming to support the analysis of dynamic end-to-end 

continuous processes, focusing on solid processing manufacturing systems (Dosta, 2019; 

Kulikov et al., 2005; Skorych et al., 2017) or more general chemical processes involving 

fluid phases (Tu and Rinard, 2006).

Although end-to-end continuous manufacturing could achieve these benefits, limitations of 

existing manufacturing facility capabilities as well as the physics and chemistry-specific 

constraints may dictate that the best operating mode for a given API could be either 

end-to-end batch, end-to-end continuous, or some combination of the two, leading to a 

hybrid manufacturing configuration (Boukouvala et al., 2012; Patrascu and Barton, 2018). 

Ultimately, the choice of the optimal manufacturing line design should be determined by 

process economics and the requirements of meeting the critical quality attributes (CQAs) of 

an API and not based on prior beliefs about which mode is best. Such design must also be 

developed within the quality-by-design (QbD) or quality-by-control (QbC) framework and 

the associated design space construct (Su et al., 2019; Yu et al., 2014).

Implementing QbD and QbC analyses typically requires use of relevant digital process 

models to ensure accuracy in quantitatively establishing a robust operating region or design 

space. For example, relatively recent publications have explored design space identification 

and QbD, through deterministic (Ochoa et al., 2019) and stochastic flexibility analysis 

(Pulsipher and Zavala, 2019). Other publications have advanced the use Monte Carlo 

sampling alone (García-Muñoz et al., 2010) or in combination with feasibility analysis 

strategies (Laky et al., 2019). Given the computational burden associated with assuring 

numerical convergence and the possible lack of mechanistic models that can accurately 

describe relevant process disturbances, some researchers have also proposed data-driven 

methodologies (Bano et al., 2019; Boukouvala et al., 2010; Wang and Ierapetritou, 2017). 

All these approaches, ranging from fully mechanistic modeling to data-driven modeling, 

require that the models used accurately represent the process at hand over the design 

space. Overall, digital design and process modeling of such pharmaceutical systems present 

unique computational and modeling challenges due to the rich chemistry and physics and 

need to meet regulatory scrutiny. These challenges are further exacerbated in dealing with 

hybrid manufacturing modes, which inherently combine process dynamics and systemic 

mathematical and operational discontinuities (Esposito and Kumar, 2007; Puigjaner et al., 

2002).

There are commercial tools, such as Aspen Plus (Aspen Technology Inc., 2020) and 

gPROMS (Process Systems Enterprise, 2020), which are well established for flowsheet 

design and simulation of traditional continuous chemical processes. These tools can 

accommodate the routine design and flowsheet optimization of a user-provided, specific 

Casas-Orozco et al. Page 2

Comput Chem Eng. Author manuscript; available in PMC 2024 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



flowsheet drawing on a library of unit operations models. However, the use of these tools 

to systematically compare structural permutations of unit operations within such a flowsheet 

as well as varying operational modes requires full specification of each flowsheet instance 

via the graphical user interface provided by the package. Also, although many advances 

have been made in modeling batch and continuous processes, there is still an ongoing and 

unfinished effort to seamlessly and accurately simulate hybrid process flowsheets. These two 

deficiencies represent a major gap between the currently available commercial simulation 

software and the modeling requirements to encourage end-to-end optimal, digital design of 

pharmaceutical manufacturing processes that include non-continuous elements.

Given these gaps in commercial software packages, this work aims to address the need 

for flexible flowsheet design and reliable flowsheet simulation of discrete and/or hybrid 

manufacturing routes by introducing the open-source Python package PharmaPy for 

pharmaceutical manufacturing modeling. Our goal is not to replace any existing commercial 

packages: indeed, we encourage the use of a commercial packages, such as gPROMS 

FormulatedProducts. The goal is rather to efficiently compare the large number of possible 

discrete and continuous routes of a pharmaceutical manufacturing process without the need 

to concretely define each individual flowsheet alternative. PharmaPy can be utilized to 

systematically reduce this large set of process alternatives to a reasonably small number that 

can be configured and examined on an individual basis.

PharmaPy is an open-source framework implemented in Python incorporating two major 

thematic digital design goals. The first theme is a standardized modeling and simulation 

platform with the capability of parameter estimation. PharmaPy adopts a sequential-modular 

simulation approach with special consideration for the simulation of non-continuous 

process alternatives. The object-oriented nature of PharmaPy also promotes flexibility 

in flowsheet assembly, allowing the user a great deal of control when performing a 

direct, simulation-based comparison of different flowsheet configurations for a given 

pharmaceutical manufacturing process.

The second theme directly concerns process optimization. As a simulation platform, 

PharmaPy can accommodate conventional approaches to flowsheet optimization including 

direct grid-based searches to conduct case-driven optimization as well as simulation-based 

optimization using gradient free optimizers. This capability is a direct result of the 

generalized implementation of PharmaPy in the highly scriptable Python programming 

language. By keeping all functioning pieces within Python and easily accessible open-source 

libraries, scripting capabilities for custom, high-level analysis can be readily implemented, 

and collaboration facilitated. In fact, any Python tool that can use a callable function during 

numerical analysis may embed PharmaPy simulations within that tool. This feature will 

be showcased during flowsheet optimization of the case study in Section 3.3. There, a 

PharmaPy simulation is embedded first within a custom analysis Python code, and second 

within an open-source gradient-free optimization package to demonstrate the flexibility 

offered by choosing Python as the native language. These simulation-based optimization 

use cases need not be limited to traditional design optimization with or without model 

uncertainty. Also, PharmaPy can be embedded in a structure for optimization over multiple 
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process configurations defined by equipment variations, effectively an enumeration strategy 

over the entire combinatorial space of design configurations.

This work walks through the software architecture of PharmaPy with a case study 

that demonstrates the direct capabilities of process modeling, simulation and parameter 

estimation. Once a flowsheet is realized, PharmaPy exploits the vast library of existing 

computational packages available to Python users for simulation and other forms of 

analysis. For instance, for the simulation of dynamic algebraic equation blocks, PharmaPy 

employs the numerical integration tool SUNDIALS (Hindmarsh et al., 2005). Flowsheets are 

simulated utilizing this and other tools in the sequential modular equation-solving strategy 

(Hillestad and Hertzberg, 1986). These simulation capabilities will be showcased with a case 

study in Section 3. With flowsheet simulation as a core component, the flexible scripting 

capabilities combined with the open-source nature of PharmaPy allow for deep numerical 

analysis using custom solution routines or externally available packages, for instance to 

conduct design space analysis or generate model and parameter uncertainty, among others. 

One demonstration of simulation-based optimization is shown to highlight the flexibility of 

PharmaPy within these analysis frameworks.

The rest of the article will be organized as follows. In Section 2, the general architecture of 

PharmaPy is introduced with more detailed information on specific modeling components 

and computational functions, and the overarching object-oriented software framework. In 

Section 3 the functionalities of PharmaPy will be illustrated with parameter estimation, 

hybrid flowsheet simulation and simulation-based optimization case studies. The paper 

concludes with a summary of lessons learned and comments on capabilities being pursued in 

ongoing work.

2. PharmaPy architecture

PharmaPy is a software tool developed in Python designed to address gaps in pharmaceutical 

flowsheet modeling and optimization. Python was chosen to create a widely available, 

collaborative, open-source package, which allows for flowsheet modeling. The open-source 

PharmaPy model library draws from several models for standard unit operations employed 

in drug substance manufacture, and in on-going work in modeling of drug product 

manufacture as well as providing the flexibility of accommodating customized user-created 

unit operation models. Flowsheet models are constructed by using several building blocks in 

an object-oriented software architecture, described in detail in Section 2.1 with a description 

of individual buildings blocks consisting of material phases (Section 2.2), unit operations 

(Section 2.3), and process kinetics (Section 2.4). These building blocks are linked through 

numerical methods for interpolation of input to and outputs from each unit operation 

in the sequence of dynamic unit operation models comprising a flowsheet (Section 2.5, 

2.6). Finally, some of the embedded usage modes are described in Section 2.7, with the 

aforementioned intention of exploring these and the use of external packages for deeper 

analysis in future work.
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2.1. Overall structure

PharmaPy is structured following an object-oriented architecture (Marquardt, 1992; 

Pantelides and Barton, 1993). In order to create a flowsheet, the user starts by instantiating a 

series of objects, as shown in Fig. 1:

• An object(s) representing material, using either a Phase for material holdup in 

equipment or a Stream for flowing material.

• A unit operation object.

• Optionally, a kinetic object that encapsulates parameter values for kinetic 

or transport mechanisms, and expressions for driving forces such as super-

saturation in crystallization models.

As shown in Fig. 1, both material and kinetic instances are created separately and are added 

to the unit operation instance by aggregation. All these aggregated instances are independent 

of the unit operation (UO) instance and have their own attributes and methods. A UO 

instance can have i) no aggregated material objects: when the material comes solely from 

an upstream unit operation and does not need to be specified, such as when a batch reactor 

is followed by another batch operation ii) one material object: typically for a starting batch 

unit or as the initial holdup of a continuous operation iii) two or more material objects: in 

the case of multiphase operations such crystallization units, or for equipment that need to 

specify both initial holdups and entering flows (e.g. the first unit in a series of continuous 

UOs).

As shown in Fig. 1, several unit operation instances can be created and aggregated 

sequentially into a simulation instance. The simulation executive instance oversees the 

collection of all the unit operation instances in the first stage (square 1 in Fig. 1). In the 

second stage (square 2 in Fig. 1), a series of connection instances are created indicating how 

the material moves between UOs. Once all the flowsheet connectivity is specified by the 

aggregated connecting instances, a topological graph is created internally by the simulation 

executive, and then read by a sorting algorithm (Sridharan and Balakrishanan, 2019), in 

order to determine the best sequence to be used to solve each UO model contained in the 

flowsheet. Although for simple, strictly sequential processes the execution order is obvious, 

namely, the processing sequence, using the mentioned algorithm generalizes the use of 

PharmaPy for more complex flowsheets, e.g. with branches, and expands its capabilities for 

future software releases.

2.2. Material level

Phase and Stream classes allow the specification of material handled by the simulation. 

For initial holdups for any operating mode, different Phase classes are made available 

(Liquid, Solid and Vapor). On the other hand, specification of flowing material is 

facilitated by Stream classes. From the software architecture perspective, Phase classes 

are specialized versions of the ThermoPhysicalManager (TPM) parent class, from which 

Phase classes inherit characteristic functions. In turn, Stream classes are constructed by 

inheritance with respect to their corresponding Phase classes, Fig. 2. The TPM parent 

class contains functions for calculating thermodynamic and physical properties, typically 
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dependent on composition and/or temperature, such as heat capacity, vapor pressure, density, 

viscosity and others. As PharmaPy is intended to be used at conditions typically found in 

the pharmaceutical industry (moderate temperatures and pressures), the offered models for 

property determination are those for ideal gases and ideal solutions. For conditions where 

the ideal solution does not hold (e.g. liquid-liquid separation or vapor-liquid equilibria), 

UNIFAC and UNIQUAC models (Abrams and Prausnitz, 1975; Gmehling et al., 1993) 

are available, which can be selected by the user when instantiating a material object. For 

additional property models, custom functions can be embedded into the TPM class or child 

classes, allowing to handle more specific material properties.

As seen in Fig. 1, all phase instances receive a .json input text file, which is arranged as 

a set of dictionaries containing data for each pure component involved in the simulation. 

Within each dictionary lie both constant values, such as molecular weight and critical 

properties, as well as coefficients for computing physical properties from polynomial or 

first-principles thermodynamic models. In order to create a material instance, a specification 

of material amount (mass, volume, moles), composition (mass/mole fraction or volume-

based concentration) and optionally, temperature and/or pressure must be provided. In the 

case of solid phases, specification of crystal size distribution (CSD) is allowed by entering a 

vector of particle sizes, and either its corresponding volume-percentage size distribution and 

total crystal mass, or number-based CSD (μm−1).

Mixed phases (Slurry or Cake objects) are constructed using a hierarchical material 

structure. In a similar fashion as shown for multiple aggregation in Fig. 1, mixed phases 

can be created at execution time by instantiating a slurry instance, and then aggregating 

liquid and solid instances previously created, as represented by the dashed lines in Fig. 2.

2.3. Unit operation level

Each UO class in PharmaPy has a signature set of methods that describe its operation 

by calculating material and energy balances (which may or may not require using a 

kinetic instance) and solving them according to the specification given by the user during 

instantiation. This way, several modes of operation and model complexities are handled. 

When a collection of models is available for a given UO, the user specifies the type 

of model equations to be used. For instance, different mechanistic models can be used 

to describe crystallization, e.g. reduced order models such as the method of moments 

(Randolph and Larson, 1988) as well as more detailed population balance models (Rawlings 

et al., 1993), which can be further divided depending on the number of internal crystal 

dimensions retained in the formulation. On the other hand, energy balances are switched 

on and off depending on whether the UO is specified to be isothermal, adiabatic, or its 

temperature trajectory T(t) given via a Python function. This specification will determine 

whether the system temperature T  and/or heat transfer temperature fluid Tℎt are to be listed 

as UO model states (must be solved by the model), and consequently, how material and 

energy balances are assembled. When executed, material and/or energy balance results are 

concatenated by a wrapper function and sent to a method internally built into the UO class 

that solves the assembled balance equations by calling an appropriate numerical solver. 

After this, a retrieving function is called, which extracts the solution from the numerical 
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solver and provides useful names to the disaggregated result, to be accessed by the user 

after simulation, or to be internally used, e.g. for internal plotting methods or data post-

processing.

As described in Fig. 1, if a UO model is completely specified, it can be run in standalone 

mode. However, to solve a flowsheet comprised of several UOs, aggregation into a 

simulation instance is necessary. Then, the simulation instance calls the solution method 

for each unit in the appropriate order and transfers data from unit to unit, as described in 

Section 2.1.

Regarding model solution, PharmaPy relies on robust numerical integrators for solving 

dynamic models. Unit operation models are systems of ordinary differential equations 

(ODE), or more generally differential algebraic equations (DAE):

dy
dt = f(t, y, z, u, θ),
0 = g(t, y, z, u, θ),

(1)

where y is a vector of differential states, z is (if present) the vector of algebraic states, u
is the vector of input variables coming from upstream unit operations, and θ is a vector 

containing the parameters of the system.

PharmaPy uses the SUNDIALS suite (Andersson et al., 2015; Hindmarsh et al., 2005), 

which internally calls robust backward differentiation formulas (Biegler, 2010; Hairer 

and Wanner, 1991) to solve the often stiff models encountered in solving pharmaceutical 

dynamic flowsheets. Specifically, SUNDIALS uses the CVODEs and IDAs packages for 

ODE and DAE systems, respectively. These packages adaptively switch between stiff and 

non-stiff implicit integrators as needed, capable of handling the complex dynamics of 

process models more effectively than their explicit counterparts. Moreover, these packages 

have extended sensitivity capabilities, which are of great importance for the parameter 

estimation components built into PharmaPy.

Given the focus of this tool on pharmaceutical processes, partial differential equations 

(PDEs) arise in various integral unit operations. For instance, during crystallization, 

population balance modeling that includes higher resolution finite volume methods must 

be specified in terms of PDEs. Also, when considering certain unit operating modes, for 

instance a plug-flow reactor, PDEs are employed to capture process dynamics. For CVODES 

to be employed, these PDEs must be discretized as an ODE system. Thus, in the case of 

partial differential equations (PDEs), all the spatial coordinates are discretized by various 

schemes, resulting in enlarged systems of ODEs (i.e. the so-called method of lines (Barton, 

1992; Oh and Moon, 1998)).

By breaking the spatial coordinate into nodes, a simple upwind discretization for node n
(Fig. 3) for a given coordinate x reads:
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dy(t)
dx

n

≈
y(t) ∣ n + 1 − y(t) ∣ n

Δx .

(2)

For more numerically challenging models, such as population balance modeling for 

crystallization, a high-resolution discretization method is used (Gunawan et al., 2004; 

LeVeque, 2002). Under this formulation, the change of a given physical quantity is 

represented as the result of input and output fluxes Fn ± 1 ∕ 2 to a finite volume indexed as 

n, Fig. 3:

dyn(t)
dx ≈ Fn + 1 ∕ 2 − Fn − 1 ∕ 2

Δx .

(3)

For example, an upward flux has the following form under the high-resolution method 

(fn = y(t) ∣ n):

Fn − 1 ∕ 2 = fn − 1 + 1
2(fn − fn − 1)φn − 1 ,

(4)

where φn is a limiter function that provides enhanced numerical stability, and is dependent on 

the slope of fn with respect to the studied spatial coordinate (LeVeque, 2002) . It can be seen 

that if φn = 0, the upwind discretization scheme is recovered in Eq.(2).

Sparse jacobians are expected after reformulating a system of PDEs as a system of ODEs. 

For this reason, the generalized minimal residual GMRES (Saad and Schultz, 1986) linear 

method is used, which is proven to be very efficient for large, sparse systems.

2.4. Kinetics level

Different classes are available in PharmaPy for the construction of kinetic instances intended 

for specific physical or chemical phenomena. The modularity offered by this approach 

makes it possible to add a specific behavior to a unit operation (reaction kinetics to a 

batch reactor), and allows to extend the functionality of PharmaPy for more complex 

phenomena such as reactive crystallization. As with Phase and UO instances, kinetic 

objects are instantiated from the available kinetic classes by entering rate parameters and 

any other constitutive equations of interest, depending on the modeled phenomena. The 

ubiquity of reaction and crystallization operations in pharmaceutical processes motivated the 

construction of classes to support these particular mechanisms.

The reaction kinetics class supports mechanisms where reaction rate ri for reaction i is 

conceptualized as the product of a temperature-dependent term (ki) and a concentration-

dependent term fi, each one with its corresponding subset of parameters θk and θf:
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ri = ki(T , θk) ⋅ fi(C, θf),

(5)

θ = {θk, θf} .

(6)

Temperature-dependent constant ki is described by the Arrhenius equation:

ki = ki0 ⋅ exp − Ea, i
RT ,

(7)

whereas the concentration-dependent term, in the case of elementary reactions, is given by:

fi = ∏
j

Cj
αj for νi, j < 0,

(8)

with reaction orders αj for reactant species in reaction i (those with negative stoichiometric 

coefficient νi, j).

For reversible reactions:

ri = ki ∏
j ∣ νi, j < 0

Cj − 1
KC

∏
j ∣ νi, j > 0

Cj .

(9)

For reaction rate equations different from elementary kinetics, PharmaPy allows the 

specification of a user-defined python function for the concentration-dependent term fi, 

which extends the reaction simulation capabilities to include different reaction mechanisms 

such as catalytic reaction rate equations (Casas-Orozco et al., 2018).

In order to facilitate parameter estimation, Eq. (7) can be reformulated as a centered version 

with respect to a reference temperature T ref (Bilardello et al., 1993; Watts, 1994), Eq.(10).

ki = exp φ1i + exp (φ2i)
1

T ref
− 1

T ,

(10)

where the new defined parameters φ1, i and φ2, i are given by:
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φ1i = ln(ki0) − Ea, i
RT ref

,

(11)

φ2i = ln Ea, i
R .

(12)

The reformulations shown in Eqs. (11) and (12) constrain the original kinetic parameters to 

be positive, and also avoid ill-conditioning of the jacobian with respect to the parameters k0

and Ea. Under this new formulation, the parameters sets are:

θk = {φ1, 1, φ1, 2, …, φ1, nrxns, φ2, 1, φ2, 2, …, φ2, nrxns},
θf = {α1, α2, …} .

Crystallization kinetics are also supported by PharmaPy in the form of power law 

expressions for nucleation, growth and dissolution, which depend on absolute or relative 

supersaturation, Eqs (13) and (14), respectively (Szilagyi et al., 2020).

S = C − Csat

(13)

S = C − Csat
Csat

(14)

where Csat represents the temperature-dependent saturation concentration of the crystallizing 

compound as given by solubility measurements.

Nucleation rate is expressed as the sum of primary and secondary nucleation rates:

B = Bp + Bs,

(15)

Bp = kp exp( − Ep ∕ RT)Sp,

(16)

Bs = ks exp( − Es ∕ RT) Ss1(kvμ3)s2,

(17)
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B = max(B, 0),

(18)

where the crystal size distribution third moment μ3 is calculated from the numerical 

solution of particle size (Section 3.2), and kv represents the crystal volumetric shape 

factor. Primary nucleation parameter set is θp = {kp, Ep, p}, whereas for secondary nucleation 

θs = {ks, Es, s1, s2}.

Growth and dissolution rates are expressed similarly:

G = max(kg exp( − Eg ∕ RT)Sg, 0)

(19)

D = min(kd exp( − Ed ∕ RT)S ∣ S ∣ d − 1, 0)

(20)

with parameter sets for growth and dissolution given by θg = {kg, Eg, g} and θd = {kd, Ed, d}, 

respectively.

The operators max and min in Eqs. (18), (19) and (20) are used to capture the change from 

crystallization to dissolution regimes, depending on the value of supersaturation.

2.5. Material transfer policies

Different material transfer policies are established in order to support a variety of operation 

modes, viz. end-to-end batch, end-to-end continuous or hybrid. In general, the material 

exiting a batch or semi-batch unit is assumed to be transferred entirely with or without time 

delay to the next connected unit.

Two operation modes are possible with respect to input material regarding semi-batch UOs, 

depending whether or not material instance was added to the UO at instantiation. If the 

unit is empty, the incoming material from the upstream UO is assumed to be transferred 

completely to fill its initial holdup (Fig. 4a), and an entering stream must have been added 

during instantiation to reflect the continuous feed of material. However, if the unit has an 

initial holdup, then the material coming from the upstream UO is assumed to enter the unit 

as a continuous flow, and consequently, a flowrate value must be provided when specifying 

its corresponding connection (Fig. 4b).

With continuous UOs, different transfer scenarios are possible. For end-to-end continuous 

flowsheets, all connection objects contain Stream instances, thus the material flow is 

continuous from unit to unit. On the other hand, with hybrid flowsheets, one scenario can 

occur when a continuous operation is preceded by one or more discontinuous UOs (Fig. 5a). 

In this case, material is assumed to flow from either the last discontinuous unit, or, if the 

discontinuous unit is to be emptied to be used for another task, from a Mixer, a special UO 
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present in the PharmaPy library designed to hold material from different sources. Mixers are 

considered adiabatic and serve to support batch operation and continuous operation, i.e. one 

or more batch of materials are added to the Mixer or may be fed from continuously flowing 

inputs, respectively.

The second scenario for hybrid flowsheets arises when a batch/semi-batch unit is preceded 

by a continuous unit, as depicted in Fig. 5b. In order to decouple the two sections of the 

flowsheet, the material coming from the continuous unit must be continuously received in a 

special type of container known as a DynamicCollector, also present in the PharmaPy 

library and added by the user when creating a process flowsheet. For instance, when 

material is received from a mixed-suspension-mixed-product-removal (MSMPR) continuous 

crystallizer, the DynamicCollector acts as an adiabatic semi-batch crystallizer, which 

permits the accurate representation of the dynamics of the material holdup as a function of 

time.

2.6. Connection strategy

In order to connect two UOs, two main tasks must be executed. The first task is to determine 

the one-to-one relations between upstream and downstream state names describing the same 

physical attribute. For instance, the composition might be given in molar concentration units 

for a given upstream UO (e.g. a reactor) but in molar fractions for the downstream UO 

(e.g. a vaporizer). Thus, these names must be reconciled with each other for data transfer 

purposes. The second task is related to the sequential-modular architecture of PharmaPy, 

which numerically integrates each unit operation model one by one, thus requiring an 

intermediate calculation to match their corresponding time grids.

2.6.1. Name-matching algorithm

The first task in the connection strategy is accomplished by creating a bipartite graph 

(Bogusch and Marquardt, 1997; Braunschweig and Gani, 2002), such as the one depicted in 

Fig. 6. This is constructed as a Python dictionary by exploring the list of output and input 

names of each of the related unit operations, and recognizing four categories: i) composition 

names: e.g. mass/molar fraction, mass/molar concentration, ii) amount names: viz. mass, 
moles or vol, iii) distribution names: number-based or volume-based particle distribution, 

and iv) flow names: e.g. mass/volumetric flow. Names contained in the output/input sets are 

checked against the aforementioned categories, and paired when they appear on the same 

category in both UOs, Fig. 6.

After this matching is established, the second step is unit conversion of the values of the 

upstream UO, if needed. For this purpose, a subset of the states solved by the ODE/DAE 

integrator must be extracted, since in general, not all the UO states are output states (e.g. 

liquid volume in a well stirred continuous tank is not an output state, whereas temperature 

is). Then, the selected states are passed to the corresponding unit conversion method of the 

receiving material object (Phase or Stream). Unit conversion is performed making extensive 

use of vectorized operations to enhance numerical performance. In the case of volumetric 

conversions (molar or mass concentration), ideal solution is assumed (Rawlings and Ekerdt, 

2002):
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∑
j

Cjvj = 1

(21)

with Cj: molar concentration of component j (mol L−1) and vj: molar volume of component j
(L mol−1)

2.6.2. Interpolation algorithm

The second task of the connectivity component of PharmaPy is the interpolation algorithm, 

which makes part of the classes in the Stream module, . The need of such a calculation 

is shown in Fig. 7, where a given output u from the upstream UO, solved at a series of 

time points, is to be used by the connected downstream UO. In general, sampling times 

of two connected UOs differ, since numerical integration takes place independently for 

each UO, resulting in different internal time steps and evaluation times. Differences in time 

grids for process models solved independently arise from the different timescales of the 

phenomena being modeled, which can be slow (requiring longer time steps) for one UO and 

fast for another (shorter time steps) within the same integration period. This sampling time 

mismatch is alleviated by using interpolation of the time series returned when solving the 

upstream UO.

Two interpolation schemes are used. For the instantaneous numerical integration of the 

downstream UO (a single time value is passed to the interpolation function), three sampling 

points of the upstream UO timeseries are selected, such that the time value selected by 

the integrator for the downstream UO is contained (Fig. 7). Then, a Newton interpolation 

formula (Press et al., 2001) is used to build a local interpolation model that evaluates the 

states at the time value requested by the numerical integrator.

On the other hand, when the inputs to the downstream UO are to be evaluated at multiple 

time values, e.g. for calculating heat duty from the energy balance solution, Newton 

interpolation formulas are no longer used, given their natural oscillations at high polynomial 

orders. Instead, the cubic spline capabilities of Scipy (Virtanen et al., 2020) are used to 

efficiently evaluate inputs at several time values simultaneously.

2.7. Usage modes

In order to provide different functionalities, from the analysis of flowsheets to the generation 

of digital twins, several usage modes are available in PharmaPy. These currently include 

parameter estimation, flowsheet simulation and flowsheet optimization.

Parameter estimation is facilitated by the ParameterEstimation class in PharmaPy, 

which offers both unconstrained optimization via Levenberg-Marquardt algorithm 

(Marquardt, 1963; Nielsen, 1999) and constrained optimization through IPOPT (Wächter 

and Biegler, 2006). The ParameterEstimation class receives a Python function that 

encodes the model of interest, and datapoints of the measured independent variable and 

any number of dependent variables. In general, the provided function should depend on the 
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parameters, and on a given independent variable (time, spatial position). Gradient of the 

objective function with respect to the parameters is calculated either by finite differences or 

by a user-defined function.

In order to communicate UO models and the parameter estimation platform, each UO 

class in PharmaPy has a method that wraps its corresponding solution method to meet 

the required model structure by the ParameterEstimation class. This wrapper also 

performs any additional calculations that might be needed before passing the state variable 

and derivative information. Additionally, the parameter seed values can be automatically 

retrieved by PharmaPy from a kinetic instance attached to a given UO, or can be 

independently provided by the user to the ParameterEstimation instance.

Given that many applications of parameter estimation involve the use of dynamic models, 

time-dependent sensitivities S ≡ dy
dθ  and R ≡ dz

dθ , when information to calculate them is 

available, are used to solve for the jacobian of the objective function with respect to the 

parameters (Bard, 1974; Bates and Watts, 1988), Eq. (22)

dS
dt = df

dyS + df
dzR + df

dθ ,

0 = dg
dyS + dg

dz R + dg
dθ,

(22)

with df ∕ dy (dg ∕ dy) and df ∕ dθ (dg ∕ dθ) the jacobian matrices of the right-hand side of 

Eqs. (1) with respect to the states and with respect to the parameters, respectively. In 

PharmaPy, these jacobians are computed from their analytical forms for elementary reaction 

kinetic mechanisms, under the reparametrization shown in Section 3.1. For the method of 

moments in crystallization models (Section 3), a series of analytical derivatives are also 

provided (Nagy and Braatz, 2007). For other kinetic mechanisms, automatic differentiation 

via Autograd (Maclaurin et al., 2020) is used to obtain reliable derivative information.

PharmaPy also is a flexible instrument while performing flowsheet optimization via 

parameter sweeps and other simulation-based strategies. For sample-based optimization 

techniques, the Pythonic nature of PharmaPy allows for analysis to be parallelized 

through packages such as MPI for Python (Dalcín et al., 2005), significantly improving 

computational flexibility for users limited only by the availability of HPC resources. Given 

the high amount of user control, implementing complex and unique uncertainty schemes 

on both operational and model parameters, users can readily tailor existing or novel 

solution techniques around flowsheet simulation and optimization. More direct optimization 

approaches are available by utilizing gradient-free optimization packages, such as Nevergrad 

(Rapin and Teytaud, 2018), inside user-created solution algorithms.

There are also plans for other usage modes that have yet to be implemented. Discussion of 

these plans and other future implementations in PharmaPy is available in Section 4.
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3. Case studies

In this section, the three main functionalities of PharmaPy, namely, parameter estimation, 

process simulation and process optimization, are shown through a case study involving an 

API manufacturing process. For illustrative purposes, the reaction system shown in Eq. (24) 

is used, where reactants A and B participate in two reactions yielding C and D, with C the 

API of interest and D an undesired side-product.

A + B C (1),
B + C D (2),

(23)

All models were run on an Intel Core i7 Windows 10 machine, with 3.0 GHz and 16 GB of 

RAM memory.

3.1. Parameter estimation

Parameter estimation capabilities in PharmaPy are illustrated by fitting a set of batch, 

isothermal reaction datasets to the reaction mechanism in Eq. (1.24). As explained in Section 

2.7, analytical jacobians for elementary reaction models are implemented in PharmaPy. For 

this purpose, material balances for a batch reaction system can be conveniently represented 

in matrix form as:

dC
dt = StT ⋅ r C, T , θ

(24)

Where r = [r1, ⋯, rnrxn] is a vector containing reaction rates ri as given in Eq. (5), and St matrix 

a nrxn × ncomp matrix containing stoichiometric coefficients νi, j.

The representation shown in Eq. (24) permits the required jacobians for parameter 

estimation to be expressed in a straightforward computation. The jacobian of the right-hand 

side of Eq. (24) with respect to the states, for the isothermal case, reads:

JC = StT dr
dC

(25)

with the elements in matrix dr ∕ dC given by:

∂ri
∂Cj

= kiαj
∏k Cαk

Cj
, ∀ i ∈ {1, …, nrxn}, j ∈ {1, …, nspecies}

(26)

Similarly, the jacobian with respect to parameters is given by:
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Jθ = StT dr
dθ

(27)

The derivatives necessary to build matrix dr ∕ dθ are:

∂ri
∂φ1, i

= ri, ∀ i ∈ {1, …, nrxn}

(28)

∂ri
∂φ2, i

= ri
1

T ref
− 1

T exp (φ2, i), ∀ i ∈ {1, …, nrxn}

(29)

∂ri
∂αk

= ln (Ck)ri ∀ i ∈ {1, …, nrxn}, k ∈ {1, …, nord, i}

(30)

where nord, i represents the number of non-zero reaction orders for reaction i.

Simulated reaction data at three different temperatures (288 K, 298 K and 308 K) and with 

initial concentrations CA = CB = 1 mol L−1 were generated for the reaction system shown in 

Eq. (23), using the batch reactor model, Eq. (24), and the nominal parameter values shown 

in Table 1. Normal noise N ∼ (0, 0.01) was added to the resulting concentration timeseries in 

order to convert it to the reference dataset used by the parameter estimation platform.

A flowchart of the generation of PharmaPy objects for parameter estimation is shown in 

Fig. 8. As shown in the Fig., UO object (batch reactor) receives material and kinetics 

instances by aggregation. Then, the UO object can be in turn aggregated to a simulation 

object, in order to unlock further capabilities including parameter estimation. Initial reaction 

conditions are specified in a LiquidPhase object and consist of the amount, concentration 

and temperature of the initial liquid loaded to the reactor. The LiquidPhase object also 

holds a reference to a file containing relevant material thermophysical properties for pure 

components. On the other hand, a RxnKinetics object is then instantiated and the nominal 

kinetic parameters shown in Table 1 are passed in along with a stoichiometric matrix 

representing Eqs. (23). A batch reactor object is also instantiated, specifying which species 

contained in the pure component database participate in the reaction (have entries in the 

stoichiometric matrix). The phase and kinetic data are then embedded in the batch reactor 

object, as explained above (Fig. 8). A further aggregation of the specified reactor model to a 

simulation instance completes the requirements to build the PharmaPy model.

Aggregating the unit operation model to the simulation instance permits two important 

functions: (1) to execute the reactor model in standalone form (for data generation 
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purposes), and (2) to facilitate the parameter estimation problem. For the latter, the 

simulation object offers an interface that allows specification of experimental data (in this 

case the one generated with the model), initial parameter seeds, solver algorithm options 

(for UO model and optimizer), and, if more than one experimental dataset is provided, the 

conditions at which the unit operation model should be specified for each unique data set. 

For the present case, this information is provided as phase modifiers, which set the initial 

state of the phase or each of the provided datasets at the three different temperatures.

A sampling interval of 60 seconds over the course of 1-hour experiment was assumed 

for the three synthetic datasets. The corresponding conversions of B for the three 

tested temperatures were 73.4%, 82.5% and 89.4%, respectively. A reference temperature 

T ref = 303 K was used for the exponential term of the rate equation.

Results of the parameter estimation are shown in Fig. 9, where all the three datasets were 

used to determine ki and Ea, i values simultaneously. As observed, a rather poor model 

prediction is obtained using the initial estimate parameters, with the reaction going to 

complete conversion before 15 min for each of the three datasets. This is mainly caused 

by the relatively low initial activation energies used, Table 1. The Levenberg-Marquardt 

algorithm is successful in fitting the data after 10 iterations, with a total run time of 0.64 

seconds wall clock time.

In order to test the robustness of the parameter estimation algorithm, 

Ea = [2.5 × 104, 2.5 × 104] values were used as initial estimates. Unlike the original estimates 

in Table 1, the total reaction conversion for this parameter estimate is much lower than the 

data (a slower reaction speed). The effect of changing the initial parameter values on the 

initial parametric sensitivity of the reaction model is shown in Fig. 10, using the plotting 

capabilities provided by the PharmaPy reactor model. A significant drop in parametric 

sensitivity is observed after increasing the initial activation energy estimates. This change 

is verified by examining the parameter condition number cn (Eq. (32)) at the beginning of 

the optimization run, which exhibits an order of magnitude increase from 1568 for the first 

parameter estimate to 15 325 for the second parameter estimate

cn = ς1
ςn

,

(31)

with ς1 and ςn the first and last singular values of the Hessian approximation of the 

Levenberg Marquardt algorithm A = JTJ.

Consequently, more iterations and computation time are required to estimate the parameters 

(14 iterations and 2.2s instead of 10 iterations and 0.64s). Furthermore, evaluating an initial 

estimate with high enough activation energy, Ea = [3 × 104, 3 × 104], significantly increases 

the initial condition number cn = 7 × 105, which renders the parameter estimation infeasible.

The conditioning analysis available in PharmaPy is a valuable tool for a user to inspect the 

seed values used in parameter estimation, and to analyze the conditioning of the system 
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that leads to a stable parameter estimation run. This ultimately will increase the chances 

of a successful run and will also impact the amount of user and computational time spent 

performing parameter estimation.

Parameter estimation analysis is completed by determining the asymptotic confidence 

intervals of the regressed parameters, using the statistical platform offered by the simulation 

instance. Confidence intervals are calculated as:

θ − tα ∕ 2, dofσθ < θ < θ + tα ∕ 2, dofσθ,

(32)

where dof = ndata − nparams and tα ∕ 2, dof is the critical value of a Student t-distribution for the 

given confidence interval α, and the parameter standard deviation given by

σθ = diag(covθ) .

(33)

Parameter covariance matrix is computed in terms of the residual res and the Hessian 

approximation A:

covθ = resT ⋅ res
dof A−1 .

(34)

Confidence intervals are shown in Table 2. The values obtained for the transformed 

parameters φ1, i and φ2, i are symmetric, but are asymmetric when translated to the 

corresponding physical model parameters, as observed in Table 2.

3.2. Flowsheet analysis

Simulation capabilities of PharmaPy are demonstrated with the analysis of a hybrid batch/

continuous process for the synthesis, crystal formation, and solid separation of an API. The 

proposed process involves continuous and discontinuous UOs, comprising single phase UOs 

(reactor and liquid collector) and multiphase UOs (crystallizer and filter). In this process, an 

API is continuously synthesized in a plug flow reactor (R01) and subsequently crystallized 

in an unseeded batch crystallizer (CR01) using a linear cooling profile. The material from 

CR01 is then filtered batch-wise in a filtration unit (F01). To decouple R01 and CR01, 

an intermediate holding tank (HOLD01) gathers material output from the PFR to be later 

distributed to the batch crystallization unit, as shown in Fig. 11.

The models used for the process flow diagram in Fig. 11 are described next. First, plug flow 

reactors (PFRs) are modelled under the assumptions of no radial gradients, negligible axial 

dispersion and constant heat transfer temperature Tℎt, below in Eqs. (35):
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∂Cj
∂t = − F

.
in

∂Cj
∂V + ∑

i
νi, j ⋅ rj ∀ j ∈ {1, …, ncomp}

∑
j = 1

ncomp
CjCp, j

∂T
∂t = − F

.
in ∑

j = 1

ncomp
CjCp, j

∂T
∂V + ∑

i = 1

nrxn
ΔHrxn, i(T )ri − Ua(T − Tℎt),

(35)

where V  is the volume coordinate (m−3), F
.

in is the inlet flowrate (m3 s−1), U is the heat 

transfer coefficient (W m−2 K−1), a is the heat transfer area (m2 m−3), ΔHrxn, i is the heat of 

reaction for reaction i (J mol−1) and Cp, j is the heat capacity of component j (J kg−1 K−1), 

given by:

Cp, j(T ) = Aj + BjT + CjT2 + …

(36)

Upon upwind discretization of the V  dimension, the reaction model, Eqs. (35), is converted 

into a set of ODEs, Eqs. (35):

dCj
n

dt = − F
.

in
Cj

n − Cj
n − 1

ΔV + ∑
i

νi, j ⋅ ri C1
n, …, Cncomp

n , Tn ,

∀ j ∈ {1, …, ncomp}, n ∈ {1, …, ndiscr}

Cp, vol
dTn
dt = − F

.
inCp, vol

Tn − Tn − 1
ΔV + ∑

i = 1

nrxn
[ΔHrxn, i(Tn) ⋅ ri]

− Ua(Tn − Tℎt), ∀ n ∈ {1, …, ndiscr}

(37)

with the volumetric heat capacity Cp, vol:

Cp, vol = ∑
j = 1

ncomp
Cj

n ⋅ Cp, j(Tn) .

(38)

For CR01, a one-dimensional population balance with size-independent growth is used, Eq. 

(39).

∂f(t, x)
∂t + G∂f(t, x)

∂x = B ⋅ V ⋅ δ(L − L0), S > 0
∂f(t, x)

∂t − D∂f(t, x)
∂x = 0, S < 0,

(39)

where f represents the crystal size distribution (CSD) of the solids present in suspension 

(μm−1) and x represents the crystal size coordinate (μm). As explained in Section 2.3, a 

high-resolution scheme was adopted to discretize the space coordinate x in Eq. (39) . Thus, 
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the change in crystal size distribution (CSD) can be written as the following ODE system 

(n ∈ {1, ⋯, ndiscr}):

dfn
dt = Fn + 1 ∕ 2 − Fn − 1 ∕ 2

Δx ,

(40)

with the fluxes F  given by:

F1 − 1 ∕ 2 = B ⋅ V ,
Fn − 1 ∕ 2 = G fn − 1 + 1

2(fn − fn − 1)φn − 1

+ D fn + 1
2(fn − 1 − fn)φn , ∀ n ∈ {1, …, ndiscr}

Fndiscr + 1 ∕ 2 = 0 .

(41)

Van-Leer flux limiters φn are used in the present study

φn = ∣ θn ∣ + θn
1 + ∣ θn ∣ ,

θn = fn − fn − 1
fn + 1 − fn

.

(42)

The crystallization model is closed with a material balance for the liquid phase:

dCj
dt = 3 kv ρcry μ2G δj, tg − Cj

ρliq
, ∀ j ∈ {1, …, ncomp}

1
ρliq

= ∑
j

wj
ρj

,

(43)

with ρcry the density of crystals (kg m−3), wj the mass fraction of species j in solution, ρj the 

density of pure component j (kg m−3), and δj, tg the Kronecker delta relating species j and the 

target crystallizing component indexed as tg (j ∈ {1…, ncomp}):

δj, tg = 1, j = tg
0, j ≠ tg

(44)

The nth moment of the CSD, f, can be calculated as:

μn = ∫
0

∞
xnf(x, t) dx,

(45)
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which can be computed numerically from the model solution given a specified size grid for 

the x dimension.

HOLD01, receiving material from R01, can be described by the following system of ODEs:

dwj
dt = m. in

mtot
wj, in − wj , ∀ j ∈ {1, …, ncomp}

dmtot
dt = m. in(t),

dT
dt = m. in

mtot∑j Cp, jwj
(ℎin(T in) − ℎ(T)),

(46)

where m. in is the inlet mass flowrate (kg s−1) and mtot is the instantaneous mass contained in 

the tank (kg). Specific enthalpy is given by:

ℎ(T) = ∑
j = 1

ncomp
wj ∫

T

Tref
Cp, jdT

(47)

Finally, the filtration model for unit F01 is given by:

dmf
dt = ΔP

μliq
αcakeCs

Af
2ρliq

2 mf + Rf
Afρliq

,

(48)

with αcake the average cake resistance (m kg−1), Rf the filtration medium resistance (m−1), 

Af the cross sectional area of the filter (m2), μliq the liquid phase viscosity (Pa s), and ΔP
the delta pressure exerted on the filtration system (Pa). Solid concentration Cs and filtrate 

volume V f are given by:

Cs = V slCsl
V f

,

V f = V sl ε − Csl
ρcry

ε
1 − ε .

(49)

where Csl is the solids concentration in the slurry (kgcrymsl
−3) and V sl the slurry volume (m3). 

Cake porosity ε is given by the Ouchiyama-Tanaka model (Ouchlyama and Tanaka, 1986), 

and mean specific cake resistance αcake is given by (Bourcier et al., 2016):

αcake(t) =
∫0

∞ f(t, x)180 (1 − ε)
ε2x2ρcry

dx

∫0
∞f(t, x)dx

.

(50)

Casas-Orozco et al. Page 21

Comput Chem Eng. Author manuscript; available in PMC 2024 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All general models are contained in the unit operation model library within PharmaPy. 

Using this library, a process is specified by declaring process kinetics, unit operation design 

specifications, and operating conditions, following the software architecture described in 

Sections 2.1, 2.2, and 2.3. The API is synthesized using the reaction network described by 

Eqs. (23) and associated nominal parameter values in Table 2. Reaction model is solved for 

a grid of 100 equally spaced volume elements, whereas crystallization uses 1 μm increments 

for the x coordinate, for a 1-1000 μm range. Crystallization kinetics for this case include 

primary and secondary nucleation, Eqs. (15)-(18), and growth and dissolution, Eqs. (19) 

and (20). These phenomena are represented by the parameters described in Table 3. For 

crystallization, the saturation concentration was modeled as a second order polynomial 

function in temperature, as shown below in Eq. (51):

Csat = A + BT + CT2

(51)

Moreover, R01 is initially loaded with pure solvent at 298 K and HOLD01 is empty. After 

being specified within PharmaPy, the continuous section of the process (R01 and HOLD01) 

was simulated for 7 hours, and then CR01 was run for another 7 hours. Finally, F01 is run 

until the liquid mass mf reduces to a value equivalent to the amount of liquid retained by 

the pores of the filtration cake. This latter operation mode is implemented by setting a state 

event for the dynamic solution of F01. A visual representation of processing times is shown 

in Fig. 12.

The results for API concentration with respect to position along the PFR are shown in Fig. 

13 (left), where it is evident that steady state is reached after approximately 35 minutes of 

simulation. The reaction volume is set such that API concentration is maximum at the end 

of the reactor, i.e. a longer reactor would result in degradation of desired API C to undesired 

side-product D.

The results for HOLD01 are seen in Fig. 13 (right). Here, material from start-up until 

simulation end is sent to the vessel, including the initial solvent-only contents of R01. 

This results in a dilution effect, as it is only after 20 minutes that material with significant 

concentration of reactants and products from R01 reaches HOLD01. Fig. 13 also shows how 

different sets of composition units are used in PharmaPy depending on the requirements 

imposed by the material and energy balances. In accordance with the connectivity strategy 

(Section 2.6.1) PharmaPy links the UO models by converting upstream information from 

the last volume element of R01 this way: material flow from volumetric to mass units, and 

composition from mole concentration to mass fraction.

API concentration profile and solubility profile are plotted versus time for CR01, expressed 

in mass concentration (kg m−3) given the units of the provided solubility curve, Eq. 

(44). After approximately 19 minutes, material begins crystallizing due to supersaturation 

resulting from cooling, accompanied by a quick depletion of API supersaturation, resulting 

from relatively fast growth kinetics. A rapid increase in the total number of crystals can 

also be observed in Fig. 14 (right), typical of crystallization systems, and correctly captured 
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by the integration algorithms utilized, which are equipped to deal with highly stiff ODE 

systems. At the end of the crystallizer operation, a total of 0.83 dm3 of solids are obtained, 

or an equivalent 1.18 kg of API crystals.

On the other hand, CSD, an important critical quality attribute affecting downstream unit 

operations such as filtration-drying and drug product UOs is shown in Fig. 15. It is seen that 

CSD is centered at higher particle sizes as time progresses, which directly translates in an 

increase of mean average size μ1 ∕ μ0 up to 33 μm at the end of the 7 hours of operation.

F01 results are shown in Fig. 16, for a filter diameter of 20 cm. Parabolic profiles for 

filtrate mass are observed in Fig. 16 (left), and the consolidation of the crystal cake in Fig. 

16 (right). Porosity model predicts a final cake with 27 wt% liquid, to be sent either to a 

deliquoring step or a drying process.

The complete consolidated results are shown in Table 4. PharmaPy offers a summary table 

in mass or molar units, which describes the phases present in the connecting streams, as well 

as their most important descriptors, for the end state of the system. The dynamic trajectories 

of each of the UOs can be independently extracted and plotted with convenience functions 

built into each UO. Furthermore, the hybrid nature of the studied process flowsheet is 

reflected in the specification of flowrate and mass depending on the UO in question. Overall, 

37.5 kg of materials are consumed in the manufacturing of 1.18 kg of C (dry cake), with 

a remaining 1.43 wt% of C in the liquid phase after crystallization, for a crystal yield of 

68.4%.

This flowsheet showcases several PharmaPy capabilities: support for distributed, dynamic 

UO models (PFRs), capacity to decouple continuous and discontinuous sections for a 

given hybrid process, and the support for different phases (liquid and solid). Although 

not shown here, there is also support for vapor phases in applicable unit operations, i.e. 

an evaporator unit for solvent swap or preconcentration that can be operated in batch or 

semi-batch mode. Among the physical properties of the solid phases, PharmaPy carries 

particle size distribution information, allowing for accurate modeling in the future drug 

product processing steps.

As seen from Eqs. (40)-(42), PharmaPy also allows for high-resolution FVM modeling in 

crystallization units. Given the future direction of the software, PharmaPy also allows a 

lower fidelity solution method, the standard method of moments, for crystallization units. 

This feature gives users the ability to weigh computational burden against model fidelity, 

especially when performing timewise expensive analysis techniques such as design space 

analysis and identification.

3.3. Flowsheet optimization

Flowsheet optimization is a key element in promoting and facilitating design of end-to-end 

optimal pharmaceutical manufacturing processes. As mentioned previously, any flowsheet 

optimization tool that can utilize function callbacks within Python can use a PharmaPy 

simulation to perform flowsheet optimization. Here, we will utilize two techniques to 

demonstrate how flowsheet optimization can be performed in concert with PharmaPy 
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simulations using two different tools as frameworks. First, a grid-based approach is used, 

leveraging process feasibility resulting from an operating constraint to fix one of the 

operating variables and subsequently choosing an operating point from the reduced, grid-

based design space. This entire process is automated as the framework may call a PharmaPy 

flowsheet at varying operating conditions in succession without the need for manually 

respecifying those conditions. Similarly, the second approach utilizes an open-source, 

gradient-free optimization package, Nevergrad (Rapin and Teytaud, 2018), which calls a 

PharmaPy simulation to determine an optimal operating point over a specified operating 

region.

Using the case study in Section 3.2, a grid-based optimization procedure is employed 

to maximize API production, m, while considering the ratio of necessary filtration time, 

tF01, to batch crystallization time, tCRO1, as a secondary objective. In this case a value of 

0.01 was chosen as the weight, β, for the secondary objective. Three operating variables, 

{τR01, CA, B, fed, tCR01}, are discretized by the following schemes: R01 residence time from 600s 

to 3600s with 11 evenly spaced points, feed concentration of A and B from 0.6 mol/L to 1.5 

mol/L with 10 evenly spaced points, and batch crystallization time from 3 to 10 hours with 8 

evenly spaced points, respectively.

max
τR01, CA, B, feed, tCR01

{m − β(tF01 ∕ tCR01)}

(52)

The volume of R01 is held constant at 2.4L for each simulation at which volumetric flowrate 

is adjusted to account for the residence time design specification. The simulation time 

specification is matched for the reactor and batch crystallization unit, for instance if the 

batch crystallization time is 3 hours, the upstream system is run for 3 hours to generate the 

material to be sent to the batch crystallization unit. To account for disparity in total mass 

output for longer simulation times, the objective function for API mass output is described 

as a rate (kg/h) and filtration time is measured as a fraction of batch time. Although the 

process constraints are primarily design specification variable bounds, concentration of API 

in R01 must not exceed the solubility limit at any time:

C(t, V ) < αCsat(t, V ), ∀t ∈ (0, tsim), V ∈ (0, V R01)

(53)

In this case, we choose α = 0.95 for simplicity, however if uncertainty information on model 

parameters is available, for instance by the methods described in Section 3.1, α should be 

chosen to ensure Eq. (1.50) is not violated with acceptable probabilistic certainty.

The 880 design specification points were simulated in serial for a total computational time 

of 1180s, or just about 20 minutes, averaging roughly 1.34s per simulation instance. First, 

the solubility constraint was analyzed by the data shown in Fig. 17, where the maximum 

relative supersaturation is plotted for residence time versus feed concentration, averaged 
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over simulation time. Any value above 0 represents a violation of Eq. (1.50), with points in 

the lower left region representing feasible operating conditions. An input concentration of 

1.0 mol/L was chosen based on maximizing API output while adhering to the solubility limit 

within R01.

Next, the two simultaneous objectives were compared over the remaining two design 

variables (residence time for R01 and batch time). Fig. 18 shows the rate of mass production 

on the left, as well as total filtration time as a fraction of batch time for residence time versus 

total batch time. Generally, more total mass processed leads to higher filtration times and 

rate of mass production is relatively constant for fixed residence time values.

These trends are combined to generate a pareto-efficiency curve in Fig. 19. Thus, choosing 

a low residence time (600s) produces API at a high rate, and a medium batch time (6 hours) 

ensures filtration time as a fraction of batch time is minimized. However, the filtration time 

in all cases is not near the batch time (<25%) for all cases, indicating that batch time may be 

better chosen via another design criteria, for instance to accommodate the most convenient 

hybrid operation schedule.

A more direct optimization implementation could also employ any gradient-free 

optimization platform. To illustrate this capability, Nevergrad (Rapin and Teytaud, 2018), 

a gradient-free optimization package which internally invokes evolutionary-type search 

algorithms, was chosen. Nevergrad allows the user to choose from various implemented 

gradient-free optimization approaches to optimize input-output functions in Python without 

the use of derivative information. In this case, the so-called One Plus One algorithm 

implementation within Nevergrad was used to perform gradient-free optimization. For this 

strategy, one defines the objective function in Equation (1.49) along with a function of the 

associated simulation of the PharmaPy flowsheet for the API synthesis-purification process. 

Variable bounds are added as simple constraints and objective function penalties are tuned 

by the user on a case-to-case basis. Performing flowsheet optimization with a One Plus One 

algorithm in Nevergrad using a budget of 100 nodes and equivalent bounds to the previous 

approach renders an optimal point with residence time at 603 seconds, fed concentration 

of species A and B at 1.105 mol/L, and a batch crytallization time of 3.51 hours. These 

results align similarly with the parameter sweep approach, indicating that one can achieve 

improved mass production at higher concentrations so long as the reactor does not exceed 

the solubility limit. Although implementing a multi-objective penalty function for constraint 

violation can be successful in some cases, the cumbersome process of tuning objective 

penalties may outweigh the reduction in computational burden by limiting the number 

of flowsheet simulations. In this case, the flowsheet and objective are straightforward 

enough to realize improved solution quality with limited parameter tuning. When ample 

computational resources are available, performing both forms of optimization analysis could 

lead to deeper insight and compel little user effort beyond that required for the initial 

specification and simulation of the process within PharmaPy. Even so, the optimality of 

such points should still be verified on a case-to-case basis given that the methods shown 

here provide no mathematical guarantees of optimality. On a similar note, for practical 

applications, experimental validation of the accuracy and feasibility of the theoretically 

optimal operating conditions, should also be performed.
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4. Discussion

The PharmaPy functionalities discussed in this paper represent the core use cases essential 

to support the design of hybrid processes, which spans parameter estimation, process 

simulation, and process analysis/optimization. The core PharmaPy feature are its object-

oriented architecture coupled with efficient modular structure, which permits fast model 

solution and data transfer, as well as the construction of future models by the declaration 

of a set of consistent model abstractions (Phases, Unit Operations, etc). The latter is a key 

component that facilitates to expand the PharmaPy library, aiming to cover drug product 

UOs, which is intended for the analysis of end-to-end optimal pharmaceutical processes.

Important additional benefits of the architecture are that it can readily accommodate both 

generation of flowsheet superstructure and conversion to equation-based mode for efficient 

execution of superstructure optimization strategies. Detailed discussion of these elements are 

beyond the scope of this paper – here we only offer a sketch of these developments which 

will be described in follow-on publications.

Built into PharmaPy will be an optimization component that utilizes the Python-based 

optimization modeling tool, Pyomo. Flowsheets created for sequential-modular simulation 

within PharmaPy will have an option to be translated into a simultaneous equation-oriented 

Pyomo model. Given the well-known convergence challenges that go along with solving 

large-scale NLPs, simulation is a required first step in translating a flowsheet into one large 

mathematical model as simulation provides important model-specific integration timesteps 

as well as state variable profiles for initialization. The same automation process required 

to express a flowsheet as a mathematical model for flowsheet optimization is also required 

when generating flowsheet alternatives from a general design superstructure. By developing 

key elements of this automation process, flowsheets may be generated from a design 

superstructure and consequently be translated to Pyomo models where the user may utilize 

state-of-the-art solvers such as IPOPT (Wächter and Biegler, 2006), for local solution, 

or BARON (Sahinidis, 1996), for global solution, of rich, simultaneous equation-oriented 

flowsheet and process optimization problems.

5. Conclusions

Here, we present the structure and main capabilities of the Python package PharmaPy, 

aimed to support the simulation and analysis of hybrid pharmaceutical process. This is made 

possible by i) a collection of model representations for unit operation modeling and solution 

under the sequential-modular approach, ii) well defined communication interfaces for fast 

and reliable data transfer and object connection, and iii) a material transfer logic that covers 

different hybrid manufacturing scenarios involving batch, semi-batch and continuous unit 

operations. Moreover, the availability of solid, liquid and vapor modeling objects allow the 

construction of the current library of unit operation models, ranging from API synthesis all 

the way to separation, and sets the basis to easily and intuitively create new drug product or 

drug substance unit operation models.
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The platform structure also allows the use of PharmaPy for a variety of purposes, namely, 

parameter estimation, process simulation, and process analysis. Any process analysis 

technique requiring simulation as an intermediate step may exploit the utility of PharmaPy. 

We demonstrated that utility by enumerating many combinations of process operating 

conditions and direct, derivative-free optimization relying on repeated process simulation. 

Strategies such as traditional design of experiments, with repetitive experimental and 

parameter estimation steps, may be automated within PharmaPy and are currently being 

explored for future work.

PharmaPy is built by making extensive use of object-oriented programming concepts, and 

benefits from the flexibility, software development, and scripting capabilities of the Python 

programming language. Moreover, this also enables the use of a rich set of open-source 

tools that are illustrated in this contribution to expand the capabilities of PharmaPy. 

For example, by using techniques based solely on process simulation, or more elaborate 

techniques involving model decomposition and rigorous optimization techniques such as 

those facilitated by Pyomo. We are currently exploring analysis techniques using simulation 

and rigorous optimization to improve the utility and native functionality of PharmaPy.

The convergence of these features makes PharmaPy a powerful tool for the analysis 

of numerous processing schemes encountered in pharmaceutical manufacturing systems. 

Also, the package serves as a valuable tool for supporting the current paradigms for 

pharmaceutical process improvement such as Quality by Design, which heavily relies on 

the construction and maintenance of robust digital process models.
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Fig. 1. 
Object diagram of the architecture of PharmaPy. Hollow diamonds: aggregation, filled 

diamonds: composition, dashed lines: instantiation, arrows: entering arguments.
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Fig. 2. 
Simplified class diagram for the material classes of PharmaPy. Hollow arrows: inheritance, 

filled arrows: aggregation.
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Fig. 3. 
Scheme of the discretization model for the HR discretization method for a spatial coordinate 

xi.
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Fig. 4. 
Material transfer policies for semi-batch reactors.
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Fig. 5. 
Transfer policies for hybrid flowsheets. Continuous arrows: material flow. Dashed arrows: 

material transfer after the completion of the discontinuous operation, or material added at 

one time. Dashed vertical lines separate continuous from discontinuous operation
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Fig. 6. 
Bipartite graph between the set of names of two connected unit operations: a continuous 

reactor R01 and a continuous vaporizer VAP01.
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Fig. 7. 
Time grids for two connected unit operations. For local evaluation, a Newton interpolation 

formula of order 3 is employed to evaluate the inputs to the downstream UO from upstream 

UO data.
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Fig. 8. 
PharmaPy object creation for a parameter estimation problem. Continuous arrows: user-

provided arguments for object instantiation, dashed arrows: object instantiation, lines with 

squared hollow tips: object aggregation.
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Fig. 9. 
Data fitting for the reaction datasets. Markers: experimental data, continuous lines: model 

predictions, shaded line with markers: model predictions using initial estimate parameters.
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Fig. 10. 

Parametric sensitivity for Ea, seed = [104, 104] (main plots) and Ea, seed = [2.5 × 104, 2.5 × 104](inset 

plots) at 308 K.
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Fig. 11. 
Process flow diagram for the production of the API C. Continuous lines: continuous flows. 

Dashed lines: material transfer after the completion of the batch.
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Fig. 12. 
Gantt chart of the simulated case study. R01-HOLD01: continuous UOs. CR01 and F01: 

batch UOs.
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Fig. 13. 
Left: transient API concentration as a function reactor position (time tags in minutes). b. 

Mass fraction of the accumulated reactor outlet over time.

Casas-Orozco et al. Page 43

Comput Chem Eng. Author manuscript; available in PMC 2024 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Results for batch crystallizer CR01. Left: API concentration profile along with the solubility 

profile over time. Right: zeroth and third moment of the CSD over time.
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Fig. 15. 
Left: Time evolution of the volume-based CSD for the simulated case study (distribution 

sampled every 0.5 h). Right: evolution of mean crystal size.
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Fig. 16. 
Filtrate (left) and cake (right) mass in F01.
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Fig. 17. 
Effect of reactor residence time and reactant input concentrations in relative supersaturation.
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Fig. 18. 
Left: Effect of reaction and crystallization times on filtration time. Right: Effect of reaction 

and crystallization times on total API production.
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Fig. 19. 
Pareto efficiency curve for filtration time as a fraction of total batch crystallization time 

versus mass production rate of API (kg/h) for unique simulated design specifications.
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Table 1

Kinetic parameters used to generate reaction data and seeds used during parameter estimation.

Reaction (i) k0, i(L mol−1) Ea, i(J mol−1)
Nominal Initial estimate Nominal Initial estimate

1 3 0.5 22 000 10 000

2 2.1 0.5 18 000 10 000
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Table 2

95% confidence intervals for the regressed parameters.

Parameter Lower bound Converged value Upper bound

k1 (L mol−1) 2.404 2.938 3.597

k2 (L mol−1) 1.659 2.397 3.485

Ea, 1 (J mol−1) 21 460.06 21 952.84 22 456.94

Ea, 2 (J mol−1) 17 421.14 18 320.18 19 265.62
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