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PURPOSE. Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role
in non–image-forming visual functions. Given their significant loss observed in various
ocular degenerative diseases at early stages, this study aimed to assess changes in both the
morphology and associated behavioral functions of ipRGCs in mice between 6 (mature)
and 12 (late adult) months old. The findings contribute to understanding the preservation
of ipRGCs in late adults and their potential as a biomarker for early ocular degenerative
diseases.

METHODS. Female and male C57BL/6J mice were used to assess the behavioral conse-
quences of aging to mature and old adults, including pupillary light reflex, light aversion,
visual acuity, and contrast sensitivity. Immunohistochemistry on retinal wholemounts
from these mice was then conducted to evaluate ipRGC dendritic morphology in the
ganglion cell layer (GCL) and inner nuclear layer (INL).

RESULTS. Morphological analysis showed that ipRGC dendritic field complexity was
remarkably stable through 12 months old of age. Similarly, the pupillary light reflex,
visual acuity, and contrast sensitivity were stable in mature and old adults. Although
alterations were observed in ipRGC-independent light aversion distinct from the pupil-
lary light reflex, aged wild-type mice continuously showed enhanced light aversion with
dilation. No effect of sex was observed in any tests.

CONCLUSIONS. The preservation of both ipRGC morphology and function highlights
the potential of ipRGC-mediated function as a valuable biomarker for ocular diseases
characterized by early ipRGC loss. The consistent stability of ipRGCs in mature
and old adult mice suggests that detected changes in ipRGC-mediated functions
could serve as early indicators or diagnostic tools for early-onset conditions such as
Alzheimer’s disease, Parkinson’s disease, and diabetes, where ipRGC loss has been
documented.

Keywords: melanopsin, aging, mouse retina, function, biomarker

V isual function declines with age,1 with aging affect-
ing both the cornea and lens required for a clear

light path, photoreceptors and their circuitry, and visual
processing in the brain. Manifestations of normal aging
include decreased visual acuity, contrast sensitivity and
the onset of sleep and circadian dysfunction,2,3 which are
linked to both rod and cone photoreceptors and intrinsi-
cally photosensitive retinal ganglion cells (ipRGCs) in the
retina.4–10

ipRGCs containing the photopigment melanopsin8–10 are
well conserved across species, including humans,11–14 and
are located in the retinal ganglion cell layer (GCL), with a
large displaced population in the inner nuclear layer (INL) in
humans and a small displaced population in mice.15 ipRGCs
are a class of photoreceptors that mediate both non–image-
forming functions of the eye16 and vision-forming path-
ways. ipRGC functions include photoentrainment of circa-
dian rhythms, modulation of the sleep/wake cycle, masking
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response, sleep regulation, control of pupillary light reflex,
light-induced suppression of melatonin secretion, mood
regulation,17,18 and color pathway and brightness percep-
tion.19–23

With age, a number of extraretinal changes can alter
visual function. For example, age-related changes in lens
clarity and density24,25 can reduce the transmission of blue
light, which is known to suppress ipRGC-mediated mela-
tonin secretion during the day.26 A further age-related
change in the eye that may contribute to reduced levels of
light reaching the ipRGCs is the reduction in pupil size.27

As a result, this diminished blue light input to the circadian
clock has been shown to result in disturbed circadian rhythm
and sleep in the elderly.2,7,28,29 In addition to these non-
specific decreases in retinal illumination, ipRGCs are often
disrupted in many neurodegenerative disorders including
Alzheimer’s disease (AD),30–33 Parkinson’s disease (PD),34–37

Huntington’s disease,38,39 glaucoma,40–42 and diabetes,43,44

suggesting that ipRGC-mediated functions may be useful
biomarkers of early onset disease. Therefore, it is crucial to
study the effects of normal aging in mature and old adult
control animals to facilitate identification of functional and
anatomical retinal impairments resulting from early disease
onset from younger adults. Given the reported correlation
of ipRGC pathologies with ophthalmic diseases, there is a
potential of ipRGCs to serve as biomarkers in many neurode-
generative diseases.

In this study, we present a comparison of ipRGCmorphol-
ogy in mature adult (6 months old) and old adult (12 months
old) mice and its correlation with behavioral functions medi-
ated by the melanopsin system. In addition, sex-related
differences in most neurodegenerative diseases are increas-
ingly recognized, particularly in early-onset conditions such
as PD, that occur before the age of 40 or 50 years,45,46 as well
as early-onset AD, which affects individuals in their 30s and
40s.47–49 Men tend to be more commonly affected by early-
onset PD, possibly due to hormonal and genetic factors.50,51

Conversely, early-onset AD exhibits a higher prevalence in
women, potentially influenced by sex-specific genetic vari-
ants and hormonal fluctuations throughout their reproduc-
tive life.52,53 Moreover, sex-related disparities are evident in
nonarteritic anterior ischemic optic neuropathy occurring in
the late 30s54 and diabetic retinopathy, which can manifest
as early as the age of 30.55 The underlying mechanisms for
these differences involve complex interactions among sex
hormones, genetic predispositions, and immune responses.
Recognizing and understanding these sex-specific aspects of
neurodegenerative and ocular diseases are vital for devel-
oping tailored treatments and personalized approaches that
consider the distinct needs of male and female patients,
ultimately leading to improved therapeutic outcomes and
enhanced quality of life. Therefore, we have included an
analysis of the differences between male and female mice
in ipRGC function and M1 ipRGC subtype morphology.

MATERIALS AND METHODS

These studies were conducted under protocols approved by
the University of California at Los Angeles (UCLA) Animal
Research Committee. All experiments were carried out in
accordance with guidelines for the welfare of experimental
animals issued by the U.S. Public Health Service Policy on
Humane Care and Use of Laboratory Animals, and the UCLA
Animal Research Committee.

Animals

Female and male C57BL/6J mice (000664, bred at UCLA;
The Jackson Laboratory, Bar Harbor, ME, USA) at 6 and
12 months of age (a total of 39 animals) were used
in this study, and data analyzed from past experiments
represented an additional 190 animals. All mice were
housed in standard cages in a temperature-controlled
room on a 12-hour light/dark cycle with free access to
standard pellet food and water. Opn4DTA mice (035927,
Opn4tm3.1(DTA)Saha/J; The Jackson Laboratory) express
the diphtheria toxin subunit alpha (DTA) sequence under
the control of the Opn4 promoter (exons 1–9 of the
opsin 4), resulting in ablation of the ipRGCs.56 These mice
were backcrossed into the C57Bl/6J background and bred
heterozygous to heterozygous, with ipRGC ablation verified
using a qualitative pupillary light reflex assay as reported
previously.57

Behavioral Assays

The light-aversion assay was performed as previously
described with modifications.57,58 A two-chamber box with
open, light and closed, dark sections was used to measure
time spent in the light compartment. An overhead LED light-
ing system, with adjustable illumination from 0 to 1000 lux
calibrated with a light meter (HHLM-2; Omega Engineering,
Norwalk, CT, USA), a standard LED spectrum, and diffusers
provided uniform illumination in the open, lit side of the
chamber. Behavior was monitored using an infrared light
source and video camera with white light filter, and auto-
mated tracking and analysis were performed with a video
tracker (Med Associates, St. Albans, VT, USA) and an activ-
ity monitor (Med Associates), respectively. Mice were accli-
mated to a dimly lit room (less that 10 lux) for at least
15 minutes and dark adapted prior to testing for at least
10 minutes. Light aversion was tested at 0 and 1000 lux:
the 0-lux test was used as baseline to calculate aversion
indices. A 1% Atropine Sulfate Ophthalmic Solution (Akorn,
Lake Forest, IL, USA) was used as a dilating agent where
indicated.

Pupillary Light Reflex

Unanesthetized mice were used for pupillometry as previ-
ously described.57 Before each experiment, mice were accli-
mated in a dimly lit room (less than 50 lux) for at least
10minutes. The pupillary light reflex (PLR) was measured
with a hand-held slit lamp (Kowa SL-15; Kowa Pharmaceu-
ticals, Montgomery, AL, USA) using a semiquantitative scale,
where 1 = pinpoint pupil and 3 = no constriction.

Visual Acuity and Contrast Sensitivity

Mice were acclimated in a dimly lit room (less than 50
lux) for at least 20 minutes prior to testing in a virtual
automated optomotor system (OptoDrum; Striatech, Clear-
water, FL, USA).59–63 Briefly, a mouse was placed on the
center platform of an enclosed chamber with four computer
screens as walls that presented stripes of varying thickness
and contrast. Head movement was captured by an over-
head camera and tracking was computationally determined.
Mice were tested for visual acuity using 99.7% contrast with
spatial resolution between 0.056 and 0.50 cycles per degree.
Contrast sensitivity was assessed at multiple spatial resolu-
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tions with contrast between 0.9% and 99.7%, using the recip-
rocal of Michelson’s contrast threshold. Light intensity at the
mouse’s cornea was in the mesopic range at approximately
90 to 110 lux.

Immunohistochemistry in Whole-Mounted Retinas

Following deep anesthesia with 1% to 3% isoflurane (Abbott
Laboratories, Abbott Park, IL, USA), animals were eutha-
nized by cervical dislocation or decapitation. The eyes were
enucleated and dissected in Hibernate A (Invitrogen, Carls-
bad, CA, USA) for fluorescence and immunohistochemi-
cal studies. The retinas were removed from the eyecups,
and four small incisions were made on each retina to lay
the tissue flat. Retinas were mounted onto nitrocellulose
membrane filters (EMD Millipore, Billerica, MA, USA), with
the GCL facing upward, and fixed for 15 minutes in 4%
paraformaldehyde in 0.1-M phosphate buffer (PB) at room
temperature.

Immunohistochemical labeling was performed using our
published protocols.64–67 After fixation, the whole-mounted
retinas were subsequently washed in PB three times for
a total of 90 minutes and incubated in 10% normal goat
serum with 0.5% Triton X-100 at 4°C overnight. Retinas were
removed from the blocking solution and subsequently incu-
bated in anti-melanopsin primary antibodies (1:1000, AB-
N39; Advanced Targeting Systems, San Diego, CA, USA) for 7
days at 4°C. They were then rinsed three times for 30 minutes
each with 0.1-M PB and incubated with the corresponding
secondary antibodies (1:1000, Goat anti-Rabbit IgG Alexa
Fluor 488 or Alexa Fluor 594; Invitrogen) overnight at 4°C.
The following day, the retinas were washed three times
in 0.1-M PB for a total of 90 minutes and subsequently
placed on a microscope slide with the GCL facing upward.
Then, the samples were mounted in Aqua-Poly/Mount (Poly-
sciences, Warrington, PA, USA), and the coverslips were
sealed with nail polish. As a negative control, the omission of
the primary antibody confirmed the elimination of specific
labeling.

Fluorescent Image Acquisition

Labeling was assessed with a Zeiss laser scanning micro-
scope (Zeiss LSM 880; Carl Zeiss Microscopy, Jena, Germany)
with a Zeiss C-Apochromat 40×/1.2 corrected water immer-
sion objective. The images were captured at a resolution of
1024 × 1024 pixels.

M1 ipRGC Morphological Analysis

M1 ipRGCs from all retinal quadrants (nasal, temporal, supe-
rior, and inferior) were reconstructed using Imaris 9.5.0
(Bitplane AG, Concord, MA, USA) with the Filament Tracer
option. The Filament Tracer operates on three-dimensional
images, which provides sufficient resolution to resolve the
filaments to be studied in all three spatial directions. The
Filament Tracer option automatically computes all the paths
from a user-defined starting point (ipRGC body) to the
end of the structure. The filaments were then manually
traced by the user. Imaris provided the dendrite length,
Sholl analysis, and total number of dendritic branch points.
M1 densities and soma sizes were measured with Imaris
software.

Statistics

All values are given as mean and standard error of the
mean (SEM). Single statistical comparisons of a group
versus its control group were performed using a two-tailed
Student’s t-test or two-way ANOVA as indicated in Prism
4.0 or 9.0 (GraphPad, Boston, MA, USA). If data were not
normally distributed, non-parametric tests (Mann–Whitney
U test) were used. P ≤ 0.05 was considered statistically
significant.

RESULTS

Behavioral Consequences on Light Aversion and
Pupil Dilation in Mice

To investigate whether aging results in detectable functional
deficits in ipRGCs in mice, we tested light aversion behav-
ior with and without pupil dilation (Fig. 1). Wild-type mice
exhibited increased light aversion with atropine dilation for
both sexes (6-month-old males, n = 41; 12-month-old males,
n = 3; 6-month-old females, n = 32; 12-month-old females, n
= 6) (Figs. 1A, 1B). Mice lacking ipRGCs (6-month-old males,
n = 20; 12-month-old males, n = 1; 6-month-old females,
n = 14; 12-month-old females, n = 5) exhibited decreased
light aversion that did not increase with dilation (Fig. 1C),
consistent with previous reports.57,68,69 For both wild-type
and mice lacking ipRGCs, there was an increase in light aver-
sion without dilation at 12 months old compared to 6 months
old and for wild-type mice with dilation (Figs. 1A, 1C). No
age-dependent effect was observed in mice lacking ipRGCs
with atropine dilation. There were no significant differences
in pupil constriction to bright light in 6-month-old and 12-
month-old wild-type mice or mice lacking ipRGCs for either
sex (Figs. 1E, 1F). No effect of sex was observed in any of
these metrics. As previously reported, mice lacking ipRGCs
have significantly reduced pupil constriction compared to
wild-type mice.57,70,71

ipRGCs have been shown to contribute to both visual
acuity and contrast sensitivity. The M4 class of ipRGCs
responds to contrast gradients by electrophysiological
recordings, and functional deficits have been observed
using an optomotor task.56,72 To determine if mature adult-
hood impacts these functions, wild-type mice were tested
at 6 months old or 12 months old (n = 13 males, n =
23 females) (Fig. 2B). Visual acuity remained stable even
though more variability occurred in the older mice. Simi-
larly, contrast sensitivity was not affected. However, a trend
toward increased contrast sensitivity at lower spatial resolu-
tion in older adult mice was observed (Figs. 2C, 2D).

Morphological Analysis of M1 Cells

To investigate whether morphological changes occurred in
ipRGCs in the GCL and INL in male and female retinas, we
used an antibody that stains different types of ipRGCs.73 We
focused on the M1 ipRGCs, as they are the main type of
ipRGCs with a high content of melanopsin. They are easily
differentiated from other ipRGC types in the GCL due to
their high content of melanopsin immunoreactivity and two
to five primary dendrites that stratify in one single layer
at the outmost part of the IPL as previously reported73,74

(Figs. 3A, 3E). ipRGCs located in the INL are exclusively M1
cells73,74 (Figs. 3B, 3F).
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FIGURE 1. Light aversion and pupillary light reflex in mature and old adult mice. (A) Light aversion tested at 1000 lux with and without
atropine eye drops in 6- and 12-month-old wild-type mice. (B) Light aversion tested at 1000 lux with and without atropine eye drops in 6-
and 12-month-old wild-type mice by sex. (C) Light aversion tested at 1000 lux with and without atropine eye drops in 6- and 12-month-old
mice lacking melanopsin-expressing neurons. (D) Pupillary light reflex in 6- and 12-month-old wild-type mice and mice lacking melanopsin-
expressing neurons. (E) Pupillary light reflex in 6- and 12-month-old wild-type mice and mice lacking melanopsin-expressing neurons by
sex. For light aversion in wild-type mice, there was a significant main effect of age (P = 0.03; F1,166 = 5.02) and of eye drops (P < 0.0001;
F1,166 = 24.68), but no interaction (P = 0.50; F1,166 = 0.45). No effect of sex was observed. For light aversion in the OPN4dta/dta mice, there
was a significant main effect of age (P = 0.01; F1,76 = 6.38) but not of eye drops (P = 0.32; F1,76 = 1.01) and no interaction (P = 0.13; F1,76
= 2.39). No effect of sex was observed. For pupillometry in wild-type mice, there was a significant main effect of genotype (P < 0.00001;
F1,90 = 84.58) but not of age (P = 0.91; F1,24 = 0.011) and no interaction (P = 0.76; F1,24 = 0.10). No effect of sex was observed.

Soma sizes were evaluated in male mice 6 months and
12 months old, as well as in female mice of correspond-
ing age groups. In the male 6-month-old group, soma sizes
ranged from 11 to 18 μm, with an average of 13.4 ± 2.2 μm
(n = 83 cells from three retinas from three male mice). Simi-
larly, for male mice 12 months old, soma sizes ranged from
9 to 16 μm, with an average of 12.5 ± 1.6 μm (n = 98 cells
from three retinas from three male mice). Among the female
mice at 6 months, soma sizes ranged from 9 to 17 μm, with
an average of 12.9 ± 1.9 μm (n = 112 cells from three reti-
nas from three female mice). In 12-month-old females, soma
sizes ranged from 9 to 17 μm, with an average of 12.2 ±
1.9 μm (n = 85 cells from three retinas from three female
mice). No statistically significant differences were observed
in soma sizes across the distinct age and sex groups.
Morphological analysis of M1 ipRGCs was performed using
Imaris 9.5.0, and information on dendritic length, total
number of dendrite branch points, and Sholl analysis were
determined (Figs. 3C, 3D, 3G, 3H).

Our data showed that M1 cells in the GCL and INL did
not exhibit significant morphological differences in their

dendritic complexity between 6 and 12 months of age in
either males (n = 19 cells in the GCL and n = 5 cells in the
INL from five retinas from three male mice at 6 months old;
n = 28 cells in the GCL and n = 8 cells in the INL from four
retinas from four male mice at 12 months old) (Figs. 3A–3D)
or females (n = 27 cells in the GCL and n = 10 cells in the
INL from four retinas from four female mice at 6 months old;
n = 29 cells in the GCL and n = 7 cells in the INL from eight
retinas from six female mice at 12 months old) (Figs. 3E–3H).
There were no significant differences observed between
male and female mice in any of these parameters. In both
the 6-month-old and 12-month-old groups, the density of M1
cells per square millimeter exhibited no discernible disparity
between males (n = 5 retinas at 6 months old; n = 4 retinas
at 12 months old) and females (n = 3 retinas at 6 months
old; n = 4 retinas at 12 months old) (Figs. 3C, 3D, 3G, 3H).
Furthermore, no significant differences were detected within
either age group or between genders. Although a decrease in
M1 cell density was observed in both female and male reti-
nas in the INL (Figs. 3D, 3H), this difference was not found
to be statistically significant. These findings suggest that, in
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FIGURE 2. Visual acuity and contrast sensitivity in mature and old adult mice. (A) Spatial resolution in 6- and 12-month-old mice. (B) Spatial
resolution in 6- and 12-month-old mice by sex. (C) Contrast sensitivity function in 6- and 12-month-old mice. (D) Contrast sensitivity function
in 6- and 12-month-old mice by sex. No significant differences were found in visual acuity with age or sex using Student’s t-test. There was
a significant main effect of contrast (P > 0.0001; F5,136 = 23.3), but no main effect of age (P = 0.10; F1,136 = 2.7), and no interaction
(P = 0.72; F5,136 = 0.57).

this study, age and sex did not have a significant impact on
the measured structural characteristics of M1 neurons in the
mice.

DISCUSSION

Aging is associated with visual dysfunction, including
reduced sensitivity of the circadian system to light, altered
timing of circadian rhythms relative to nocturnal sleep, and
increased sleep disturbances.75–77 These functions are in part
mediated by ipRGCs, although there are differences in the
literature regarding RGC loss during aging, which may vary
depending on the species and model studied. Although loss
and/or morphological changes in RGCs have been observed
in aged rodents and human,78–80 other groups have not
observed neuronal loss in the GCL in aged rats.81–83

Interestingly, human retinas show a relatively stable
density of ipRGCs over time that is maintained in healthy
subjects until the age of 70,84 after which there is a decline
of ipRGC density and atrophy of the dendritic arborizations
in all ipRGC types.84 This could explain the circadian rhythm
desynchronization in the elderly.3,85–88 Studies have also
reported that ipRGC density and morphology are maintained
in normal rats at 12 and 18 months of age,81,89,90 which is
consistent with our study in mice. However, the discrep-
ancy between these studies could be attributed to the use of

different animal models and their genetic backgrounds. For
example, in Sprague Dawley rats, ipRGCs showed no signif-
icant morphological changes associated with age, but the
mean density of ipRGCs in P23H rats showed a 67% decrease
between 4 and 18 months of age.89 Additionally, in 2-years-
old rodless and coneless mice (rd/rd cl), the retinas showed
normal levels of melanopsin expression, and immunocyto-
chemistry assays demonstrated a maintained morphology of
ipRGCs.91

ipRGC Function With Age

Retinal function is known to be affected with age,92,93 and
this can vary depending on biological sex, with female
Sprague Dawley rats exhibiting better preserved retinal func-
tion at 18 months compared to males.94 Aging also impacts
circadian rhythms,2,7,28,29 partly due to altered function of
the ipRGC types. With aging, corneas and lenses undergo
changes that result in less blue light reaching the retina, lead-
ing to reduced activation of blue light–sensitive ipRGCs.26,27

As a result, it could be speculated that ipRGC-dependent
functions such as pupil response to light, light aversion,
visual acuity, and contrast sensitivity may be reduced in
older individuals.95–98 However, ipRGC-mediated circadian
and pupillary responses to light are maintained in the
absence of rods and cones,91 and no age-related changes in
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FIGURE 3. Dendritic structure and densities of M1 cells in male and female retinas in the GCL and INL. (A) Melanopsin staining in 6- and
12-month-old male wild-type retinas in the GCL. (B) Melanopsin staining in 6- and 12-month-old male wild-type retinas in the INL. (C)
Quantification of morphological parameters examined for M1 cells at 6 and 12 months of age in the GCL. No significant differences were
found in dendritic length, number of branch points, number of crossings in a Sholl analysis, or density. (D) Quantification of morphological
parameters examined for M1 cells in 6- and 12-month-old retinas in the INL. No significant differences were found in dendritic length,
number of branch points, number of crossings in a Sholl analysis, or density. (P < 0.05). (E) Melanopsin staining in 6- and 12-month-old
female wild-type retinas in the GCL. (F) Melanopsin staining in 6- and 12-month-old female wild-type retinas in the INL. (G) Quantification
of morphological parameters examined for M1 cells in 6- and 12-month-old retinas in the GCL. No significant differences were found in
dendritic length, number of branch points, number of crossings in a Sholl analysis, or density. (H) Quantification of morphological parameters
examined for M1 cells in 6- and 12-month-old retinas in the INL. No significant differences were found in dendritic length, number of branch
points, number of crossings in a Sholl analysis, or density (P < 0.05). Scale bar: 50 μm (A, B, E, F).

pupil responses are found in humans.99,100 These findings
are also consistent with a study in which the magnitude
of sustained pupillary constriction responses to blue-light
and green-light stimuli did not exhibit significant changes
between young and older human subjects,101 as well as our
studies in mice presented here.

Although the PLR responses of the Royal College of
Surgeons (RCS) rats at 12 months of age were diminished

compared to those of normal, non-dystrophic rats,102 it
seems that there are some age-dependent compensatory
mechanisms to preserve PLR99,102 and even to enhance pupil
responses mediated by ipRGC in humans.99 The improve-
ment of the PLR at older ages may reflect some compen-
satory mechanisms in the inner retina, as well as in the
central connections of the PLR pathway, to preserve the
PLR responses. Taken together, the robustness of the PLR to
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aging indicates a highly conserved and reliable mechanism
that may reflect more than ipRGC function alone.

ipRGCs also mediate light aversion, which is clinically
observed in conditions such as migraine as heightened sensi-
tivity to light, known as photoallodynia or photophobia,
and is defined as light-enhanced or -induced pain. In both
humans and mice, the spectral properties of photoallody-
nia implicate ipRGCs,103–108 a suggestion that was confirmed
using mice lacking ipRGCs without pathophysiology and in
specific disease models.57,58,109 In migraine, rods, cones and
ipRGCs58 were shown to be equally essential in a rodent
model, with ipRGCs selectively involved in photophobia
between migraine episodes.110 However, a role for green
cone photoreceptors for amelioration of migraine symp-
toms in humans was also indicated.111 In neonatal mice,
photoaversion has been further mapped to a specific M1
class of ipRGCs,112 and a specific photoreceptor pathway
for photophobia in Drosophila larvae has been identified,
which, due to their projection regions controlling circadian
photoentrainment, is likely functionally related to ipRGCs.113

ipRGCs persist during normal aging but are susceptible
to degeneration even in mature adults in AD, PD, glau-
coma, and diabetic retinopathy.114 Our data indicate that
ipRGCs are functionally maintained in light aversion in
mice up to 12 months old, regardless of whether they are
localized to the GCL or are displaced in the INL. Taken
together, the role of ipRGCs in specific pathophysiologies is
evident, and the loss of light aversion in mice lacking ipRGCs
makes this differential a potential biomarker for ipRGC
degeneration.

Visual acuity, a measure of sharpness and clarity of vision,
diminishes with age and is a major health issue. In humans,
the most common causes of reduced visual acuity are
glaucoma and macular degeneration, including age-related
macular degeneration and myopia-induced macular degen-
eration.115–118 Similar age-related loss of visual acuity has
been observed in rodent models, although loss of visual
acuity usually occurs by around 1.5 to 2 years of age,
consistent with our results indicating normal visual acuity
in mice at 12 months old. Dysfunction or degeneration most
frequently occurs in photoreceptors, retinal pigment epithe-
lial cells or RGCs and can be traced to both genetic and
environmental factors.119–125

Until recently, it was thought that rod and cone photore-
ceptor pathways exclusively mediate image-forming func-
tions, where visual acuity and contrast sensitivity were firmly
entrenched, and that ipRGCs exclusively mediated non–
image-forming functions such as circadian photoentrain-
ment and the PLR. Schmidt et al.56 clearly demonstrated
that the M4 class of ipRGCs is functionally equivalent to
the alpha On RGCs, which are well known for their role
in contrast sensitivity. This study showed a functional deficit
in contrast sensitivity56,87 in mice lacking M4 ipRGCs, which
was further substantiated in mice lacking melanopsin but
with the cells intact.72 When compared to mice lacking rod
or cone photoreceptors, the deficit in contrast sensitivity was
greater than the loss in visual acuity, suggesting the relative
role of ipRGCs in these different functions and the potential
to serve as a biomarker for ipRGC function loss compared
to rod and cone function. For context, the OPN4dta/dta mice
generally lack all ipRGCs, but the possibility of a few remain-
ing neurons cannot be ruled out.126 The OPN4dta/dta mice are
presented to illustrate the “floor effect”—that is, the maximal
potential effect on outcomes if the ipRGCs were completely
degenerated.

Like visual acuity, contrast sensitivity also decreases with
age in humans, starting in the 50s for higher spatial reso-
lution but eventually affecting all spatial resolutions and
commencing with mesopic and proceeding to photopic
vision loss.97,127 In rodents, contrast sensitivity remains
intact up to 18 months old128 and decreases by 21 to
24 months old.129 Our results are consistent with reported
preserved visual acuity in mice up to 12 months old, with the
observed small increase in contrast sensitivity at low spatial
resolution possibly reflecting compensatory mechanisms or
variability in small to medium-sized cohorts. Accelerated loss
of contrast sensitivity is a hallmark of AD in humans and a
mouse model.128

ipRGCs As a Biomarker in Ocular Diseases

The enduring integrity of ipRGC function throughout adult-
hood presents a promising biomarker for early neurodegen-
erative eye diseases. This is particularly relevant considering
the widespread loss of ipRGCs in numerous ocular condi-
tions. Aging is one of the main risk factors associated with
glaucoma, PD, AD, and diabetes, among others.30–44 Circa-
dian clock disruption also triggers or accelerates the pathol-
ogy progression in neurodegenerative diseases. For exam-
ple, in AD, PD, and Huntington’s diseases, circadian rhythm
alterations seem to trigger or accelerate the pathology
progression.130,131 Other authors have reported that alter-
ations of the circadian rhythm include a gradual decrease in
nocturnal melatonin secretion132 and alterations in sleep.133

It has been reported that a loss of circadian rhythms
and impairment of pupillary constriction in diseases such as
glaucoma, AD, PD, and Huntington’s diseases40,134–137 could
also be linked to the ipRGC pathology loss, as well as a
loss of the compensatory mechanisms observed in aging. In
AD and other neurodegenerative diseases, early circadian
rhythm alterations138–142 indicate significant disruptions in
the rod and cone photoreceptor pathways, as well as the
ipRGC signaling pathways. The reported damage or loss
of ipRGCs in the human retina137,140–143 might account for
many related visual dysfunctions, including impaired ocular
motility, a reduction in amplitude of the PLR,135,136,143,144 and
circadian alterations of melatonin.32,145,146 It is essential to
recognize that, while ipRGCs hold promise as potential early
biomarkers in certain ocular diseases, their utility might not
be consistent across all conditions. Indeed, some diseases
have exhibited remarkable resilience in ipRGCs,147–150 show-
ing limited or delayed alterations in these cells despite signif-
icant pathological changes occurring elsewhere in the retina.
This underscores the complexity of ocular pathophysiology
and the need for cautious interpretation when considering
ipRGCs as biomarkers. The effectiveness of ipRGCs as diag-
nostic indicators would likely depend on the specific disease
context and the interplay of various underlying factors. As
such, the use of ipRGCs as biomarkers demands careful
consideration of the unique characteristics of a disease and
the role of ipRGCs in the pathogenesis of that disease.
To improve our understanding and optimize the diagnos-
tic value of ipRGCs, future research endeavors should focus
on exploring the disease-specific roles of ipRGCs and thor-
oughly investigating the potential limitations they may pose
as biomarkers in these early-onset diseases, understanding
the dynamics of ipRGC loss to elucidate the specific underly-
ing mechanisms, and assessing their diagnostic and prognos-
tic relevance. More in-depth investigations into the contribu-
tions of different ipRGC subtypes, sex-specific differences,
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and age-related factors are essential to establish ipRGCs
as reliable biomarkers for early detection and monitor-
ing of ocular diseases. By gaining a more nuanced under-
standing of their contributions to various ocular conditions,
we can refine their diagnostic applicability and develop
tailored approaches for leveraging ipRGCs as valuable
tools in the early detection and management of ocular
diseases.
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