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ABSTRACT 

Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, 

suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. 

As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor 

to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice 

navigated virtual environments with changing hidden reward locations. When the reward moved, the firing 

fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing 

a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-

relative sequences increased with task experience as additional neurons were recruited to the reward-

relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. 

These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally 

salient reference frames, reflecting the structure of the experience. 
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INTRODUCTION 

Memories of positive experiences are essential for reinforcing rewarding behaviors. These 

memories must also have the capacity to update when knowledge of reward changes (i.e. a water source 

moves to a new location)1,2. How does the brain both amplify memories of events surrounding a reward 

and maintain a stable representation of the external world? The hippocampus provides a potential neural 

circuit for this process. Hippocampal place cells fire in one or a few spatially restricted locations, defined 

as their place fields3. In different environments, place cells “remap”, such that the preferred location or 

firing rate of their place field changes4–12. Together, the population of place cells creates reliable sequences 

of activity as an animal traverses an environment, resulting in a unique neural code for each environment 

and a unique sequence of spiking for each traversal9,13–21. While these patterns support spatial 

navigation22–26, recent evidence has revealed that hippocampal neurons also show reliable tuning relative 

to a variety of non-spatial modalities and create sequences of activity for these modalities17,27,28. For 

instance, sequential hippocampal firing has been observed across time29–35, in relation to progressions of 

auditory36, olfactory37–42, or multisensory stimuli43–45, and during accumulation of evidence for decision-

making tasks46. Together, these findings suggest that the hippocampus can be understood as generating 

sequential activity13,17,27,29,47,48 to encode the progression of events as they unfold in a given 

experience27,28,49–51.  

Multiple lines of evidence demonstrate that the hippocampus prioritizes coding for aspects of 

experience that are particularly salient or that can affect the animal's behavior27,33–46,52–62. The presence of 

food or water reward is one such highly salient event that is consistently prioritized, as demonstrated by 

prior work finding that place cells tend to cluster near (i.e. “over-represent”) reward locations1,2,54,55,63–66. 

In addition, a small subpopulation of hippocampal cells are active precisely at rewarded locations54,64, 

even when the reward is moved to a new location54. Moreover, optogenetic activation of cells with place 

fields near reward drives the animal to engage in reward-seeking actions24, suggesting a causal role for 

hippocampal activity in reward-related behaviors. Yet it remains unclear whether the hippocampus 

encodes complete sequences of events around rewards separately from the influence of other sensory 

stimuli. Moreover, it is incompletely understood how different aspects of experience are represented 

simultaneously.  

We therefore hypothesized that reward may anchor the sequential activity of the hippocampus in 

a subpopulation of pyramidal cells. Remapping dynamics supporting this hypothesis have been reported 

at locations very close to reward sites1,2,54,55,63–66, but in order to support memory of events leading up to 

and following rewarding experiences, hippocampal activity encoding events at distances further away 
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from reward must also be able to update when reward conditions change. Yet predictable remapping that 

spans the entire environment in response to changing reward locations has not been demonstrated. We 

reasoned that previously reported reward-specific cells54 may comprise a subset of a larger population 

encoding an entire sequence of events relative to reward. This hypothesis predicts that moving the reward 

within a constant environment should induce remapping even at locations far from reward, in a manner 

that preserves sequential firing relative to each reward location. In parallel, we predicted that a subset of 

hippocampal neurons should preserve their firing relative to the spatial environment, reflecting an ability 

of the hippocampus to flexibly anchor to both the spatial environment and the experience of finding reward 

as two salient reference frames45,59,60,67–73 that are required to solve the task at hand.  

To investigate whether the hippocampus simultaneously encodes sequential experience relative to 

reward and the spatial environment, we used 2-photon (2P) calcium imaging74,75 to monitor large 

populations of CA1 neurons in head-fixed mice learning a virtual reality (VR) task. The use of VR 

provided tight control of the sensory stimuli and constrained the animal’s trajectory, allowing us to more 

readily observe remapping of neurons in relation to distant rewards, a phenomenon potentially less visible 

in freely moving scenarios. Further, the task included multiple updates to hidden reward zones across two 

environments, allowing us to dissociate spatially-driven and reward-driven remapping. We found a 

subpopulation of neurons that, when rewards moved, remapped to the same relative position with respect 

to reward and thus constructed a sequence of activity relative to the reward location. With increasing 

experience, more neurons were recruited to these “reward-relative sequences”. These results suggest that 

the hippocampus learned a generalized representation of the task anchored to reward, while also 

maintaining a spatial map in largely separate neural ensembles.  

 

RESULTS 

Monitoring neural activity in mice during a virtual reality navigation and reward learning task 

We performed 2P calcium imaging to monitor CA1 neurons expressing GCaMP7f in head-fixed 

mice learning a VR linear navigation task (Fig. 1A-C). To observe putative remapping related to rewards, 

and examine how this remapping might develop with experience, we designed a task with multiple 

changing hidden reward locations.  In the task, animals were required to run down a 450 cm virtual linear 

environment (Env 1) with a single hidden, 50-cm reward zone. Sucrose water reward was delivered 

operantly for licking within the hidden reward zone (Fig. 1D-E). Imaging began on day 1 of task 

acquisition. On day 3, the reward zone was moved within a “switch” session to a new location on the 
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track. The reward switch was signaled by automatic reward delivery on the first 10 trials after the switch 

only if the mouse failed to lick in the new zone. On day 5, a third reward zone was introduced, followed 

by a return to the original zone on day 7. On day 8, the reward switch coincided with the introduction of 

a novel environment (Env 2) that evokes spatially-driven global remapping7. The sequence of switches 

was subsequently reversed in Env 2 (Fig. 1E). On intervening non-switch (“stay”) days, the last reward 

location from the previous day was maintained. Reward switch sequences were counterbalanced across 

animals (n=7 “switch” mice, Fig. S1A-D). The three possible reward locations were positioned equidistant 

from each of the “tower” landmarks along the track, thus controlling for proximity of each reward to visual 

landmarks8,55,76–80. A separate “fixed-condition” group of mice (n=3) experienced only one reward 

location in a single environment (Env 1) (Fig. S1D, F), to control for the effect of extended experience 

alone compared to learning about the reward switches. To keep animals engaged and prevent the 

movement of the reward zone from being a completely novel experience, on ~15% of trials the reward 

was randomly omitted for all animals. At the end of the track, the mouse passed through a brief gray 

“teleport” tunnel (~50 cm + temporal jitter up to 10 s; see Methods) before starting the next lap in the 

same direction. Time in the teleport tunnel was randomly jittered so that exact time of track entry could 

not be anticipated.  

We observed that mice developed an anticipatory ramp of licking that, on average, peaked at the 

beginning of the reward zone (Fig. 1F-G, Fig. S1A-C). This is the earliest location where operant licking 

triggered reward delivery, demonstrating successful task acquisition. After a reward switch, mice entered 

an exploratory period of licking but then adapted their licking to anticipate each new zone, typically within 

a session (Fig. 1F-G, Fig. S1A-C). We quantified this improvement in licking precision across the switch 

as the ratio of anticipatory lick rate 50 cm before the currently rewarded zone compared to everywhere 

else outside the zone (Fig. S1E). We found that all mice were able to improve and retain their licking 

precision for the new reward zone (Fig. 1H, n=7 mice), demonstrating accurate spatial learning and 

memory. 
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Figure 1. 2P imaging of CA1 neurons in a VR task with changing hidden reward locations.  
A) Top-down view (left) and side view (right) of head-fixed VR set-up. 5% sucrose water reward is automatically 
delivered when the mouse licks a capacitive lick port.  
B) Coronal histology showing imaging cannula implantation site and calcium indicator GCaMP7f expression under 
the pan-neuronal synapsin promoter (AAV1-Syn-jGCaMP7f, green) in dorsal CA1 (DAPI, blue).  
C) Example field of view (mean image) from the same mouse in (B) (mouse m12) with identified CA1 neurons in 
shaded colors (n=1780 cells).  
D) Task timeline. On “stay” days, the reward remains at the same location throughout the session; on “switch” days, 
it moves to a new location after the first 30 trials (typically 80 trials/session).  
E) Side views of virtual linear tracks showing an example reward switch sequence. Shaded regions indicate hidden 
reward zones, for illustration only. On intervening days, the last reward location from the previous day is 
maintained.  
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F) Licking behavior for an example mouse (m14) on the first day and first 3 switches. Top row: Smoothed lick 
rasters. Rewarded trials in black; omission trials in magenta. Shaded regions indicate the active reward zone. Bottom 
row: Mean ± s.e.m. lick rate for trials at each reward location (blue=A, purple=B, red=C). 
G) Licking behavior for a second example mouse (m3) that experienced a different starting reward zone and switch 
sequence from the mouse in (F). See Fig. S1D for the full set of sequence allocations per mouse. 
H) Behavior across animals performing reward switches (n=7 mice). An anticipatory lick ratio of 1 indicates licking 
exclusively in the 50 cm before a reward zone (“anticipatory zone”, see Fig. S1E); 0 (horizontal dashed line) 
indicates chance licking across the whole track outside of the reward zone. Thin lines represent individual mice, 
with lines colored according to the reward zone active for each mouse on a given set of trials (blue=A, purple=B, 
red=C); thick black and teal lines show mean ± s.e.m. across mice for pre- and post-switch trials, respectively. 
See also Figure S1.  
 

Moving the reward induces remapping that spans a constant environment 

We focused on the switch days to analyze single-cell remapping patterns. First, we identified place 

cells active either before or after the reward switch (see Methods; means ± standard deviation [s.d.] across 

7 mice and 7 switch sessions: 408 ± 216 place cells out of 868 ± 356 cells imaged; 48.6% ± 16.7% place 

cells active before or after the switch). After a reward switch within an environment, a subset of place 

cells maintained a stable field at the same location on the track (“track-relative” cells, 20.2% ± 8.8%, mean 

± s.d. of all place cells, averaged across all 6 switches within environment, 7 mice; Fig. 2A, Fig. S2A). 

However, many place cells remapped, despite the constant visual stimuli and visual landmarks (Fig. 2A, 

Fig. S2A-D).  First, we observed subsets of cells with place fields that disappeared (“disappearing”, 11.5% 

± 7.8%) or appeared (“appearing”, 8.3% ± 5.2%) after the reward location switched (Fig. 2A, Fig. S2A). 

Other cells precisely followed the reward location (“remap near reward”, 4.7% ± 3.9%, Fig. 2A, Fig. S2A-

D), consistently firing within ±50 cm of the beginning of the reward zone, similar to previous reports54. 

Notably, a subset of place cells with fields distant from reward (>50 cm) also remapped after the reward 

switch (“remap far from reward”, 15.6% ± 3.7%; Fig. 2A, Fig. S2A, right). A remaining 39.9% ± 19.3% 

of place cells did not show sufficiently stereotyped remapping patterns to be classified by these criteria. 

At the population level, we observed that a reward switch within a constant environment induced more 

remapping than the spontaneous instability seen with a fixed reward and fixed environment81–85, but less 

remapping than the introduction of a novel environment with the reward switch5–11 (Fig. S2B-D).     

An above-chance fraction of reward-relative remapping cells  

We next investigated whether a subpopulation of cells encoded experience anchored to reward. To 

test this hypothesis, we attempted to identify neurons with fields far from the start of the reward zone (>50 

cm) that shifted their place fields to match the shift in reward location. To visualize this form of remapping, 

we circularly shifted the spatial activity of cells on trials following the switch to align the reward locations 
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(Fig. 2B). This approach revealed that a subset of cells remapped to a similar relative distance from the 

reward, both within and across environments (“reward-relative” cells; see below and Methods for full 

criteria) (Fig. 2B). This field alignment relative to reward was observed even for fields that, from the 

perspective of the linear track position, remapped from the latter half of the track to the beginning, or vice 

versa (e.g. Fig. 2B cells m4.109, m14.482). Such alignment occurred despite the variable length of the 

teleport zone, suggesting that these cells do not simply track distance run from the last reward. Consistent 

with this interpretation, the distance run in the teleport zone did not predict the cells’ spatial firing 

variability on the following lap in the vast majority (~92%) of reward-relative cells (Fig. S2E-F). Instead, 

reward-relative cells seemed to maintain their preferred firing position with respect to reward according 

to where the animal was in the progression of the overall task, which spans across the teleport and the trial 

start but is informed by these boundaries. Altogether, these observations suggest that a reward-relative 

subpopulation maps a periodic axis of experience from reward to reward, consistent with the cyclical 

manner in which the animal repeats the task structure. At the same time, other cells seemed to remap 

randomly, as circular shifting did not align their fields (“non-reward-relative remapping”, 12.3% ± 3.1% 

of all place cells; Fig. 2B, black cell ID labels).  

To assess whether reward-relative remapping occurred at greater than chance levels, we plotted 

the peak spatial firing of all cells that maintained significant spatial information before versus after the 

switch. This revealed the track-relative place cells along the diagonal, as they maintained their peak firing 

positions pre- to post-switch. In addition, this analysis revealed an off-diagonal band of cells at the 

intersection of the reward locations, which extended linearly away from the cluster of reward cells that 

has been previously described54 (Fig. 2C, far left panel; Fig. S2B, middle). As noted above, we reasoned 

that the animals may experience the task as periodic instead of a sequence of discrete linear episodes. We 

therefore transformed the linear track coordinates to the phase of a periodic variable (i.e. 0 to 450 cm 

becomes -p to p radians), allowing us to shift the data to align the reward zones at zero and isolate the 

band of cells with peaks at this intersection (Fig. 2C, middle-left panel). Cells which fall along the unity 

line in this analysis thus putatively remap to the same relative distance from reward. We then excluded 

the track-relative cells to focus on the remapping cells across animals (Fig. 2C, middle-right panel). We 

measured the circular distance of each cell's peak firing position relative to the reward zone pre- or post-

switch (Fig. 2D) and calculated the difference between each of these relative peaks. A difference between 

relative peak positions close to zero indicates reward-relative remapping. We compared the distribution 

of differences to a “random-remapping” shuffle (Fig. 2C, far right panel) and found that the fraction of 

place cells that exhibited reward-relative remapping across animals exceeded chance on the first switch 
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day (Fig. 2E, top). Further, the fraction of cells that exceeded the chance level increased by the last switch 

day (Fig. 2F-G, Fig. S2G) and significantly increased linearly across task experience with each switch 

(Fig. 2H). A linear mixed effects model accounting for mouse identity revealed a similar, significant 

increase in reward-relative remapping over experience (Fig. S2H). Across days and animals, the fraction 

of cells exceeding chance spanned a mean range of ~0.65 radians around the unity line, or nearly 50 cm, 

suggesting there is some variability in the precision of reward-relative remapping (Fig. 2E, G, Fig. S2G). 

This distance thus provided a candidate region to quantitatively identify reward-relative remapping cells. 

We next analyzed the distribution of reward-relative peak firing positions within this candidate zone (i.e. 

position along the unity line in Fig. 2D) and observed that the mean of the distribution was significantly 

greater than zero (Fig. 2E, bottom). This indicates that more reward-relative place fields are in locations 

following reward delivery (as indicated by maximal licking, Fig. 1F-G, Fig. S1A-C) than in locations 

preceding the reward. This post-reward shift of the distribution of cells was consistent across days (Fig. 

2G, bottom).  
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Figure 2. A subpopulation of CA1 cells remaps relative to reward. 
A) Five place cells from an example mouse (m4) with fields that are either track-relative, disappearing, appearing, 
following the reward location closely (“remap near reward”, with spatial firing peaks ≤ 50 cm from both reward 
zone starts), or “remap far from reward” (peaks >50 cm from at least one reward zone start; see Methods). Data are 
from an example switch day in Env 2 (day 14). Left of each cell: Spatial activity per trial shown as smoothed 
deconvolved calcium events normalized to the mean activity for each cell within session. White lines indicate 
beginnings of reward zones. Right of each cell: Trial-by-trial correlation matrix for that cell.  
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B) Example place cells that remap to the same relative distance from reward (orange cell ID labels), compared to 
cells that do not (black cell ID labels). Top row: Mean-normalized spatial activity plotted on the original track axis. 
Bottom row: Post-switch trials (after the horizontal blue dashed line) are circularly shifted to align the reward 
locations, to illustrate alignment of fields at a similar relative distance from reward both within (left, examples from 
day 14) and across environments (right, day 8).  
C) Illustration of method to quantify remapping relative to reward. Left: A scatter of peak activity positions before 
vs. after the reward switch in linear track coordinates reveals track-relative place cells along the diagonal (dashed 
line; shown for example animal m12 on day 14, switching from reward zone “B” before to “A” after). An off-
diagonal band at the intersection of the starts of reward zones suggests cells remapped relative to both rewards. 
Middle left: We center this reward-relative band by converting the linear coordinates to periodic and rotating the 
data to align the starts of reward zones at 0. Middle right: Track-relative place cells are removed to isolate remapping 
cells. Right: The data are then compared to a random remapping shuffle (one shuffle iteration shown in red). 
Together, these shuffles (n=1000) produce the distribution marked in red lines in (E) and (G). All points are jittered 
slightly for visualization (see Methods) and are translucent; darker shades indicate overlapping points. 
D) Peak activity positions relative to reward for all animals on the first switch (day 3), for remapping cells with 
significant spatial information both before and after the switch (n=677 cells, 7 mice). Orange shaded region 
indicates a range of ≤50 cm (~0.698 radians) between relative peaks, corresponding to points included in the 
histogram in (E, bottom). 
E) The fraction of cells remapping to a consistent reward-relative position (≤ 50 cm between relative peaks) on the 
first switch day is higher than expected by chance. Top: histogram of the circular distance between relative peaks 
after minus before the switch (i.e. orthogonal to the unity line in D), compared to the mean and upper 95% of the 
shuffle distribution (solid and dotted red lines, respectively). Bottom: Distribution of mean firing position relative 
to reward for cells with ≤ 50 cm distance between relative peaks, corresponding to orange shaded area along the 
unity line in (D) (n=261 cells, 7 mice, non-zero mean = 0.358 radians, 95% confidence interval [lower, upper] = 
[0.196, 0.519], circular mean test). Black dotted line marks the mean, blue shading marks the extent of the reward 
zone. 
F) Same as (D) but for the last switch (day 14) (n=707 cells, 7 mice).  
G) Same as (E) but for the last switch (day 14). Bottom: n=398 cells with ≤ 50 cm distance between relative peaks 
(non-zero mean = 0.206 radians, 95% confidence interval [lower, upper] = [0.103, 0.309], circular mean test). 
H) Fraction of cells above chance that remap relative to reward grows linearly with task experience (number of 
switches). Each dot shown is the combined fraction across n=7 mice; mean ± confidence interval of linear regression 
is shown in gray. 
See also Figure S2. 
 

Next, to investigate the degree to which cells active in close proximity to the reward contribute to 

the above-chance levels of reward-relative remapping, we excluded cells with peaks within ± 50 cm of 

the start of both reward zones. Note that this excludes both the reward and anticipatory zones. With this 

exclusion, we still found above-chance reward-relative remapping (Fig. S2I-L). In addition, the mean of 

the remaining reward-relative firing positions continued to follow the reward zone (Fig. S2J, L, bottom). 

However, there was not a significant increase in remapping at these distances across days (Fig. S2M), 

suggesting there is more growth in the population of reward-relative cells at closer proximities to reward. 

Nevertheless, this analysis confirmed that reward-relative remapping is not limited to neurons with close 

proximity to reward. 
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Finally, we implemented two main criteria to identify a robust subpopulation of reward-relative 

cells for further analysis. First, we identified candidate place cells with reward-relative spatial peaks that 

were within 50 cm of each other before versus after a reward switch (i.e. within the orange candidate zone 

highlighted in Fig. 2D, F). This criterion included cells with peaks both very close to and potentially very 

far from the reward. Second, to reduce the influence of noise in spatial peak detection and take into account 

the shape of the firing fields, we performed a cross-correlation of the cells’ activity aligned to the reward 

zone pre- vs. post- switch. We required the offset at the maximum of this cross-correlation to be ≤50 cm 

from zero lag and exceed chance levels relative to a shuffle for each cell (Fig. S2N-P). This approach 

provides a metric for how stable each cell’s mean firing position is relative to reward. We confirmed that 

these criteria identified a subpopulation of cells whose fields were maximally correlated in periodic 

coordinates relative to reward, in contrast to the track-relative cells which were maximally correlated 

relative to the original linear track coordinates (Fig. S2O-P).  From here on, we refer to cells that passed 

both of these criteria as “reward-relative” (RR) (15.4% ± 5.3% of place cells averaged over all switch 

days; 12.4% ± 3.3% on the first switch, 18.9% ± 6.5% on the last switch). 

Reward-relative sequences are preserved when the reward moves 

Next, to ask whether the reward-relative cells constructed sequences of activity anchored to 

reward, we sorted the reward-relative cells within each animal by their peak firing position on trials before 

the reward switch, using split-halves cross-validation (see Methods). We applied this sort to the post-

switch trials and found that the reward-relative subpopulation indeed constructed sequences that strongly 

preserved their firing order relative to reward across the switch within an environment (Fig. 3A-B, Fig. 

S3A). Sequence preservation was quantified as a circular-circular correlation coefficient between the peak 

firing positions in the pre- and post-switch sequences, which was much higher than the shuffle of cell 

identities for nearly all animals and days (48 out of 49 sessions positively correlated, with rho >95% of 

the shuffle, two-sided permutation test) (Fig. 3C). These sequences spanned the task structure from reward 

to reward, such that cells firing at the furthest distances from reward would occasionally “wrap around” 

from the beginning to the end of the linear track or vice versa (e.g. Fig. 3A, mouse 4 and Fig. S3A). When 

we introduced the novel environment on day 8, despite apparent global remapping in the total population 

of place cells (Fig. S3B), reward-relative sequences were clearly preserved (Fig. S3C, top). The track-

relative place cells likewise constructed robust sequences (48 out of 49 sessions positively correlated, with 

rho >95% of the shuffle, two-sided permutation test) both within (Fig. 3D-F) and even across 

environments (Fig. S3C, middle) in a minority of place cells (20.2% ± 8.8% of place cells within vs. 8.4% 

± 3.6% across, mean ± s.d. across 7 mice). The sequence stability of both the reward-relative and track-
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relative subpopulations contrasted starkly with the absence of sequence preservation for most of the non-

reward-relative remapping cells (40 out of 49 sessions did not exceed the shuffle; Fig. 3G-I; Fig. S3C, 

bottom) and for the disappearing and appearing cells (Fig. S3D-E), as expected. 

We next quantified the mean sequence shape for each subpopulation, either relative to reward or 

to the VR track coordinates. The reward-relative sequences strongly over-represented the reward 

zone1,2,54,55,63–66 and were most concentrated just following the start of the reward zone (Fig. 3J). Further, 

this density near the reward zone grew across task experience (Fig. 3J-K). The fraction of place cells at 

further positions (>50 cm) from the start of the reward zone showed a modest increase over days, but to a 

much lesser degree than positions near the reward (Fig. 3L). In parallel, mice increased their average post-

switch lick rate prior to the reward zone (Fig. 3M-O) and their running speed away from the reward zone 

over days (Fig. 3P-R). These changes suggest that reward-relative sequence strength increases as 

behavioral performance becomes more robust. In addition, on any given day, the precision of the animal’s 

licking correlated with the precision of the reward-relative sequence (i.e. the narrowness of the cell 

distribution around reward, measured as the circular variance) (Fig. S3F-I). In contrast to the reward-

relative sequences, the track-relative place cell sequences tended to over-represent the ends of the track, 

as opposed to the reward zones (Fig. 3S).  In addition, the track-relative sequences showed a subtle but 

significant drop in density at positions away from the ends of the track across days, consistent with 

selective stabilization of place fields near key landmarks8,55,76–80,86 (Fig. 3S-U). These differences in 

sequence shape between the reward-relative and track-relative cells suggest that each of these 

subpopulations anchors to the most salient point in the “space” they encode. For the reward-relative 

sequences, this is the reward zone, and for the track-relative sequences, this is likely the start and end of 

the track where the animal exits and enters the teleport zone. By comparison, the disappearing, appearing, 

and non-reward-relative remapping cells encoded a more uniform representation of the track (Fig. S3J-

K), with only subtle over-representation of the track ends and an observable decrease across the track for 

the disappearing cells across days (Fig. S3J-K). 
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Figure 3. Preserved sequences relative to reward and space. 
A) Preserved firing order of reward-relative sequences across the 1st switch (day 3) (2 example mice, top and 
bottom rows; m4 is the same mouse shown in Fig. 2A, m12 had the maximum number of cells). Reward-relative 
remapping cells within each animal are sorted by their cross-validated peak activity before the switch, and this sort 
is applied to activity after the switch. Data are plotted as the spatially-binned, unsmoothed dF/F normalized to each 
cell’s mean within session, from which peak firing positions are identified in linear track coordinates that have been 
converted to radians (see Fig. 2C). White dotted lines indicate starts and ends of each reward zone. Each sequence’s 
circular-circular correlation coefficient (rho), p-value relative to shuffle, and number of cells is shown above, where 
p < 0.001 indicates that the observed rho exceeded all 1000 shuffles. Color scale is applied in (B), (D-E), (G-
H). 
B) Reward-relative sequences on the last switch (day 14), for the same mice shown in (A). 
C) Circular-circular correlation coefficients for reward-relative sequences before vs. after the reward switch, for 
each mouse (n=7), with the upper 95th percentile of 1000 shuffles of cell IDs marked as “x”. Closed circles indicate 
coefficients with p < 0.05 compared to shuffle using a two-sided permutation test; open circles indicate p ≥ 0.05.  
D) Sequences of track-relative place cells on the 1st switch day for the same mice as in (A-B). 
E) Sequences of track-relative place cells on the last switch day for the same mice as in (A-B,D). 
F) Circular-circular correlation coefficients for track-relative place cell sequences (n=7 mice), colored as in (C). 
G-H) Sequences of non-reward-relative remapping cells with significant spatial information before and after the 
switch, for the same mice as above and on the 1st (G) and last (H) switch day. Note that a cross-validated sort of 
the “before” trials produces a sequence, but in general this sequence is not robustly maintained across the switch.  
I) Circular-circular correlation coefficients for non-reward-relative remapping cells (n=7 mice), colored as in (C). 
J) Distribution of peak firing positions for the reward-relative sequences after the switch on each switch day, shown 
as a fraction of total place cells within each animal, averaged across animals (n=7 mice).  Standard errors are omitted 
for visualization clarity. Horizontal dotted lines indicate the expected uniform distribution for each day (see 
Methods); vertical gray dashed lines indicate the reward zone start and surrounding ±50 cm. 
K-L) Quantification of changes in reward-relative sequence shape across animals and days, using linear mixed 
effects models with switch index as a fixed effect and mice as random effects (n=7 mice). b is the coefficient for 
switch index, shown with corresponding p-value (Wald test). Each point is the fraction of place cells within that 
mouse (colored as in C) in the reward-relative sequences, specifically within ±50 cm (K) or >50 cm (L) from the 
start of the reward zone. 
M) Mean lick rate across post-switch trials and across animals (10 cm bins), colored by switch as in (J). 
N-O) Quantification of change in lick rate across days within ±50 cm of the reward zone start (N) or >50 cm (O), 
using a linear mixed effects model as in (K-L). 
P) Mean running speed across post-switch trials and across animals (2 cm bins), colored by switch as in (J). 
Q-R) Quantification of change in speed across days, as in (K-L) and (N-O). 
S) Distribution of peak firing positions for the track-relative sequences after the switch on each switch day, shown 
on the track coordinates converted to radians (not reward-relative). Arrows indicate the start position of each reward 
zone (“A”, “B”, “C”). Horizontal dotted lines indicate the expected uniform distribution for each day. 
T-U) Quantification of changes in track-relative sequence shape across animals and days as in (K-L), here within 
≤50 cm of either end of the track (T) or >50 cm from the track ends (U). 
See also Figure S3. 
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Non-track-relative place cells are increasingly recruited to the reward-relative population over days 

The growth in reward-relative sequence density across task experience raised three possibilities: 

(1) reward-relative cells may become more consistent at remapping to precise reward-relative positions 

with extended learning, (2) more cells might be recruited from other populations to the reward-relative 

population, or (3) a combination of both changes occurs. To investigate these possibilities and understand 

how individual neurons are dynamically reallocated to represent updated reward information within and 

across environments, we followed the activity of the same neurons across days by matching the aligned 

regions of interest (ROIs) for each cell. Specifically, we followed single neurons across pairs of switch 

days and analyzed their spatial firing patterns from one switch to the next (Fig. 4). Using linear mixed 

effects models to account for variance across animals, we found that there was an increase in the fraction 

of cells that remained reward-relative on consecutive reward switches, indicating that reward-relative cells 

are more likely to maintain their reward-relative coding across experience (Fig. 4A-B). In addition, an 

increasing proportion of non-track-relative cells (appearing, disappearing, and non-reward-relative 

remapping) were recruited into the reward-relative population with task experience (Fig. 4C-D). Non-

place cells and track-relative cells likewise were recruited into the reward-relative population, though this 

occurred at a constant rate of turnover that did not increase over days (Fig. 4E-H). In addition, the track-

relative cell population did not recruit more cells from any other population (Fig. 4I-K) and did not show 

an increased likelihood of remaining track-relative across experience (Fig. 4L), in contrast to the reward-

relative population. These results suggest that the track-relative place cells remain a more independent 

population from the reward-relative cells, and that cells exhibiting high flexibility (such as 

appearing/disappearing) are more likely to be recruited into the reward-relative representation with 

extended experience in this task. 

The track-relative population itself showed a steady rate of turnover over days (Fig. 4L), consistent 

with representational drift81–85. Indeed, when we analyzed place cell sequences identified on each 

reference day and followed two days later, we observed drift even in the fixed-condition animals (n=3 

mice) that experienced a single environment and reward location for all 14 days (Fig. S4A, F). Drift was 

prevalent as well in the reward-relative and track-relative sequences tracked across consecutive switch 

days (Fig. S4B-E, G-J), at a slightly higher degree than the fixed-condition animals (Fig. S4F), consistent 

with our observation that moving a reward induces more remapping than not moving a reward (Fig. 2A, 

Fig. S2A-D). In a subset of animals and day pairs, cells that remained reward-relative or track-relative 

tended to maintain their firing order across days. However, sequence preservation across days was 

generally lower (i.e. closer to the shuffle) (Fig. S4C, E, H, J) than within-day sequences (Fig. 3C, F; Fig. 
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S3A, C). These results indicate that rather than being dedicated cell classes, reward-relative and track-

relative ensembles are both subject to the same plasticity across days of experience as the overall 

hippocampal population81–85. However, the increasing recruitment of cells into the reward-relative 

population, despite this population having different membership on different days, suggests an increased 

allocation of resources to the reward-relative representation. We conclude that as animals become more 

familiar with the task demands—specifically the requirement to estimate a hidden reward location that 

can be dissociated from spatial stimuli—the hippocampus builds an increasingly dense representation of 

experience relative to reward, while preserving a fixed representation of the spatial environment in a 

largely separate population of cells on any given day.  
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Figure 4. Tracking cells over days reveals increased recruitment into the reward-relative population.  
A) Example cells from 2 separate mice that were tracked from switch 6 to 7 (days 12-14) that were identified as 
reward-relative (RR) on both switch 6 and switch 7, and which maintained their firing position relative to reward. 
Top of each cell: spatial firing over trials and linear track position on each day (deconvolved activity normalized to 
the mean of each cell). White vertical lines indicate the beginnings of the reward zones. Bottom of each cell: Mean 
local field of view (FOV) around the ROI of the cell on both days (blue shading highlights ROI, indicated by the 
yellow arrow). 
B) Fraction of tracked RR cells on each switch day that remain RR on subsequent switch days increases over task 
experience. All b coefficients and p-values in (B, D, F, H, and I-L) are from linear mixed effects models with switch 
day pair as a fixed effect and mice as random effects (n=7 mice in each plot, key in H). Coefficients correspond to 
the fractional increase in recruitment per switch day pair, from the model fit (gray line). 
C) Same as (A) but for 2 example cells that were identified as appearing (top) or non-RR remapping (bottom) on 
switch 6 but were converted to RR on switch 7. 
D) Fraction of “non-track-relative” place cells (combined appearing, disappearing, and non-RR remapping) that 
convert into RR cells on subsequent switch days increases over task experience. 
E) Same as (A) but for 2 example non-place cells on switch 6 (did not have significant spatial information in either 
trial set) that were converted to RR place cells on day 7. 
F) Fraction of non-place cells converting to RR cells on subsequent switch days shows a modest increase over task 
experience. 
G) Same as (A) but for 2 example track-relative (TR) cells on switch 6 that were converted to RR on switch 7. 
H) Fraction of TR cells converting to RR cells does not increase over task experience.  
I) Fraction of RR cells converting to TR cells does not change significantly over task experience. 
J) Fraction of non-TR cells (combined appearing, disappearing, and non-RR remapping) converting to TR does not 
change significantly. 
K) Fraction of non-place cells converting to TR does not change significantly. 
L) Fraction of TR cells remaining TR does not change significantly. 

See also Figure S4. 
 
 
Encoding of reward proximity versus movement covariates in reward-relative cells 

 The animals’ approach to and departure from the reward zone in this task is associated with 

stereotyped running and licking behaviors that comprise an important aspect of the animal’s experience 

surrounding reward. For instance, these behaviors must be timed with an accurate estimate of distance 

from reward to inform behavioral adaptations after the reward switch. We therefore took two 

complementary approaches, detailed below, to disentangle which features of the reward-relative 

experience are encoded in the reward-relative subpopulation. These approaches further allowed us to 

control for the potential influence of movement covariates on the neural activity. 

 First, we tested the hypothesis that reward-relative firing following the reward could be locked to 

the running speed profile of the animal, as opposed to the location where the animal expected to receive 

reward. For this, we leveraged the ~15% omission trials to compare the activity of reward-relative neurons 
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on rewarded versus unrewarded trials. To consider the activity of reward-relative cells under conditions 

where running speed was generally comparable between rewarded and omission trials, we restricted our 

analysis to: reward-relative cells with peaks following the start of the reward zone, sessions in which the 

reward zone began at location “A” (80 cm) or “B” (200 cm), and trials before a reward switch. To then 

align the running speed profiles across rewarded and omission trials, we fit a time warping model87 on the 

running speed data and applied this time warped transformation to the neural data (Fig. S5A-D, see 

Methods). We then computed a “reward versus omission index” (RO index) to quantify the difference in 

each cell’s firing rate following rewards versus omissions (Fig. S5E).  

 

Figure 5. Diversity in reward-relative cell coding on rewarded vs. omission trials, with a population 
preference for reward. 
A) Raw and time warp model-aligned speed (first row) and neural activity for 3 reward-relative example cells 
(second to fourth rows) on the first switch day, in mouse 14. Throughout Fig. 5, analysis is performed only on 
trial sets before the reward switch which have at least 3 omission trials. In (A-C), the left columns show raw 
(untransformed) data, with the start of the reward zone indicated by the gray dashed line. The right columns show 
data transformed by the time warp model fit to the trial-by-trial speed in that session (see Methods, Fig. S5). All 
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included cells have peak firing following the start of the reward zone. First row: mean ± s.e.m. speed profiles 
for rewarded (black) and omission (magenta) trials. Note precise alignment of the transformed speed profiles on the 
right. Second to fourth rows: mean ± s.e.m. deconvolved activity for rewarded and omission trials, normalized to 
each cell’s mean within the session, showing an example reward-relative cell in each row. The difference in 
model-transformed activity between rewarded and omission trials is captured as a “reward vs. omission” index 
(bold text, top right of each panel; see Methods). The top row highlights neurons with much higher activity on 
rewarded trials. A positive index indicates higher activity on rewarded trials, a negative index indicates higher 
activity on omission trials. 
B) Raw and time warp model-aligned speed and neural activity for 3 reward-relative example cells on the last switch 
day, in mouse 14. Note cell m14.474 is also shown in Fig. 2B. 
C) Raw and time warp model-aligned speed and neural activity for 3 reward-relative example cells on the last 
switch day, in mouse 12. Note that speed is still aligned well with the reward zone at position “B” (at 220 cm) for 
m12 vs. position “A” (at 80 cm) for m14. Note cell m12.379 is also shown in Fig. 2B. 
D)   Reward vs. omission index for the population of reward-relative cells that have spatial firing peaks following 
the start of the reward zone, in the session shown in (A) (left), (B) (middle), and (C) (right). Each dot is a cell. 
*p<0.05, ***p<0.001, one-sample Wilcoxon signed-rank test against a 0 median. Switch 1, m14: W = 183, p = 
0.018, n = 36 cells; Switch 7, m14: W = 721, p = 2.69e-5, n = 79 cells; Switch 7, m12: W = 2358, p = 3.70e-4, n = 
122 cells. 
E)   Reward vs. omission index across all switch days where the reward zone was at “A” or “B”, for the population 
of reward-relative cells that have spatial firing peaks following the start of the reward zone within each mouse (n = 
7 mice). Each dot is a cell, colors correspond to individual mice. Significance level is set at p<0.007 with Bonferroni 
correction. **p<0.007, ****p<0.0001. m3: median = 0.14, W = 1.50e3, p = 4.66e-7, n = 3 days, 114 cells; m4: 
median = 0.20, W = 1.03e3, p = 5.93e-10, n = 3 days, 112 cells; m7: median = 0.09, W = 4.44e3, p = 2.08e-3, n = 
4 days, 157 cells; m11: median = 0.23, W = 194, p = 5.32e-5, n = 4 days, 48 cells; m12: median = 0.09, W = 
3.41e4, p = 4.40e-8, n = 5 days, 441 cells; m13: median = 0.09, W = 523, p = 0.13, n = 3 days, 52 cells; m14: 
median = 0.11, W = 1.39e4, p = 3.74e-8, n = 4 days, 296 cells. 
See also Figure S5.  
 

Reward-relative cells exhibited heterogeneity in their firing rates following rewards versus 

omissions (Fig. 5A-C). A subset of cells fired at the same position relative to reward regardless of the 

animal’s running speed (Fig. 5A, top and middle row of cells, Fig. 5B, middle, Fig. 5C, top and middle), 

with firing rates often differing between rewarded and omission trials (e.g. Fig. 5A, top, Fig. 5C, top and 

middle). Another subset of cells fired relative to a particular phase of the speed profile (Fig. 5A, bottom, 

Fig. 5B, top and bottom, Fig. 5C, bottom). However, at the population level, the distribution of RO indices 

for reward-relative cells was skewed toward reward-preferring (Fig. 5D). This reward-preference was also 

clearly observable at the single-cell and population levels in trials after the reward switch (Fig. S5F-I), 

although running speed is also more variable on these trials (Fig. S5F). Finally, combining RO indices 

across days (Fig. S5J) revealed that, while there is heterogeneity among individual cells, there is a 

significant preference for the reward-relative population to fire more on rewarded rather than omission 

trials (Fig. 5E, Fig. S5K; note results were similar when all sessions were included, Fig. S5L). 

 Second, we implemented a generalized linear model (GLM)88 to dissociate the contribution of task 
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versus movement variables to the moment-to-moment deconvolved calcium activity of each cell. For task 

variables, we included linear track position, reward-relative position, and whether the animal was 

rewarded on each trial, convolved with the linear track position. For movement variables, we included 

running speed, acceleration, and licking (Fig. S6A, see Methods for details). We trained the GLM using 

5-fold cross-validation and tested its prediction on the activity of each neuron in held out trials (Fig. 6A-

B, Fig. S6B-C). Only well-fit neurons (fraction deviance explained > 0.15)88 were included in the analysis 

(35% of place cells across 7 mice and 7 switch days; Fig. S6B-C). This included 61% (2377/3901) of 

track-relative cells, 37% (1157/3104) of reward-relative cells (Fig. 6A-B), and 43% (1091/2518) of non-

RR remapping cells.  

After testing the full model, we performed an ablation procedure to measure the relative 

contribution of each predictor variable (see Methods). This ablation procedure revealed clear peaks in the 

contribution of reward-relative position to the activity of many reward-relative cells as a function of 

position along the track, recapitulating their firing fields (Fig. 6C). We then quantified the relative 

contribution of each variable within the track-relative, reward-relative, and non-RR remapping 

subpopulations that were well-fit by the full model (Fig. 6D). We found that linear track position was the 

strongest predictor for the track-relative population (Fig. 6D) and the top predictor for 81% of included 

track-relative cells (Fig. 6E). This result provided confirmation of our classification of these cells as stable 

place cells that remain locked to the spatial environment within a session. The non-RR remapping cells 

likewise were best predicted by linear track position followed by reward-relative position (Fig. 6E), 

consistent with their recruitment to the reward-relative population over experience (Fig. 4). In contrast, 

for the reward-relative population, reward-relative position provided the highest relative contribution (Fig. 

6D) and the top predictor for 28.8% of reward-relative cells (Fig. 6E). Reward-relative position was 

followed by speed (top predictor for 23.4% of reward-relative cells), linear track position (17.8%), and 

the receipt of reward (13.3%), with minimal contributions of acceleration and licking. Within the reward-

relative cells that exhibited reward-relative position or speed as their top predictors, we observed a mixed 

contribution of the other variables as well (Fig. S6D-E). These results suggest that the reward-relative 

population supplies a heterogeneous code for multiple aspects of the reward-related experience. While 

movement covariates are challenging to fully disentangle from the animal’s progression through the task, 

the GLM, combined with our analyses of rewarded versus omission trials, provides evidence that reward 

and reward-relative position are strong predictors of activity in the reward-relative cell population. 
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Figure 6. A generalized linear model reveals reward-relative position as a leading predictor of neural activity 
in the reward-relative population.  
A) Example spatial firing maps of two reward-relative cells that were fit well (fraction deviance explained > 0.5) 
by the GLM, on the first switch day (top) and last switch day (bottom). White lines mark the starts of reward zones. 
Note that cell m14.77 (bottom) is the same cell as shown in Fig. 5B, bottom row.  
B) Deconvolved calcium activity (black) and GLM prediction (red) of held-out test data for the two example cells 
shown in (A). Fraction Poisson deviance explained (FDE) of the test data is reported as a measure of model 
performance. 
C) Relative contribution (“fraction explained deviance”, see Methods), or encoding strength, for each variable 
included in the GLM binned by track position, for the two example cells shown in (A). Task variables are “pos.”: 
linear track position; “rew.-rel. pos.”: reward-relative position; “rewarded”: whether the animal was rewarded as a 
function of position (i.e. a binary that stays high from the reward delivery time to the end of the trial). Movement 
variables are speed, acceleration, and licking (see Fig. S6A for implementation). Relative contribution is calculated 
from an ablation procedure where each variable is individually removed from the full model (see Methods). Gray 
dashed lines mark the starts of the two reward zones in each session, also indicated in (A). Boxes correspond to 
color coding in (E). Note that reward-relative position provides the maximum relative contribution for both example 
cells, including m14.77 even though it fired equivalently on rewarded and omission trials (see Fig. 5B). 
D) Distributions of relative contribution of each variable in the track-relative, reward-relative, and non-reward-
relative remapping subpopulations across animals. Boxes indicate the interquartile range, whiskers extend from the 
2.5th to 97.5th percentile, horizontal line indicates the median, and notches indicate the confidence interval around 
the median computed from 10,000 bootstrap iterations. Colored dots mark the medians of each individual mouse.  
E) Distributions of top predictor variables (maximum relative contribution) for individual cells within each 
subpopulation, shown as % of cells in the subpopulation; same n as in (D). 
See also Figure S6.  
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DISCUSSION 

Here, we reveal that the hippocampus encodes an animal’s physical location and its position 

relative to rewards through parallel sequences of neural activity. We employed 2-photon calcium imaging 

to observe large groups of CA1 neurons in the hippocampus as mice navigated virtual linear tracks with 

changing hidden reward locations. This paradigm allowed us to identify reward-relative sequences that 

are dissociable from the spatial visual stimuli, as they instead remain anchored to the movable reward 

location. This suggests that the brain employs a parallel coding system to simultaneously track an animal’s 

physical and reward-relative positions, pointing to a mechanism for how the brain could monitor an 

animal’s experience relative to multiple frames of reference45,59,60,67–73,89. Further, we found that the 

reward-relative sequences, but not the “track-relative” sequences locked to the spatial environment, show 

a notable increase in the number of neurons involved as the animal gains more experience with the task. 

These results suggest that the hippocampus builds a strengthening representation of generalized events 

surrounding reward as animals become more familiar with the task structure. Moreover, this work raises 

the possibility that the hippocampal code for space, provided by a subpopulation of place cells, can update 

the progression of reward-relative sequences when the reward location changes. In this way, hippocampal 

ensembles encoding different aspects of experience may interact to support accurate memory while 

amplifying behaviorally salient features such as reward.  

We validated prior work that found a subpopulation of hippocampal neurons precisely encodes 

reward locations54. Here, we found that this subset of reward-relative neurons, which fire very close to 

rewards, comprised a central component of a more extensive reward-relative sequence. Our finding of 

reward-relative coding at farther distances from reward is reminiscent of hippocampal cells that encode 

distances and directions to goals in freely flying bats90. At the same time, we extended these previous 

findings in two key ways: (1) we found that the reward-relative code spans the entire environment, 

involving cells firing at distances up to hundreds of centimeters away (i.e. as far as from one reward to 

the next), and (2) additional neurons are recruited into the reward-relative sequences over time, 

demonstrating a dynamic and evolving coding strategy. Specifically, the cells firing closest to reward were 

most likely to increase in number across days (Fig. 2D-H, Fig. S2I-M, Fig. 3J-L), suggesting that they 

may be the most detectable in other paradigms. Importantly, we also observed a noticeable turnover in the 

neurons that form the reward-relative population from day to day, indicating a high degree of 

reorganization in terms of which neurons participate. Despite this daily fluctuation in individual neurons, 

the overall sequential structure appears to be maintained within the population.  
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This latter finding of day to day fluctuation in the reward-relative population is consistent with 

recent studies which have highlighted a phenomenon known as representational drift81–85. In the 

hippocampus81–85 and in other cortical areas91–93, this drift is characterized by changing spatial tuning and 

stability of single neurons as a function of extended experience82,83. Despite these single neuron changes, 

the population often continues to accurately code for the spatial environment81 or task91. This flexibility 

is thought to increase the storage capacity of neuronal networks94–97. Related changes over time have also 

been proposed to support the decoding of temporal separation between unique events50,92,94,98, which could 

be particularly important for separating memories of events surrounding different rewarding experiences. 

We observed population drift in both the reward-relative and track-relative sequence membership. This 

frequent reorganization suggests that these are not dedicated subpopulations; neurons in the reward-

relative population occasionally switched coding modes—though this flexibility may vary by anatomical 

location within CA154,99,100. At the same time, we found that more resources (i.e. neurons) are allocated 

to the reward-relative representation at the population level with extended experience. This finding 

indicates an increasingly robust network code that can be reliably anchored to reward within a day despite 

day-to-day drift. This stability amidst flux offers insight into the brain’s ability to balance dynamic coding 

with the preservation of population-level representations91,92,97.  

In the hippocampus, spatial firing can also be highly flexible at short timescales even within a 

fixed environment. This flexibility is evident in the variability of place cell firing even within a field57,85 

and especially when an animal takes different routes101–106 or targets a different goal89,90,107–109 through the 

same physical position. Our work is consistent with such trajectory specific coding and raises the 

possibility that the reward-relative population may split even further by specific destinations or reward 

sites when there are multiple possible reward locations. Indeed, in cases where multiple rewards are 

present at once, hippocampal activity may multiplex spatial and reward-relative information to dissociate 

different goal locations64,89,110.  This discrimination is enhanced over learning110, consistent with the 

manner in which hippocampal maps are likewise dependent on learned experience4,6,7,12,52,53,111. 

Furthermore, place cells undergo significant remapping in response to changes in the animal’s 

motivational state, such as during task engagement61,62,70 or disengagement112, or upon removal of a 

reward113. Importantly, in our task the animal must remain engaged when the reward zone updates in order 

to accurately recall and seek out the new reward location. Consistent with this enhanced attention58,59,61,62, 

we see predictable structure in how the neurons remap surrounding reward (i.e. they maintain their firing 

order relative to reward), in contrast to the more random reorganization observed with task 

disengagement112 or the absence of reward113. However, an important consideration for all of these short 
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timescale firing differences, and for representational drift, is the contribution of behavioral variability to 

neural activity changes114,115. For example, small changes in path shape116 and the movement dynamics 

involved in path integration117–121 may influence aspects of hippocampal activity. Our results from a 

generalized linear model indicate that such movement dynamics influence but do not dominate the activity 

in the reward-relative population, as reward-relative position was a leading predictor of activity. Further 

work will be required to disentangle which aspects of reward-seeking behavior are encoded in the 

hippocampus.  

The origin of the input that informs reward-relative neurons remains an open question. One 

possibility is that subpopulations of neurons in CA1 receive stronger neuromodulatory inputs than others1, 

increasing their plasticity in response to reward-related information122,123. CA1 receives reward-related 

dopaminergic input from both the locus coeruleus (LC)124,125 and the ventral tegmental area 

(VTA)113,126,127 that could potentially drive plasticity to recruit neurons into reward-relative sequences. 

Both of these inputs have recently been shown to restructure hippocampal population activity, with both 

LC and VTA input contributing to the hippocampal reward over-representation113,125,126, and VTA input 

additionally stabilizing place fields113 in a manner consistent with reward expectation113,128. Alternatively, 

it is possible that upstream cortical regions, such as the prefrontal cortex129, contribute to shaping these 

reward-relative sequences. Supporting this idea, the prefrontal cortex has been observed to exhibit 

comparable neural activity sequences that generalize across multiple reward-directed trajectories130–134 to 

encode the animal’s progression towards a goal135,136. Another potential source of input is the medial 

entorhinal cortex, which exhibits changes in both firing rate and the location where cells are active in 

response to hidden reward locations137,138. In particular, layer III of the medial entorhinal cortex is thought 

to contribute significantly to the over-representation of rewards by the hippocampus63. Additionally, the 

lateral entorhinal cortex, which also projects to the hippocampus, exhibits a strong over-representation of 

positions and cues just preceding and following rewards120,139–141 and provides critical input for learning 

about updated reward locations139,140. 

These insights point to a complex network of brain regions potentially interacting to inform 

reward-relative sequences in the hippocampus. In turn, the hippocampal-entorhinal network may send 

information about distance from expected rewards back to the prefrontal cortex and other regions where 

similar activity has been observed1, such as the nucleus accumbens142–147. Such goal-related hippocampal 

outputs to prefrontal cortex148 and nucleus accumbens149 have recently been reported, specifically in the 

deep sublayer of CA1148, where goal-related remapping is generally more prevalent148,150. Over learning, 

reward-relative sequences generated between the entorhinal cortices and hippocampus may become linked 
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with codes for goal-related action sequences in the prefrontal cortex and striatum, helping the brain to 

generalize learned information surrounding reward to similar experiences1. Understanding these 

interactions in future work will provide new insight regarding how the brain integrates spatial and reward 

information, which is crucial for navigation and decision-making processes. 

The significance of reward-relative sequences in the brain may lie in their connection to hidden 

state estimation7,43,151–155, a concept closely related to generalization28,156. Hidden state estimation refers 

to the process by which an animal or agent infers an unobservable state, such as the probability of receiving 

a reward under a certain set of conditions, in order to choose an optimal behavioral strategy151. For 

example, in our study involving mice, reward-relative sequences could be instrumental in helping the 

animals discern different reward states, such as whether they are in a state of the task associated with 

reward A, B, or C. By building a code during learning that allows the hippocampus to accurately infer 

such states, this inference process can generalize to similar future scenarios in which the animal must 

make predictions about which states lead to reward151,152. Interestingly, however, the density of the 

reward-relative sequences we observed was highest following the beginning of the zone where animals 

were most likely to get reward, rather than preceding it. This finding contrasts with computational 

simulations of predictive codes in the hippocampus that are skewed preceding goals157. Instead, the shape 

of the reward-relative sequences may be more consistent with anchoring to the animal’s estimate of the 

reward zone, with decreasing density around the zone as a function of distance which mirrors the 

organization seen around other salient landmarks86,158.  

Our work is consistent with previous proposals that suggest a primary function of the hippocampus 

is to generate sequential activity at a baseline state17,27,29,47,48. These sequences could then act as a substrate 

that can become anchored to particular salient reference points16,17,27,47, allowing maximal flexibility to 

learn new information as it becomes relevant and layer it onto existing representations159–161. This role for 

hippocampal sequences extends to computational studies28,159,162 and human research163–167, where such 

coding schemes have been linked to the organization of knowledge and the chronological order of events 

in episodic memory27,49,163–166,168–170. The ability of the hippocampus to parallelize coding schemes for 

different features of experience may help both build complete memories and generalize knowledge about 

specific features without interfering with the original memory. As observed in our study, the hippocampus 

may then amplify the representations of some of these features over others according to task demands. A 

similar effect has been observed in humans, in that memory recall is particularly strong for information 

that either precedes or follows a reward171,172. This suggests that rewards can significantly enhance the 

strength and precision of memory storage and retrieval, especially for events closely associated with these 
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rewards. Thus, reward-relative sequences may play a crucial role in how we form and recall our 

experiences, with implications stretching beyond spatial navigation.  
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METHODS 

Subjects 
All procedures were approved by the Institutional Animal Care and Use Committee at Stanford University 
School of Medicine. Male and female (n = 5 male, 5 female) C57BL/6J mice were acquired from Jackson 
Laboratory. Mice were housed in a transparent cage (Innovive) in groups of five same-sex littermates prior 
to surgery, with access to an in-cage running wheel for at least 4 weeks. After surgical implantation, mice 
were housed in groups of 1-3 same-sex littermates, with all mice per cage implanted. All mice were kept 
on a 12-h light–dark schedule, with experiments conducted during the light phase. Mice were between 
~2.5 to 4.5 months at the time of surgery (weighing 18–31 g). Before surgery, animals had ad libitum 
access to food and water, and ad libitum access to food throughout the experiment. Mice were excluded 
from the study if they failed to perform the behavioral pre-training task described below. 
 
Surgery: calcium indicator virus injections and imaging window implants 
We adapted previously established procedures for 2-photon imaging of CA1 pyramidal cells7,173. The 
imaging cannula was constructed using a ~1.3-mm long stainless-steel cannula (3 mm outer diameter, 
McMaster) affixed to a circular cover glass (Warner Instruments, number 0 cover glass, 3 mm in diameter; 
Norland Optics, number 81 adhesive). Any excess glass extending beyond the cannula edge was removed 
with a diamond-tipped file. During the imaging cannula implantation procedure, animals were 
anesthetized through intraperitoneal injection of ketamine (~85 mg/kg) and xylazine (~8.5 mg/kg). 
Anesthesia was maintained during the procedure with inhaled 0.5–1.5% isoflurane and oxygen at a flow 
rate of 0.8-1 L/min using a standard isoflurane vaporizer. Prior to surgery, animals received a 
subcutaneous administration of ~2 mg/kg dexamethasone and 5-10 mg/kg Rimadyl (to reduce 
inflammation and promote analgesia, respectively). First, the viral injection site targeting the left dorsal 
CA1 was determined by stereotaxis (AP -1.94 mm, ML -1.10 to -1.30 mm) and an initial hole was drilled 
only deep enough to expose the dura. An automated Hamilton syringe microinjector (World Precisions 
Instruments) was used to lower the syringe (35-gauge needle) to the target depth at the CA1 pyramidal 
layer (DV -1.33 to -1.37 mm) and inject 500 nL adenovirus (AAV) at 50 nL/min, to express the genetically 
encoded calcium indicator GCaMP under the pan-neuronal synapsin promoter (AAV1-Syn-jGCaMP7f-
WPRE, AddGene, viral prep 104488-AAV1, titer 2x1012). The needle was left in place for 10 min to allow 
for virus diffusion.  

After retracting the needle, a 3 mm diameter circular craniotomy was then performed over the left 
hippocampus using a robotic surgery drill for precision (Neurostar). The craniotomy was centered at AP 
-1.95 mm, ML -1.8 to -2.1 mm (avoiding the midline suture). During drilling, the skull was kept moist by 
applying cold sterile artificial cerebrospinal fluid (ACSF; sterilized using a vacuum filter). The dura was 
then delicately removed using a bent 30-gauge needle. To access CA1, the cortex overlying hippocampus 
was carefully aspirated using a blunt aspiration needle, with continuous irrigation of ice-cold, sterile 
ACSF. Aspiration was stopped when the fibers of the external capsule were clearly visible, leaving the 
external capsule intact. Following hemostasis, the imaging cannula was gently lowered into the 
craniotomy until the cover glass lightly contacted the fibers of the external capsule. To optimize an 
imaging plane tangential to the CA1 pyramidal layer while minimizing structural distortion, the cannula 
was positioned at an approximate 10° roll angle relative to horizontal. The cannula was affixed in place 
using cyanoacrylate adhesive. A thin layer of adhesive was also applied to the exposed skull surface, 
which was pre-scored with a number 11 scalpel before the craniotomy to provide increased surface area 
for adhesive binding. A headplate featuring a left-offset 7-mm diameter beveled window and lateral screw 
holes for attachment to the imaging rig was positioned over the imaging cannula at a matching 10° angle. 
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The headplate was cemented to the skull using Metabond dental acrylic dyed black with India ink or black 
acrylic powder. 

Upon completion of the procedure, animals were administered 1 mL of saline and 10 mg/kg of 
Baytril, then placed on a warming blanket for recovery. Monitoring continued for the next several days, 
and additional Rimadyl and Baytril were administered if signs of discomfort or infection appeared. A 
minimum recovery period of 10 days was required before initiation of water restriction, head-fixation, and 
virtual reality training. 

 
Histology 
After the conclusion of all experiments, mice were deeply anesthetized and administered an overdose of 
Euthasol, then perfused transcardially with PBS followed by 4% paraformaldehyde (PFA) in 0.1M PB. 
Brains were removed and post-fixed in PFA for 24 hours, followed by incubation in 30% sucrose in PBS 
for >4 days. 50 µm coronal sections were cut on a cryostat, mounted on gelatin-coated slides, and 
coverslipped with DAPI mounting medium (Vectashield). Histological images were taken on a Zeiss 
widefield fluorescence microscope. 
 
Virtual Reality (VR) Design 
All VR tasks were designed and operated using custom code written for the Unity game engine 
(https://unity.com). Virtual environments were displayed on three 24-inch LCD monitors surrounding the 
mouse at 90° angles relative to each other. The VR behavior system included a rotating fixed axis cylinder 
to serve as the animal’s treadmill and a rotary encoder (Yumo) to read axis rotations to record the animal’s 
running. A capacitive lick port, consisting of a feeding tube (Kent Scientific) wired to a capacitive sensor, 
detected licks and delivered sucrose water reward via a gravity solenoid valve (Cole Palmer). Two separate 
Arduino Uno microcontrollers operated the rotary encoder and lick detection system. Unity was controlled 
on a separate computer from the calcium imaging acquisition computer. Behavioral data were sampled at 
50 Hz, matching the VR frame rate. Both the start of the VR task as well as each 50 Hz frame were 
synchronized with the ~15.5 Hz sampled imaging data via Unity-generated TTL pulses from an Arduino 
to the imaging computer.  
 
Behavioral training and VR tasks 
Handling and pre-training  
After ~1 week of recovery, the mice were handled for 2-3 days for 10 minutes each day, then acclimated 
to head-fixation (at least 10 days after surgery) on the cylindrical treadmill in a stepwise fashion for at 
minimum 15-min sessions for 2-3 days (increasing to 30 min-1 hour on the second to third day). Mice 
were then acclimated to the lick port by 1-2 days of pre-training to lick for water rewards delivered at 2-
second intervals (i.e. a minimum of 2 s between rewards if mice were actively licking, otherwise no reward 
was delivered). For this pre-training and all subsequent behavior, sucrose water reward (5% sucrose w/v) 
was delivered when the mouse licked the capacitive lick port. The water delivery system was calibrated 
to release ~4 μL of liquid per drop. To motivate behavior, mice were water restricted to 85% or higher of 
their baseline body weight. Mice were weighed daily to monitor health and underwent hydration 
assessments (via skin tenting). The total volume of water consumed during the training and behavioral 
sessions was measured, and after the experiment each day, supplemental water was supplied up to a total 
of ~0.045 mL/gm per day (typically 0.8-1 mL per day, adjusted to maintain body weight). After the 
training and water consumption, the animals were returned to their home cage each day. 

Once acclimated to the lick port, mice were pre-trained on a “running” task on a 350 cm virtual 
linear track with random black and white checkerboard walls and a white floor to collect a cued reward. 
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The reward location was marked by two large gray towers, initially positioned at 50 cm down the track. 
If the mouse licked within 25 cm of the towers, it received a liquid reward; otherwise, an automatic reward 
was given at the towers. After dispensing the reward, the towers advanced (disappeared and quickly 
reappeared further down the track). Covering the distance to the current reward in under 20 s increased 
the inter-reward distance by 10 cm, but if the mouse took longer than 30 s, the distance decreased by 10 
cm, with a maximum reward location of 300 cm. Upon consistent completion of 300 cm distance in under 
20 s, the automatic reward was turned off, requiring the mice to lick to receive reward. At the end of the 
track, the mice passed through a black “curtain” and into a gray teleport zone (50 cm long) that was 
equiluminant with the VR environment before re-entering the track from the beginning. Once mice were 
reliably licking and completing 200 laps of the pre-training track within a 30-40 min period, they were 
advanced to the main task and imaging (mean ± s.d.: 6.1 ± 1.8 days of running pre-training across 10 
mice). 
 
Hidden reward zone “switch” VR task  
The main “switch” task reported in this study involved two virtual environments highly similar to those 
previously used to study hippocampal remapping7, each with visually distinct features from the pre-
training environment. Both environments consisted of a 450 cm linear track, with two colored towers and 
two patterned towers along the walls. Environment 1 (Env 1) had diagonal low-frequency black and white 
gratings on the walls, a gray floor and dark gray sky, and began with two green towers. Environment 2 
(Env 2) had higher frequency gratings on the wall, a gray floor, a very light gray sky, and began with two 
blue towers. The reward zone was a “hidden” (not explicitly marked) 50-cm span at one of 3 possible 
locations along the track, each equidistantly spaced between the towers but with different proximity to the 
start or end of the track: zone A: 80-130 cm, zone B: 200-250 cm, zone C: 320-370 cm. Only one reward 
zone was ever active at a time. On the first 10 trials of any new condition, including the first day and each 
switch subsequently described, the reward was automatically delivered at the end of the zone if the mouse 
had not yet licked within the zone to signal reward availability. Otherwise, reward was delivered at the 
first location within the zone where the mouse licked. After these 10 trials, reward was operantly delivered 
for licking within the zone. Reward was randomly omitted on approximately 15% of trials (i.e. if a random 
number generator exceeded 0.85). Each lap terminated in a black curtain and gray teleportation “tunnel” 
to return the mouse to the beginning of the track. Time in the teleport tunnel was randomly jittered between 
1 and 5s (5-10s on trials following reward omissions or trials where the mouse did not lick in the reward 
zone), followed by 50 cm of running during which the beginning of the track was visible to provide smooth 
optic flow. 

Each mouse encountered a different starting reward zone and sequence of reward zone switches, 
counterbalanced across mice (n = 7 mice). Mice were allowed to learn an initial reward zone (e.g. A as in 
Fig. 1E) for days 1-2 of the task. On day 3 (Switch 1), the zone was moved to one of the two other possible 
locations on the track after 30 trials (e.g. B). For the first 10 trials at the new location, automatic delivery 
was activated at stated above, but empirically, we observed that the mice often started licking at the new 
location before that 10 trials had elapsed (Fig. S1A-C). The new reward zone was maintained on day 4. 
On day 5 (Switch 2), the zone was moved to the third possible reward zone (e.g. C), maintained on day 6, 
and moved back to the original location on day 7 (e.g. A). Each switch occurred after 30 trials. On day 8, 
the reward zone switch coincided with a switch into Env 2, where the sequence of zone switches was then 
reversed on the same day-to-day schedule for a total of 14 days (Fig. 1, Fig. S1).  

An additional “fixed-condition” cohort  (n=3 mice) experienced only Env 1 and one fixed reward 
location throughout the 14 days (Fig. S1D,F). 
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We targeted 80-100 trials per session with simultaneous two-photon imaging (described below), 
with 1 imaging session per day (mean ± s.d: 80.9 ± 8.8 trials across 10 mice). The session was terminated 
early if the mouse ceased licking for an extended period of time or ceased running consistently, and/or if 
the imaging time exceeded 50 minutes. Prior to the imaging session for this task, mice were provided 30 
“warm-up” trials using the task and reward zone from the previous day to re-acclimate them to the VR 
setup. On day 1 of imaging, this warm-up session used the pre-training environment from prior days. On 
days 2 onward, the warm-up session was whichever environment and reward zone was active at the end 
of the previous day. Following the completion of the daily imaging session, mice were given another ~100 
training trials without imaging on the last reward zone seen in the imaging session until they acquired 
their daily water allotment.  
 
Two-photon (2P) imaging 
We used a resonant-galvo scanning 2P microscope from Neurolabware to image the calcium activity of 
CA1 neurons. Excitation was achieved using 920-nm light from a tunable output femtosecond pulsed laser 
(Coherent Chameleon Discovery). Laser power modulation was accomplished with a Pockels cell 
(Conoptics). The typical excitation power, measured at the front face of the objective (Leica 25X, 1.0NA, 
2.6 mm working distance), ranged from 13-40 mW for mice m12, m13, m14; 15-68 mW for mice m2, 
m3, m4, m6, m7; and 50-100 mW for m10 and m11. The hidden reward zone task was imaged starting 
from day 1 for all mice except m11, for whom imaging started on day 3 due to lower viral expression. 
Continuous imaging under constant laser power persisted through each trial of the imaging session. For 
most animals and sessions, to minimize photodamage and photobleaching, the Pockels cell was used to 
reduce laser power to minimal levels between trials (during the teleport zone). For mice m11, m12, m13, 
and m14, laser power was maintained and imaging continued throughout the teleport zone on days 1, 3, 
7, 8, and 14 of the task. Photons were collected using Hamamatsu gated GAsP photomultiplier tubes (part 
H11706-401 for Neurolabware microscopes). Imaging data were acquired via Scanbox software 
(https://scanbox.org/), operated through MATLAB (Mathworks). The imaging field of view (FOV) was 
collected at 1.0 magnification with unidirectional scanning at ~15.5 Hz, resulting in a ~0.64 x 0.64 mm 
FOV (512 x 716 pixels). The same FOV was acquired each session by aligning to a reference image from 
previous days prior to the start of data acquisition, with the aid of the ‘searchref’ plugin in Scanbox. This 
allowed us to track single cells across days (see Calcium data processing). 
 
Calcium data processing 
The Suite2P software package174 (v0.10.3) was used to perform xy motion correction (rigid and non-rigid) 
and identify putative cell regions of interest (ROIs). Manual curation was performed to eliminate ROIs 
containing multiple somas or dendrites, lacking visually obvious transients, suspected of overexpressing 
the calcium indicator, or exhibiting high and continuous fluorescence fluctuation typical of putative 
interneurons. This approach yielded between 155 and 1982 putative pyramidal neurons per session, due 
to variation in imaging window implant quality and viral expression. Custom code was used to identify 
cells that were successfully tracked across imaging sessions using the intersection over union (IOU) of 
their ROI pixels. The threshold for ROI matching was chosen algorithmically for each dataset such that 
the IOU for the best match for an ROI pair was always greater than the IOU for any second best match. 

To compute the 𝛥F/F (dF/F) for each ROI, baseline fluorescence was calculated within each trial 
independently using a maximin procedure with a 20-s sliding window (modification of default suite2p 
procedure). Limitation to individual trials both accounts for potential photobleaching over the session and 
avoids the teleport periods for sessions where the laser power was reduced (see Two-photon imaging). 
dF/F was then calculated for each cell as the fluorescence minus the baseline, divided by the absolute 
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value of the baseline. dF/F was smoothed with a 2-sample (~0.129 s) s.d. Gaussian kernel. The activity 
rate was then extracted by deconvolving dF/F with a canonical calcium kernel using the OASIS 
algorithm175 as used in suite2p. It is important to note that this deconvolution is not interpreted as a spike 
rate but rather as a method to eliminate the asymmetric smoothing effect on the calcium signal induced 
by the indicator kinetics. Additional putative interneurons were detected for exclusion from further 
analysis via a Pearson correlation >0.5 between their dF/F timeseries and the animal’s running speed, 
excluding 0.24 ± 0.41% of cells (mean ± standard deviation across mice and days). 
 
Statistics  
To avoid assumptions about data distributions, we used nonparametric tests or permutation tests in most 
cases, except where a Shapiro–Wilk test for normality confirmed that parametric tests were reasonable. 
Specific tests are described in further detail in specific Methods sections. In the main text, percentages of 
cells classified by remapping type are reported as mean ± standard deviation out of all place cells identified 
on the specified days (n = 7 mice for the “switch” task). Place cell criteria are defined below in Place cell 
and peak firing identification. Averaged data in figures are shown as mean ± s.e.m. unless otherwise 
indicated. For the distributions of sequence positions over days in Fig. 3 and Fig. S3, s.e.m. shading is 
omitted for clarity, but the variance for these distributions is taken into account in linear mixed effects 
models to quantify these plots (see Linear mixed effects models).  

All analyses were performed in Python 3.8.5. Linear mixed effects models were performed using 
the statsmodels package (https://www.statsmodels.org/stable/index.html). Pairwise repeated measures 
(paired) t-tests were run using the pingouin package (https://pingouin-stats.org/) with a Holm step-down 
Bonferroni correction for multiple comparisons. Linear regressions and Wilcoxon signed-rank tests were 
performed using the SciPy (https://scipy.org/) statistics module, with confidence intervals computed with 
the Uncertainties package (https://pypi.org/project/uncertainties/). Circular statistics were performed 
using Astropy (https://docs.astropy.org/en/stable/stats/circ.html), pycircstat176 
(https://github.com/circstat/pycircstat), and circular-circular correlation code originally written to analyze 
hippocampal theta phase precession177 (https://github.com/CINPLA/phase-precession). The time warp 
models and GLM were implemented from publicly available repositories (time warp: 
https://github.com/ahwillia/affinewarp; GLM: https://github.com/HarveyLab/GLM_Tensorflow_2). 

The number of mice to include was determined by having coverage of every possible reward 
sequence permutation (6 sequences) with at least one mouse. In addition, our mouse sample sizes were 
similar to those reported in previous publications7,150.  
 
Quantification of licking behavior 
The capacitive lick sensor allowed us to detect single licks. A very small number of trials where the sensor 
had become corroded were removed from subsequent licking analysis by setting these values to NaN 
(~0.8% of all imaged trials, n=64 removed trials out of 7736 trials across the 7 switch mice). These trials 
were detected by >30% of the imaging frame samples in the trial containing ≥3 Unity frames where licks 
were detected, as this would have produced a sustained lick rate ≥20 Hz. Remaining lick counts were 
converted to a binary vector at the imaging frame rate and spatially binned at the same resolution as neural 
activity (10 cm bins), then divided by the time occupancy in each bin to yield a lick rate. We quantified 
the licking precision of the animals over blocks of 10 trials using an anticipatory lick ratio inspired by the 
ramp of anticipatory licking we observed preceding the reward zone (Fig. 1F-G, Fig. S1A-C). The ratio 
was computed as: 

𝑙𝑖𝑐𝑘	𝑟𝑎𝑡𝑖𝑜 = 	
𝑙𝑖𝑐𝑘!" − 𝑙𝑖𝑐𝑘#$%
𝑙𝑖𝑐𝑘!" + 𝑙𝑖𝑐𝑘#$%
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Where lickin is the mean lick rate in a 50 cm “anticipatory” zone before the start of the reward zone, and 
lickout is the mean rate outside of this zone and the reward zone. The reward zone itself is thus excluded 
to exclude consummatory licks (Fig. S1E). A ratio of 1 indicates perfect licking only in the anticipatory 
zone, a ratio of -1 indicates licking only outside of this zone, and a ratio of 0 indicates chance licking 
everywhere excluding the reward zone.  
 
Place cell and peak firing identification 
For all neural spatial activity analyses we excluded activity when the animal was moving at <2 cm/s. To 
get a trial-by-trial activity rate matrix for each cell, we binned the 450 cm linear track into 45 bins of 10 
cm each. For each cell, we took the mean of the activity samples (dF/F or deconvolved calcium activity) 
on each trial within each position bin (note that taking the mean activity over time samples is equivalent 
to normalizing by the occupancy within a trial), producing a matrix of trials x position bins.  

We defined place cells as cells with significant spatial information178 (SI) in either trial set 1 (pre-
switch) or trial set 2 (post-switch) in a session. On days without a switch, we used the 1st and 2nd half of 
trials. For the spatial information computation and for plotting spatial firing over trials, we used the 
deconvolved calcium activity as this reduces the asymmetry of the calcium signal (smoothed only for 
plotting with a 10 cm s.d. Gaussian kernel). SI was calculated using a formula implemented for calcium 
imaging179 as: 

𝑆𝐼 = 	0𝑝!
𝑓!
𝑓 𝑙𝑜𝑔&

𝑓!
𝑓	

'

!()

 

 
where pi is the occupancy probability in position bin i for the whole session, fi is the trial-averaged activity 
per position bin i, and f is the mean activity rate over the whole session, computed as the sum of fi * pi 
over all N bins. To get pi, we calculated the occupancy (number of imaging samples) in each bin on each 
trial and divided this by the total number of samples in each trial to get an occupancy probability per 
position bin per trial. We then summed the occupancy probabilities across trials and divided by the total 
per session to get an occupancy probability per position bin per session. To get the spatial “tuning curve” 
over the session, we averaged the activity in each bin across trials. To determine the significance of the SI 
scores, we created a null distribution by circularly permuting the position data relative to the timeseries of 
each cell, by a random amount of at least 1 s and a maximum amount of the length of the trial, 
independently on each trial. SI was calculated from the trial-averaged activity of each shuffle, and this 
shuffle procedure was repeated 100 times per cell. A cell’s true SI was considered significant if it exceeded 
95% of the SI scores from all shuffles within animal (i.e. shuffled scores were pooled across cells within 
animal to produce this threshold, which is more stringent than comparing to the shuffle of each individual 
cell180). 

To identify spatial peaks, we used the unsmoothed spatially binned dF/F, as this signal is the closest 
to the raw data. Place cell firing peaks or “spatial peaks” refer to the position bin of the maximum spatially-
binned activity, usually averaged across trials within a set. There was no restriction to field boundaries, 
thus allowing cells to have multiple fields. To plot single cell place fields and cell sequences, neural 
activity was normalized to the mean of each cell within a session.  
 
Trial-by-trial similarity matrices 
Correlation matrices for single cells were computed using the spatially binned deconvolved activity on 
each trial, smoothed with a 2-bin (20 cm) s.d. Gaussian. This resulted in a matrix Ai for each cell i of J 
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trials x M position bins. Each trial was z-scored across the position axis, and the trial-by-trial correlation 
matrix C was computed as: 

𝐶 =
1

𝑀 − 1	𝐴!𝐴!
* 

  
Cell category definitions for remapping subtypes 
We defined the remapping types shown in Fig. 2 and Fig. S2 as follows: track-relative: significant SI 
before and after the switch, with spatial peaks (position bin of maximum trial-averaged dF/F) ≤50 cm 
from each other before vs. after; disappearing: significant SI before but not after the switch, with a mean 
spatially-binned dF/F after that is less than the 50th percentile of the per-trial mean dF/F before; 
appearing: significant SI after but not before, with a mean spatially-binned dF/F after that is greater than 
1 s.d. above the mean in trials before; remap near reward: significant SI before and after, with spatial 
peaks ≤50 cm from the starts of both reward zones; remap far from reward: significant SI before and after, 
not “track-relative” (i.e. peaks >50 cm apart before vs. after) and not “near reward” cells (i.e. peaks >50 
cm from the start of at least one reward zone). 
 
Reward-relative remapping 
Quantification of reward-relative remapping compared to chance 

To perform statistics on putative reward-relative remapping (Fig. 2, Fig. S2), we restricted the set 
of included place cells to require significant spatial information in the 1st and 2nd trial set in each session 
(pre- and post- switch), to produce a stringent set of spatial peaks. For all scatter plots of spatial peaks 
before vs. after a reward switch, points are jittered by a random amount between -π /100 and +π/100 for 
visualization only. As outlined in Fig. 2, we converted the track axis (i.e. the original position timeseries 
of the animal) to circular coordinates, setting the beginning of the track to -π and the end of the track 
(beginning of the teleport zone) to π. Spatial peaks for each cell were re-computed using dF/F binned into 
45 bins on this axis (bin size 2π/45, corresponding to ~10 cm). Putative track-relative cells were removed 
by excluding cells with spatial peaks before vs. after the switch that fell within 0.698 radians (~50 cm) of 
each other. The coordinates of the remaining data were then circularly rotated to align the start of each 
reward zone at 0, such that spatial peaks could be measured relative to the start of each reward zone (as 
the signed circular distance). We measured the distance between relative peaks as the “after” peak minus 
the “before” peak, circularly wrapped, creating a distribution that can be thought of as orthogonal to the 
unity line shown in the scatters in Fig. 2D, F. We compared this distribution (shown in Fig. 2E, G) to a 
“random-remapping” shuffle. This shuffle was generated by maintaining the pre-switch position of each 
cell’s peak and circularly permuting the cell’s post-switch firing 1000 times by a random offset of 0 to 44 
bins, creating a set of shuffled post-switch positions for each cell. To define a candidate range of reward-
relative remapping variability (i.e. a range around the unity line in Fig. 2D, F), we computed the circular 
difference between the maximum and minimum bin of the distribution that exceeded the upper 95% of 
the shuffle, divided by 2, and averaged across switches (Fig. S2G). This produced a mean range of ~0.656 
radians (46.9 cm) around 0, which is captured by a 50 cm threshold given our 10 cm bin size. This 
threshold was subsequently used to identify candidate reward-relative remapping cells (see below). 

 
Criteria to define reward-relative cells 

Reward-relative cells could encompass “remap near reward” and “remap far from reward” cells as 
defined in Cell category definitions for remapping subtypes. However, we observed variable dynamics 
over trials with which the spatial activity of these cells remapped after a reward switch (Fig. 2A-B, Fig. 
S2A), which could affect spatial information scores. We therefore relaxed the SI criterion for reward-
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relative cells such that they were required to have significant SI either before or after the switch but not 
necessarily both, to allow for these dynamics. We began by finding place cells which had peak spatial 
firing within ≤50 cm (0.698 radians) of each other when these peaks were calculated using circular bins 
relative to reward zone starts. As the detection of peak firing can be noisy, we further took into account 
the shape of the field by performing a cross-correlation between each place cell’s trial-averaged spatial 
activity before vs. after, using  the activity matrices (trials x position bins, unsmoothed dF/F) where reward 
zone starts are circularly aligned between trial sets 1 and 2. This procedure allowed us to test the 
hypothesis that reward-relative cells should have a peak cross-correlation close to zero on this reward-
centered axis. We calculated a shuffle for the cross-correlation by circularly permuting the activity in trial 
set 2 by a random offset between 1 and 45 bins on each trial 500 times, and required that the real cross-
correlogram had a peak exceeding the 95% confidence interval (upper 97.5% threshold) of the shuffle, 
and that the offset of this peak was within 5 bins (~50 cm) of zero (see Fig. S2N-P). We validated that the 
population of cells passing this criterion had high Pearson correlation coefficients between their circularly 
aligned activity maps in set 1 vs. set 2 (whereas, by contrast “track-relative” cells had high correlation 
coefficients and a cross-correlation offset near zero only in the original linear track coordinates; Fig. S2O-
P). Place cells that passed this final circular cross-correlation criterion were therefore defined as reward-
relative. 
 
Relationship between distance run in the teleport zone and trial-to-trial variability 
We measured the distance run in the teleport zone at the end of each trial by integrating the animal’s speed 
between the entry to the teleport zone (i.e. first frame at which the temporal jitter started, see Behavioral 
training and VR tasks) and the last frame before the re-entry to the track (i.e. start of the next trial). We 
then computed the trial-wise spatial peak error for each reward-relative cell as phase difference between 
the cell’s spatial peak location in circular coordinates on each trial and its mean spatial peak location 
within either trial set 1 (before the reward switch) or trial set 2 (after the switch). Circular error was then 
converted back to centimeters. We next performed a Spearman correlation between distance run during 
the teleport and the error on the following trial; population correlation coefficients are reported in Fig. 
S2F. Results were similar using linear root-squared error rather than circular coordinates (data not shown).  
 
Sequence detection and quantification 
The sequential firing of neural subpopulations was detected using a split-halves cross-validation 
procedure7. For these analyses, we used the unsmoothed, spatially binned dF/F in circular track 
coordinates (not aligned to reward, though aligning to reward makes no difference for the circular 
sequence order). To sort the activity of neurons, we used the activity averaged over the odd trials before 
the switch to find and sort the peak firing positions. This sort was validated by plotting the trial-averaged 
activity of the even trials before the switch (e.g. left-hand columns of Fig. 3A). The same sort was then 
applied to the trials after the switch. The sequence positions before vs. after were then taken as the peak 
firing positions of the trial-averaged “even-before” trials and the trial-averaged “after” trials. Preservation 
of sequence order was quantified as the circular-circular correlation coefficient176,177,181 between the 
sequence positions before vs. after. Though a p-value can be directly computed for this correlation 
coefficient, its significance was further validated through a permutation procedure. We randomly 
permuted the cell identities of the neurons after the switch and re-computed the correlation coefficient 
1000 times to get a null distribution. The observed correlation coefficient was considered significant if it 
was outside 95% of the null distribution using a two-tailed test. The p-value was calculated as: 
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𝑝 =
𝑛+,#-.!"#$+/|,#-.%&!| + 1	

𝑁1-23 + 1  

where 𝑛+,#-.!"#$+/|,#-.%&!| is the number of shuffled coefficients with absolute values ≥ the absolute value 
of the observed coefficient, and 𝑁1-23 is the total number of shuffles. 
 For sequences tracked across days, we again used the cross-validated sort from trial set 1 (before 
the switch, or the 1st half of trials if the reward did not move) on the reference day (the first day in each 
day pair) and applied this sort to trial set 2 (after the switch, or 2nd half) on the reference day as well as 
activity in trial sets 1 and 2 on the target day (the second day in the pair). To measure drift between days, 
we computed the across-day circular-circular correlation coefficient between the sequence positions on 
reference day trial set 2 vs. target day trial set 1. 

To quantify the density of sequences, we divided the number of cells in the sequence with peaks 
in each position bin by the total number of place cells for that animal. These density curves were smoothed 
only for visualization in Fig. 3J, S and Fig. S3J with a 1-bin (2π/45) s.d. Gaussian and shown as the mean 
across animals per each switch day. To visualize the expected uniform distribution across animals, we 
calculated this as the mean fraction of cells in each sequence out of the place cells in each animal on a 
given switch day, divided by the number of position bins.  
 
Linear mixed effects models 
To quantify neural activity changes across task experience, we used linear mixed effects models to take 
into account variance across animals. Linear mixed effects models were implemented using the mixedlm 
method of the statsmodels.formula.api package (https://www.statsmodels.org/stable/mixed_linear.html). 
Reported p-values are from Wald tests supplied by mixedlm. The fixed effect was either the switch index 
or day-pair index as a continuous variable, except for Fig. S5J where additional fixed effects were 
considered (see figure legend). Random effects were mouse identity. Random intercepts for each mouse 
were allowed; we also confirmed that including random slopes did not affect the results. When the 
dependent variable was reported in fractions of cells, we applied a logit transform to the fractions when a 
large proportion of the values were near zero. In most cases, however, we chose to display results in the 
original fractions for interpretability. In these cases, we confirmed that performing a logit transform on 
the fractions did not qualitatively change the results and only modestly changed the model fit. 
 
Analysis of rewarded vs. omission trials 
All following analyses were restricted to trial sets (i.e. before or after the reward switch) that had at least 
3 omission trials within the set.  
 
Time warp modeling 
 We first fit 5 different time warp model types—shift, linear, piecewise 1 knot, piecewise 2 knots, 
and piecewise 3 knots87—on the matrix of speed profiles within a trial set (T trials x M linear position 
bins x 1, expanded in the third dimension for compatibility with the time warp algorithm). These models 
apply warping functions of increasing nonlinear complexity to stretch and compress the data on each trial 
for maximal alignment87. We included both rewarded and omission trials in the fitting procedure to find 
the best alignment across them. Model fit was assessed using the mean squared error (MSE) between the 
time warped speed profile of each trial and the mean across time warped trials (Fig. S5A). The piecewise 
3 knots model most often produced the lowest MSE, or best fit, across sessions (Fig. S5C). We therefore 
re-fit all sessions with piecewise 3 knots to ensure that model selection could not influence the reward vs. 
omission metric described below. We then applied the model transform to the neural data matrix for the 
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same set of trials (T trials x M linear position bins x N neurons; excluding neural data at movement speeds 
<2cm/s, similar to all other neural analyses). For neural analysis in Fig. 5, we then focused on trial sets 
before the switch where the reward zone was at position “A” or “B”. This is because the mean rewarded 
vs. omission speed profiles were more similar on these trials than after the switch (Fig. S5F) or when the 
reward was at “C” (as the animals tended to lick for longer on omission trials and there is less room at the 
end of the track for running speed to reach its maximum from position “C”; see Fig. S1 and Fig. S5H for 
examples). Restricting sessions to “A” and “B” reward zones produced similar results to restricting 
sessions to those best fit by the time warp model (data not shown). Complementary analyses for trials after 
the switch and for all reward zones are reported in Fig. S5. 
 
Reward vs. omission index 

We compared neural activity on rewarded vs. omission trials for reward-relative cells with spatial 
peaks between the start of the reward zone and the end of the track (under the hypothesis that these cells 
could receive information about whether reward was received or not on that trial). Using the time warp 
model-transformed neural activity averaged across rewarded or omission trials within the trial set of 
interest, we calculated a “reward vs. omission index” (RO index) for each of these reward-relative cells 
as:  

𝑅𝑂	𝑖𝑛𝑑𝑒𝑥 = 	
∑ 𝑤! −𝑚!!

∑ 𝑤! +𝑚!!
 

 
where 𝑤! is the mean activity in position bin i averaged across rewarded trials, and 𝑚! is the mean activity 
in position bin i averaged across omission trials. RO indices of 1 therefore indicate an exclusive firing 
preference for rewarded trials, -1 indicates an exclusive preference for omission trials, and 0 indicates 
equal firing between rewards and omissions. We confirmed that the RO index calculated from the model-
transformed activity was highly correlated with the RO index calculated from the original activity (Fig. 
S5E).  We then quantified the median RO index for each animal and day. Using a linear mixed effects 
model (Fig. SJ), we found that there was no significant change across days, as a result of the model fit, or 
as a result of the original MSE between rewarded and omission trials. We therefore combined neurons 
across days for presentation in Fig. 5E.  
 
Generalized linear model (GLM) 
We implemented a Poisson GLM developed previously88 to predict the deconvolved calcium event time 
series of individual neurons from a set of task and movement variables. All behavioral and neural time 
series were sampled at ~15.5 Hz, the imaging frame rate. 
 
Design matrix 

Our design matrix is schematized in Fig. S6A and included 6 predictor variables split into 3 task 
variables and 3 movement variables.  

Task variables were linear track position (from 0 to 450 cm), reward-relative position (from -p to 
p, centered around the start of each reward zone at 0 radians), and “rewarded”, a binary that goes from 0 
to 1 when the reward is delivered on each trial and stays at 1 until the end of the trial (rewarded stays at 0 
on omission trials).  Linear track position and reward-relative position were separately expanded into 45 
cosine basis functions (or “bumps”) each, one for each 10 cm or ~0.14 radian bin used in other analyses. 
The rewarded variable was multiple with the linear position basis functions to yield the interaction 
between position and whether the animal had been rewarded on a given trial.  

Movement variables were running speed and acceleration (smoothed with a 5-sample s.d. 
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Gaussian) and smoothed lick count (binary licks per frame smoothed with a 2-sample s.d. Gaussian to 
approximate an instantaneous rate). Each movement variable was separately quantile-transformed to 
encode the distribution of movement dynamics similarly across animals. The quantiles were expanded 
with B-spline basis functions using the SplineTranformer method of Python’s sklearn package, with 3 
polynomial degrees and 5 knots, resulting in 7 bases (5+3-1) per movement variable. Spline choices were 
made for consistency with previous work88. 

All predictors were concatenated into a design matrix with 156 total features: 45 position bases + 
45 reward-relative position bases + 45 rewarded-x-position bases + 7 speed bases + 7 acceleration bases 
+ 7 licking bases. The features were independently z-scored across samples before model fitting on the 
“response matrix” of deconvolved activity of all cells (samples x neurons). 
 
Model fitting and testing 
 Trial identities were used to group data for training and testing. Individual sessions (including 
trials both before and after the reward switch) were split into 85% training trials and 15% testing trials, 
using the GroupShuffleSplit method of Python’s sklearn package with a consistent random seed. 
Specifically, trials were allocated such that the training trials included 85% of rewarded trials before the 
switch, 85% of rewarded trials after the switch, and 85% of all omission trials (likewise the testing set 
received the remaining trials from each group). The training trials were further divided for 5-fold cross 
validation during the fitting procedure. An optimal model was selected according to the deviance 
explained on the 5-fold cross-validation data. We then tested this model on the held-out test data to assess 
model performance as the fraction deviance explained (FDE): 

𝐹𝐷𝐸 = 1 −	
𝑑𝑒𝑣3#4-5 	
𝑑𝑒𝑣"$55

 

 
where devmodel is the Poisson deviance of the full model and devnull is the Poisson deviance of a null model 
that predicts the mean of the neural activity across time samples. 

On average, the model’s FDE for all place cells was 0.10 ± 0.19 (mean ± s.d.) (Fig. S6B-C), 0.32 
± 0.13 for track-relative cells, 0.29 ± 0.11 for reward-relative cells (examples in Fig. 6A-B), and 0.29 ± 
0.11 for non-reward-relative remapping cells. For analysis of the relative contribution of individual 
variables, we only included cells with FDE > 0.15 in accordance with previous procedures88. 

 
Relative contribution of individual variables via model ablation 

To assess how much each variable contributed to the model’s ability to predict a given cell’s 
activity, we performed a model ablation procedure. In brief, after fitting the full model, we zeroed the 
coefficients for each variable and compared the performance of the ablated versus the full model on the 
cross-validation data. We calculated the reduction in model fit (deviance) of the ablated model relative to 
the full model,  normalized by the full model’s deviance relative to the null model. This is known as 
“fraction explained deviance”88, which we term “relative contribution” to distinguish it from fraction 
deviance explained. Relative contribution was thus computed as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 	
𝑑𝑒𝑣6756%-4 − 𝑑𝑒𝑣.$55
𝑑𝑒𝑣"$55 − 𝑑𝑒𝑣.$55

 

Relative contribution was binned by linear track position to visualize the contribution at each position 
along the track, then averaged across position bins for quantifying the contribution at the population level 
(Fig. 6D) and identifying the top predictor per cell (variable with the maximum mean relative contribution) 
(Fig. 6E).    
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Figure S1. Behavior across multiple reward switch sequences, related to Figure 1. 
A) Expanded behavior over the 14-day task for the example animal in Fig. 1F which started the task with reward 
zone “A” (m14), showing days 1-5 and then each subsequent switch (day 7, 8, 10, 12, 14).  Top: smoothed lick 
raster over 80 trials per session; black indicates rewarded trials, and magenta indicates omission trials. Shaded 
regions indicate the reward zone active on each set of trials. Middle: The mean ± s.e.m. lick rate for trials at each 
reward location (blue=A, purple=B, red=C). Bottom: Mean ± s.e.m. speed for trials at each reward location. 
B) Behavior for an example animal that started the task with reward zone “B” (m12), organized as in (A). 
C) Expanded behavior for the example animal in Fig. 1G which started the task with reward zone “C” (m3), 
organized as in (A).  
D) Mouse identities, sexes, and reward switch sequence allocation. Top 7 mice are “switch” mice, bottom 3 mice 
are “fixed-condition” mice that maintained the same reward zone and environment throughout the experiment. 
Sequences are shown as “(0, 1, 2), 0” where 0 is the first reward zone experienced in a given environment, 1 is the 
first switch (2nd zone), 2 is the second switch (3rd zone), and the third switch which is a return to zone 0.  
E) Schematic depicting anticipatory lick ratio calculation around reward zone "B" as an example. The anticipatory 
lick ratio compares lick rate in an anticipatory zone 50 cm before the start of the reward zone vs. everywhere outside 
the reward zone (the reward zone is excluded to eliminate consummatory licks). A value of 1 indicates licking 
exclusively in the anticipatory zone, 0 is chance everywhere outside the anticipatory zone and the reward zone. 
F) Anticipatory lick ratio across blocks of 10 trials for fixed-condition animals (n=3 mice) which maintained the 
same reward zone and environment throughout the entire experiment. Colored lines represent individual mice and 
the reward zone active for each mouse (blue=A, purple=B, red=C); gray lines and shading show mean ± s.e.m 
across mice.  
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Figure S2. Quantification of remapping types and controls for reward-relative remapping, related to Figure 
2. 
A) Example cells from 2 mice not shown in Fig. 2A on the last switch (day 14), replicating the co-existence of 
remapping types within animal shown in Fig. 2A. Top row: Data from mouse m14. Bottom row: Data from mouse 
m12. The “reward-relative” designation (orange text) encompasses cells both near and far from reward that maintain 
their firing distance with respect to the reward zone (see Fig. 2B and Methods). 
B) Examples of population maps from mouse m14 illustrating a day that is “stay” (day 6, same reward location, 
same environment), “switch within” (day 7, change reward location, same environment), or “across environment” 
(day 8, change reward location, change environment). Each plot shows the smoothed 2D histogram of the fraction 
of place cells with peak firing in each 10 cm bin before vs. after the reward zone switch (or in the 1st vs. 2nd half 
of trials on “stay” days). White lines indicate the start of each reward zone. For this analysis, only cells with 
significant spatial information both before and after are included. On stay days, this produces a strong density along 
the diagonal, corresponding to place cells that remain track-relative throughout the session. On switch days, this 
diagonal degrades as more cells remap, and the off-diagonal band around the reward intersection appears (see also 
Fig. 2C). Upon the across-environment switch, the diagonal degrades further indicating more global remapping, but 
the reward-relative band is maintained. Cyan boxes mark bins used for the “diagonal” and “near reward” categories 
shown in (C). 
C) Quantification of population-level remapping using bins of the histograms illustrated in (B) (unsmoothed for 
quantification). Each dot is the mean fraction of cells across days of each category and environment per animal 
(n=7 mice); violins show the distribution across mice, horizontal lines show the mean across mice. In (C) and (D), 
*p<0.05, **p<0.01, ***p<0.001 from pairwise paired t-tests between categories (“stay”, “switch within” 
environment, or “across env”), performed on the logit-transformed fractions. P-values are Holm corrected for 
multiple comparisons within each plot. Left: Near reward; cells with peaks ≤50 cm from both reward zone starts; 
gray dashed box signifies that on stay days, this value reflects the fraction of total place cells near the reward across 
the 1st to 2nd half of the session, thus no t-tests are shown for this category as the reward is not moved. Switch 
within vs. across env: t = -3.0, p = 0.024. Middle: Diagonal; peaks within ≤50 cm of the same linear position before 
vs. after. Stay vs. switch within: t = 2.6, p = 0.042; stay vs. across env: t = 11.82, p = 6.6e-5; switch within vs. across 
env: t = 8.2, p = 3.6e-4. Right: All other remapping; all non-near-reward and non-diagonal bins. Stay vs. switch 
within: t = -7.7, p = 2.5e-4; stay vs. across env: t = -29.4, p = 3.1e-7; switch within vs. across env: t = -9.1, p = 2.0e-
4.  
D) Mean fractions of total place cells defined as track-relative (peaks ≤50 cm apart), disappearing, appearing, remap 
near reward (≤50 cm from both reward zone starts), or remap far from reward (>50 cm from at least one reward 
zone start), averaged across days of each type per mouse as in (C). See (C) for description of statistical tests. Track-
relative: Stay vs. switch within: t = 5.7, p = 0.0012; stay vs. across env: t = 18.4, p = 5.0e-6; switch within vs. across 
env: t=6.6, p = 0.0011. Disappearing: Stay vs. switch within: t = -3.6, p = 0.033; stay vs. across env: t = -2.5, p = 
0.093; switch within vs. across env: t = -0.96, p = 0.37. Appearing: Stay vs. switch within: t = -3.2, p = 0.018; stay 
vs. across env: t = -8.6, p = 4.1e-4; switch within vs. across env: t = -5.9, p = 0.002. Remap near reward: switch 
within vs. across env: t = -0.23, p = 0.83. As in (C), the gray dashed box indicates a fraction near reward on stay 
days that cannot be identified as “reward-specific”, as there is no reward switch; thus no statistical comparisons are 
shown for this category. Remap far from reward: Stay vs. switch within: t = -4.8, p = 0.0093; stay vs. across env: t 
= -3.8, p= 0.018; switch within vs. across env: t = -1.6, p = 0.16. 
E) To test the possibility that the putative reward-relative neurons encode distance run since the last reward, we 
leveraged the variable length teleport zone to ask whether distance run in the teleport zone predicted an offset (error) 
in the cell’s spatial firing on the subsequent trial (see Methods). Here, an example reward-relative cell is shown 
(cell m14.482 on day 8, switch 4 across environments; also shown in Fig. 2B). Each dot is a trial (blue = trials 
before the reward switch, pink = trials after the switch). This cell shows no significant Spearman correlation between 
the teleport distance run and spatial peak error for either set of trials (before: r = -0.10, p = 0.62; after: r = 0.19, p = 
0.18). 
F) Quantification of Spearman correlation coefficients between teleport distance run and spatial peak error on the 
subsequent trial, for all reward-relative cells across all animals and switch days (n = 3104 cells, 7 mice, 7 switch 
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days). Histograms are stacked; dark shades highlight cells with significant correlation coefficients (p < 0.05): 7.6% 
of reward-relative cells on before trials, 8.9% on after trials. Light shades highlight non-significant cells: 92.4% of 
reward-relative cells on before trials, 91.1% on after trials. 
G) Histograms of the circular distance between relative peaks after minus before for remapping place cells as in 
Fig. 2E, G, shown for all switch days (days 3 and 14 are repeated from Fig. 2). n=7 mice; day 3 n=677 cells, day 5 
n=583 cells, day 7 n=726 cells, day 8 n=706 cells, day 10 n=508 cells, day 12 n=506 cells, day 14 n=707 cells. 
H) Increase in the fraction of cells remapping relative to reward above the shuffle over experience, at the level of 
individual animals. Each point is color-coded by mouse (n=7 mice) and represents the fraction of cells (logit-
transformed) exceeding the “random-remapping” shuffle calculated within each individual mouse and switch day. 
Regression coefficient β and p-value are from a linear mixed effects model with switch index as the fixed effect 
and mice as random effects (random intercepts were allowed, and using random slopes did not change the outcome 
of the model; data not shown). Gray line shows the model prediction. 
I-M) Control for Fig. 2D-H, excluding cells with peaks within ± 50 cm (~0.698 radians) from both reward zone 
starts (indicated by the magenta lines), intended to exclude putative reward-dedicated cells reported previously54. 
(I) n=557 cells, 7 mice. (K) n=466 cells, 7 mice. All points are jittered slightly for visualization (see Methods). The 
fraction of cells remapping relative to reward at distances greater than 50 cm from reward still exceeds the shuffle 
(J, top; L, top). (J, bottom) and (L, bottom): the distribution of mean reward-relative positions for the remaining 
cells shown in the orange shaded region around the unity line in (I) and (K), respectively. The means of these 
distributions are significantly non-zero: (J) non-zero mean = 0.848, 95% confidence interval [lower, upper] = 
[0.443, 1.253], circular mean test, n = 163 cells. (L) non-zero mean = 1.092, 95% confidence interval [lower, upper] 
= [0.573, 1.612], circular mean test, n = 167 cells.  Black dotted lines mark the means, blue shaded region marks 
the extent of the reward zone. Note that cells that fire within 50 cm of one reward but not the other may have a 
mean relative distance of <0.698 radians (<50 cm); this is visible as the small fractions between the magenta lines 
marking ±50 cm from the start of the reward zone in (J, bottom) and (L, bottom). In (M), note that the fraction of 
cells above the shuffle shows a non-significant increase across task experience.  
N) Illustration of cross-correlation criterion to identify reward-relative remapping cells (top row) vs. track-relative 
cells (middle row) and non-reward-relative (non-RR) remapping cells (bottom row). Each example cell is also 
shown in (A), top row. Left of each cell: cross-correlation (xcorr) between trial-averaged spatial firing with reward 
zones circularly aligned, before vs. after the switch. Gray lines mark the mean (solid) and 95% confidence interval 
(dashed) of the shuffle for that cell. The offset of the xcorr maximum above the shuffle and the distance between 
relative spatial peaks in radians is listed next to each cell. Note that the reward-relative cell is maximally cross-
correlated very close to zero lag, while the track-relative cell is anticorrelated at 0 lag in reward-aligned coordinates. 
Middle of each cell: spatial activity with reward zones aligned as in Fig. 2B; blue line marks the switch between 
reward zones. Right of each cell: trial-by-trial correlation matrix computed on the reward-aligned spatial activity. 
Note the more uniform structure of the correlation matrix for the reward-relative cell vs. the block-like matrices for 
the track-relative and non-RR remapping cell, which is the opposite of how these correlation matrices appear in 
original linear track coordinates (A, top row).  
O) Left: Distributions of Pearson correlation coefficients for each subpopulation between the cell’s trial-averaged 
activity maps pre- vs. post-switch in reward-aligned coordinates. The reward-relative (RR) population exhibits 
significantly higher correlations in these coordinates than the track-relative (TR) and non-RR remapping 
populations: RR vs. TR U = 67.7, p << 1e-12, Wilcoxon rank-sum test (n = 3104 RR cells, 3901 TR cells across 7 
mice, 7 switch days); RR vs. non-RR remapping U = 53.8, p << 1e-12, Wilcoxon rank-sum test (n = 3104 RR cells, 
2518 TR cells across 7 mice, 7 switch days). Right: Distributions of maximum xcorr offsets above the shuffle for 
each subpopulation, with the RR distribution thresholded at ±5 bins. 
P) Same as (O), but computed between trial-averaged activity of each subpopulation in original linear track 
coordinates. The TR population exhibits significantly higher correlations in these coordinates than the RR and non-
RR remapping populations: TR vs. RR U = 69.1, p << 1e-12, Wilcoxon rank-sum test; TR vs. non-RR remapping 
U = 21.0, p << 1e-12, Wilcoxon rank-sum test. 
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Figure S3. Sequences across animals, remapping types, and environments, related to Figure 3.  
A) Reward-relative sequences on the last switch (day 14) for the 5 mice not shown in Fig. 3A (organized as in Fig. 
3A). 
B) Population level remapping upon the switch from Env 1 to novel Env 2 (day 8). All place cells identified in 
mouse m14 are shown, sorted in the left two panels by their order in Env 1 before the switch, and by their order in 
Env 2 in the right-most panel. Note population-level overrepresentation in both sorts as the bend away from the 
diagonal around the start of the reward zone. 
C) Remapping (or lack thereof) of specific subpopulations on the switch from Env 1 to Env 2 (day 8), shown for 
mouse m14. Top: reward-relative (RR) sequences are preserved across environments; Middle: a subset of track-
relative place cells also retain their firing positions across environments, especially at the beginning of the track; 
Bottom: non-reward-relative, non-track-relative cells (“non-RR remapping”) with significant spatial information in 
both Env 1 and Env 2 instead remap globally, mirroring the overall population. The cells in the left two columns in 
(C) are sorted by their position in Env 1; the right-most column is sorted (and cross-validated) by position in Env 
2, which improves the sort for the non-RR remapping cells but not the reward-relative or track-relative cells. 
D) Example sequences of disappearing cells from mouse m14. In (D) and (E), cross-validated sort was performed 
on the trials in which cells had significant spatial information (before for disappearing, after for appearing). 

E) Example sequences of appearing cells from mouse m14. 

F) Example licking (top) and distribution of reward-relative (RR) sequence peak firing positions during trials before 
the switch, aligned to the start of the reward zone. Left column: animal and day with the narrowest RR sequence 
(lowest circular variance); Right column: animal and day with the broadest sequence (highest circular variance). 
Sequence colors correspond to switch index as shown in (J). Note more distributed, less precise licking coinciding 
with a more distributed sequence that is less dense around the reward zone (right). Vertical gray dashed lines 
indicate the reward zone start and surrounding ±50 cm. 
G) Same as (F), but showing the narrowest and broadest sequences and corresponding licking for trials after the 
switch.  
H-I) Circular variance in licking positions is significantly correlated with RR sequence variance both before (H) 
and after the reward switch (I). Each dot is a session, colored by mouse (left; n=7 mice) or by switch day (right; 
n=7 days). Note no apparent trend over days. 
J) Mean distributions of peak firing positions across days (n=7 mice, s.e.m. omitted for clarity) for non-RR 
remapping cells (left), appearing cells (middle), and disappearing cells (right). Top row: sequences according to 
original linear track position, converted to radians. Bottom row: sequences according to position relative to the 
starts of reward zones. Horizontal dotted lines indicate the expected uniform distribution for each day. Vertical gray 
dashed lines indicate the reward zone start and surrounding ±50 cm. 
K) Both near (top) and far from (bottom) the start of the reward zone, the fraction of disappearing place cells out 
of total place cells decreases across experience. Fractions are shown as a logit transform here to account for values 
close to zero, and sessions with zero disappearing cells on any given day have been removed. Regression 
coefficients b and p-values are from linear mixed effects models with switch index as the fixed effect and mice as 
random effects. Non-RR remapping and appearing fractions did not show significant changes over experience (data 
not shown).  
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Figure S4. Drift in sequences tracked across days, related to Figure 4. 
A) An example place cell sequence tracked from days 3 to 5 in an animal (m2) from the fixed-condition cohort, 
which experienced the same reward zone and environment for all 14 days. Neurons in this animal were identified 
using the same criteria as reward-relative cells (i.e. their field position relative to reward had to be stable in terms 
of its peak position and spatial cross-correlation, from the 1st to the 2nd half of trials), but without a reward switch 
to identify reward-relative cells, this likely includes other cell categories. In (A-E), cells within an animal are sorted 
by their cross-validated peak activity in the 1st trial set (1st half, or before the switch) on the reference (ref) day, 
which is defined as the first day in each day pair. This sort then is applied to activity in the 2nd trial set on the 
reference day, as well as the 1st and 2nd trial sets on the target day (the second day in the pair). Also in (A-E), the 
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sequence correlation coefficient, p-value relative to shuffle (two-sided permutation test), and n of cells tracked 
across the day pair are shown above each plot (within ref day correlation on the left, across-day correlation on the 
right; the across-day correlation is computed between the 2nd trial set on the ref day and the 1st trial set on the 
target day). In (A), note that drift is apparent across days in this fixed-condition animal as denoted by the drop in 
correlation coefficient, despite the cell ordering remaining significantly correlated across days. 
B) A reward-relative sequence identified in animal m14 on day 3 (switch 1) and tracked to day 5 (switch 2), agnostic 
of the cell categories for the cells on day 5.  
C) Reward-relative cells from day 3, m14 that were tracked to day 5 and remained reward-relative on day 5. 
D) A track-relative sequence identified in animal m14 on day 3 (switch 1) and tracked to day 5 (switch 2), agnostic 
of the cell categories for the cells on day 5. 
E) Track-relative cells from day 3, m14 that were tracked to day 5 and remained track-relative on day 5. 
F) Across-day circular-circular correlation coefficients for place cell sequences tracked across pairs of days in the 
fixed-condition cohort (n = 3 mice; 95 ± 54 tracked cells per day pair, mean ± s.d. across mice and day pairs). 
Place cells included for these sequences were identified as described in (A). In (F-J), coefficients are plotted with 
the upper 95th percentile of 1000 shuffles of cell IDs (marked as x, jittered to the left of each set of coefficients, 
and color-coded by animal). Closed circles indicate coefficients with p < 0.05 compared to shuffle using a two-
sided permutation test; open circles indicate p ≥ 0.05. 
G) Across-day circular-circular correlation coefficients for all cells in reward-relative sequences on each reference 
day tracked to each target day, for the animals performing the hidden reward zone switch task (n = 7 mice; 26 ± 20 
cells, mean ± s.d. across mice and day pairs).  
H) Across-day circular-circular correlation coefficients for reward-relative cells on each reference day that were 
tracked and remained reward-relative on each target day (n = 7 mice; 8 ± 10 cells, mean ± s.d. across mice and day 
pairs). Note slightly higher correlation coefficients for this subset compared to (G), though the small numbers of 
cells that were both successfully tracked and remained reward-relative preclude a robust comparison. 
I) Across-day circular-circular correlation coefficients for all cells in track-relative sequences on each reference day 
tracked to each target day (n = 7 mice; 45 ± 37 cells, mean ± s.d. across mice and day pairs). 
J) Across-day circular-circular correlation coefficients for track-relative cells on each reference day that were 
tracked and remained track-relative on each target day (n = 7 mice; 15 ± 17 cells, mean ± s.d. across mice and day 
pairs).  
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Figure S5. Implementation of time warp models and controls for analysis of rewarded vs. omission trials, 
related to Figure 5. 
A) Illustration of time warp model fitting procedure to running speed profiles. Shades of black indicate speed on 
rewarded trials, shades of magenta indicate omission trials. Left to right: raw speed, followed by the transformed 
speed from fitting 5 model types to identify a model for best fit, as assessed by mean squared error (MSE) across 
the transformed trial-by-trial speed profiles. Bold text indicates the best-performing model. Top to bottom: the same 
example sessions shown in Fig. 5A-C: first reward switch on day 3, mouse 14; last reward switch on day 14, mouse 
14; last reward switch on day 14, mouse 12. 
B) Example transformation using the piecewise 3 knots model fit on the speed from day 3, mouse 14 (shown in A, 
top). Top left: raw trial-by-trial speed. Top right: time warp transformed speed. Bottom left: raw, binned 
deconvolved activity (normalized to the mean of the session) for example cell m14.255, which is also shown in Fig. 
5A (top row of cells). Bottom right: time warp transformed neural activity of cell m14.255. 
C) Frequency with which each model type was selected as maximally aligning speed according to MSE. For further 
analysis, we applied piecewise-3 to all data as this was the most common best model, to avoid variance in results 
due to model type for individual sessions. 
D) Time-warp model fitting significantly reduces MSE across trial-by-trial speed profiles compared to the original 
speed data (model aligned speed vs. raw speed: W = 0, p = 7.74e-8, Wilcoxon signed-rank test, n = 38 sessions 
across 7 mice). Each dot is a session, colored by mouse. Black edges indicate sessions with the reward zone at 
location “A” or “B”, included for the analysis shown in Fig. 5. In (D-F), gray dashed line marks the unity line. 
E) Reward vs. omission index (RO index) calculated from the model-transformed neural data, shown for the same 
sessions in Fig. 5D, is highly correlated with the RO index calculated from the original neural data (Pearson 
correlations). This indicates that the time warp model scales and aligns the firing rate curves between rewarded and 
omission trials but does not distort their relationship.  
F) MSE between trial-by-trial raw speed profiles before vs. after the reward switch (within each session with at 
least 3 omission trials before the switch). Each dot is a session, colored by animal as in (D). Black edges indicate 
sessions included for analysis in Fig. 5. Speed MSE after the switch is significantly higher than before the switch 
(thus rewards and omissions are more difficult to compare on these trials): W = 130, p = 4.87e-4, Wilcoxon signed-
rank test, n = 38 sessions across 7 mice.   
G) Raw and model-aligned speed and neural activity of the same session and example cells shown in Fig. 5A, but 
for the trials after the reward switch (“after” trials). RO indices shown in bold text (top, far right of right column 
panel) are calculated from the “after” trials. Note preference of cells to fire more following rewards versus 
omissions, with the caveat that the speed profiles are more different than during the “before” trials. 
H) Same session and example cells as Fig. 5B, but for the “after” trials. 
I) Same session and example cells as Fig. 5C, but for the “after” trials. 

J) A linear mixed effects model shows no significant effect of day (b= 0.01, p = 0.73), original MSE between mean 
speed on rewarded and omission trials (b= -0.001, p = 0.49), MSE of the time warp model fit (b = 0.002, p = 0.86), 
or the interactions of these terms (fixed effects) on the median RO index (random effects are mouse identity). Each 
dot shows the median RO index of the sessions included in Fig. 5 for each mouse, colored by mice as in (D). Gray 
line shows the model prediction ± 95% confidence interval.  
K) Reward vs. omission index across all switch days (sessions) where the reward zone was at “A” or “B”, on the 
trials after the switch, for the population of reward-relative cells that have spatial firing peaks following the start of 
the reward zone within each mouse (n = 7 mice). In (K-L), significance level is set at p<0.007 with Bonferroni 
correction. **p<0.007, ***p<0.001, ****p<0.0001, one-sample Wilcoxon signed-rank test against a 0 median. m3: 
median = 0.10, W = 5.01e3, p = 3.31e-9, n = 5 days, 197 cells; m4: median = 0.13, W = 2.10e3, p = 3.70e-6, n = 
4 days, 126 cells; m7: median = 0.14, W = 4.21e3, p = 7.58e-8, n = 5 days, 177 cells; m11: median = 0.22, W = 
106, p = 2.61e-5, n = 3 days, 41 cells; m12: median = 0.13, W = 2.57e4, p = 1.55e-13, n = 5 days, 419 cells; m13: 
median = 0.21, W = 377, p = 2.12e-4, n = 5 days, 58 cells; m14: median = 0.04, W = 9.84e3, p = 0.085, n = 3 days, 
213 cells. 
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L) Reward vs. omission index across all switch days (sessions) with at least 3 omission trials, at any reward zone 
before the switch, within each mouse (complementary to Fig. 5E, n = 7 mice). m3: median = 0.13, W = 4.99e3, p 
= 4.86e-8, n = 5 days, 191 cells; m4: median = 0.15, W = 2.63e3, p = 7.11e-12, n = 5 days, 165 cells; m7: median 
= 0.09, W = 4.44e3, p = 2.08e-3, n = 4 days, 157 cells; m11: median = 0.20, W = 418, p = 3.96e-6, n = 6 days, 68 
cells; m12: median = 0.13, W = 4.66e4, p = 1.96e-13, n = 7 days, 541 cells; m13: median = 0.10, W = 902, p = 
0.021, n = 5 days, 72 cells; m14: median = 0.09, W = 3.35e4, p = 9.13e-9, n = 6 days, 442 cells.  
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Figure S6. Generalized linear model (GLM) implementation and additional quantification, related to Figure 
6. 
A) Schematic of the Poisson GLM to predict deconvolved calcium activity from task and movement variables. 
Linear track position and reward-relative position are both transformed into cosine basis functions tiling the space 
in each set of coordinates (45 cosine bumps for the 45 10-cm spatial bins used). A binary representing whether 
reward was received on each trial (“rewarded”) is multiplied with the linear track position basis functions to 
represent the interaction between reward received and position. Speed, acceleration, and smoothed lick count are 
quantile-transformed into B-splines with 5 knots and 3 polynomial degrees (providing 7 splines total) which 
smoothly tile the range of speeds, accelerations, and licking within each animal. Trial identities are not provided as 
an input but are used to group data for the training, cross-validation, and test sets (see Methods).  
B) Quantification of model performance (fraction deviance explained on test data) across all animals and cells. Inset 
shows the histogram on a logarithmic scale. Red dashed line indicates the fit threshold of 0.15 fraction deviance 
explained used to select neurons for further analysis. Number and fraction of cells that exceeded the threshold is 
listed relative to all cells and relative to place cells, across all switch days.  
C) Quantification of model performance within each animal (n = 7 mice), shown on a logarithmic scale. 
D) Relative contributions of each GLM variable within reward-relative cells which were maximally predicted by 
reward-relative position.  Each line and set of dots is an individual cell. 
E) Relative contributions of each GLM variable within reward-relative cells which were maximally predicted by 
running speed, shown as in (D). 
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