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Abstract 

With the advancements in instrumentation, image processing algorithms, and computational capabilities, 

single-particle electron cryo-microscopy (cryo-EM) has achieved nearly atomic resolution in determining 

the 3D structures of viruses. The virus structures play a crucial role in studying their biological function 

and advancing the development of antiviral vaccines and treatments. Despite the effectiveness of artificial 

intelligence (AI) in general image processing, its development for identifying and extracting virus particles 

from cryo-EM micrographs (images) has been hindered by the lack of manually labelled high-quality 

datasets. To fill the gap, we introduce CryoVirusDB, a labeled dataset containing the coordinates of expert-

picked virus particles in cryo-EM micrographs. CryoVirusDB comprises 9,941 micrographs of 9 different 

viruses along with the coordinates of 339,398 labeled virus particles. It can be used to train and test AI and 

machine learning (e.g., deep learning) methods to accurately identify virus particles in cryo-EM 

micrographs for building atomic 3D structural models for viruses.  

 

Background & Summary 

Cryo-electron microscopy (cryo-EM) is a method of capturing 2D images of biological molecules and 

assemblies at extremely low (cryogenic) temperatures.  Advancements in both instrumentation and 

computational methodologies have established cryo-EM as an essential tool for interrogating the structures 

and dynamics of biological macromolecular complexes including large virus particles [1]. Single particle 

experiment and data analysis in cryo-EM involves flash-freezing biological specimens, collecting 

micrographs of individual particles in an electron microscope (Figure 1A), followed by picking and 

extracting particle images (Figure 1B), applying image processing for correction and alignment (Figure 

1C),  and performing three-dimensional (3D) reconstruction of macromolecular complexes (Figure 1D)  

[1], [2].  

In the realm of virology, cryo-EM has been instrumental in studying and determining the 3D structures and 

morphology of various viruses such as Polio, Ebola, HIV, and Corona viruses [3] [4]. Particularly during 

the  COVID-19 pandemic, cryo-EM played a pivotal role in understanding the intricate structure of the 

SARS-CoV-2 spike protein [5] [6]. This knowledge has facilitated the development of highly effective 

vaccines. For instance, scientists have been able to design immunogens that mimic the spike protein's shape, 

eliciting targeted immune responses [7]–[9]. Moreover, cryo-EM has revolutionized epitope mapping, 

enabling the identification of specific binding sites [10] and facilitating the exploration of antibody 

mutations for the rapid discovery and development of precise vaccines and antiviral treatments [11] [12] 

[13].  
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To achieve high-resolution 3D reconstructions of virus structures, the initial step of accurately recognizing 

and extracting virus particles from 2D image projections (micrographs) is crucial. Currently, three virus 

particle picking approaches are employed: manual virus particle picking, template-based picking, and AI-

based picking. Manual picking is laborious and time-consuming, requiring specialized expertise for precise 

identification, which cannot be used by regular users. Challenges in the manual picking arise from low 

single-to-noise ratios, low particle contrast, and the unpredictability of individual particle appearances due 

to orientation variations. Template-based virus particle picking requires experts to pick some initial 

particles as templates for software tools to search for more particles, which suffers from the presence of ice 

contamination, radiation damaged particles, carbon areas, and overlapping aggregated particles in 

micrographs. AI-based particle picking [14] [15] [16] has the best potential to automate the process and 

overcome the problems of the manual picking and template-based matching, but the development of 

sophisticated AI-based virus particle picking methods is largely hindered by the lack of high-quality 

labelled training and test data of virus particles.  

 

Figure 1: An overview of cryo-EM single particle analysis from particle selection to 3D reconstruction of virus. (A) Stack of ideal 

micrographs where the true virus particles are picked (encircled yellow), (B) Extracted virus particles from micrographs with fixed 

box size. (C) Multiple 2D classes to facilitate stack cleaning and the removal of false particles.  (D) Reconstructed 3D structure of 

the virus from 2D images using a series of computational techniques. 

To harness the power of cutting-edge AI technologies in automatic virus particle recognition and picking, 

we created a comprehensive and expert-labelled dataset – CroVirusDB - [17] in this work. This open-access 

dataset aims to expedite the development of automated virus particle picking workflows, and ultimately 

advance the research of viruses and the design of therapeutic interventions. CryoVirusDB includes 9,941 

micrographs of 9 distinct viruses and the coordinates of 339,398 virus particles picked in them. The 

statistics of CroVirusDB is reported in Table 1Table 2.   
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Table 1: The statistics of micrographs and particles of 9 viruses  in CryoVirusDB. 

SN EMPAIR ID Virus Type 
Number of  

Micrographs 

Micrograph 

size 

Particle 

Diameter 

(px) 

Number of True 

Virus Particles 

1 10192 [18] Feline calicivirus 1000 (4096, 4096) 470 9660 

2 11060 [19] Nudaurelia capensis omega virus 1276 (4096, 4096) 516 11916 

3 10203 [20] Macrobrachium rosenbergii nodavirus 1000 (3838, 3710) 377 16601 

4 10033 [21] Human parechovirus 3 1000 (4096, 4096) 350 55732 

5 10652 [22] Coxsackievirus 1127 (3838, 3710) 374 11144 

6 10341 [23] Bovine enterovirus 1274 (4096, 4096) 376 22694 

7 10193 [18] Feline calicivirus 1000 (4096, 4096) 516 96126 

8 10205 [24] Cowpea mosaic virus 1000 (4096, 4096) 310 81037 

9 10555 [25] Nudaurelia capensis omega virus 1264 (4096, 4096) 564 34488 
  Total 9941   339,398 

 

Methods 

1. Raw Data Acquisition and Preprocessing 

The metadata and cryo-EM virus micrographs from the EMPIAR web portal [26] were fetched using Python 

API and FTP scripts. The comprehensive metadata encompasses the EMPIAR ID for each cryo-EM dataset 

of a virus along with the corresponding identifiers such as Electron Microscopy Data Bank (EMDB) ID 

and Protein Data Bank (PDB) ID. Additionally, the dataset size, resolution, total number of micrographs, 

image specifications (size and type), pixel spacing, micrograph file extension, gain/motion correction file 

extension (if any), FTP and Globus paths for micrograph/gain files, and relevant publication information 

are meticulously recorded. 

Table 2: Metrics of EM data acquisition and grid preparation utilized in importing micrographs for virus particle picking. 

SN 
EMPAIR 

ID 
Micrograph 

Format 

Pixel 
Spacing 

(Å) 

Accl 
Voltage 

(kV) 

Spherical 
Aberration 

(mm) 

Electron 
Dose 

(e/A^2) 

Defocus range 
(μm) 

Microscope Detector 

1 10192 mrc 1.065 300 2.7 63 NA FEI TITAN KRIOS FEI FALCON III (4k x 4k) 

2 11060 mrc 1.065 300 2.7 46 0.70 µm - 2.2 µm FEI TITAN KRIOS FEI FALCON III (4k x 4k) 

3 10203 mrc 1.06 300 2.7 36 1.0 µm - 2.5 µm FEI TITAN KRIOS GATAN K2 SUMMIT (4k x 4k) 

4 10033 mrc 1.14 300 2.7 36 0.42 µm - 2.34 µm FEI TITAN KRIOS FEI FALCON II (4k x 4k) 

5 10652 mrc 1.06 300 2.7 40 0.6 µm - 3.0 µm TFS TALOS F200C FEI FALCON III (4k x 4k) 

6 10341 mrc 1.065 300 2.7 49.5 0.75 µm - 3.5 µm FEI TITAN KRIOS FEI FALCON III (4k x 4k) 

7 10193 mrc 1.065 300 2.7 63 NA FEI TITAN KRIOS FEI FALCON III (4k x 4k) 

8 10205 mrc 1.065 300 2.7 67.5 NA FEI TITAN KRIOS GATAN K2 SUMMIT (4k x 4k) 

9 10555 mrc 1.0651 300 2.7 72 0.70 µm - 2.7 µm FEI TITAN KRIOS FEI FALCON III (4k x 4k) 

 

To ensure dataset diversity, we selected 9 representative EMPIAR virus datasets that encompassed a broad 

range of particle sizes, shapes, density distributions, noise levels, and variations in ice thickness and carbon 
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areas to create CryoVirusDB. The datasets include viruses from different categories, such as Omage virus, 

Cowpea Mosaic virus, Feline calicivirus, and Human parechovirus, providing a comprehensive 

representation of the virus space.  

For each EMPIAR virus dataset, we imported its raw micrographs. A meticulous analysis of the EM data 

acquisition descriptions and grid preparation details for each dataset was undertaken to gather essential 

information such as raw pixel size (Å), acceleration voltage (kV), spherical aberration (mm), and total 

exposure dose (e/Å 2) associated with the micrographs in the respective dataset as shown in Table 2. 

2. Motion Correction and Patch based CTF Estimation of Micrographs 

In our study, we used motion corrected micrographs as the starting point in CryoSPARC [27] for patch-

based Contrast Transfer Function (CTF) estimation. Since CTF functions can vary substantially among 

micrographs and cannot be precisely predefined, accurately identifying CTF parameters for each 

micrograph is crucial.  This precision is necessary for proper corrections and achieving high-resolution 3D 

reconstructions. Two stages (estimating the CTF and correcting it) are applied to the CTF analysis.  

We employ the patch-based Contrast Transfer Function (CTF) to generate output micrographs containing 

information about their average defocus and the defocus landscape. Upon particle extraction, this 

information is automatically utilized to allocate a local defocus value to each particle based on its position 

in the landscape. The one-dimensional search across defocus values for a micrograph is shown in Figure 

2A.  

The distinctive characteristic of the Contrast Transfer Function (CTF) is its oscillating pattern, easily 

observable as Thon rings in the power spectra of images (Figure 2B). Thon rings exhibit more frequent 

oscillations with larger defocus values and fewer oscillations with smaller defocus values. This connection 

between defocus and Thon rings forms the foundation for both manual and automated methods of fitting 

the CTF. 

The plot in Figure 2C serves primarily as a verification for the successful execution of background 

subtraction and envelope function fitting. The X-axis represents frequency in inverse angstroms. The 

radially averaged power spectrum is depicted in black, where high values correspond to the bright portions 

of the Thon rings and low values to the dark regions. The orange curve represents the envelope function, 

aiming to model the expected falloff of Thon rings up to the Nyquist resolution [28], accounting for 

aberrations. Lastly, the fitted Contrast Transfer Function (CTF), scaled by the envelope function, is 

presented in blue. This oscillating plot is crucial for confirming the proper execution of background 

subtraction and envelope fitting procedures. In the plot in Figure 2D, we assess the background strength 

(depicted by the black line) within the area where thicker ice leads to an augmented background referred to 

as relative ice thickness. 
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Figure 2: Diagnostic plots of CTF for EMPAIR 11060. (A) 1D search over varying defocus values. (B)  Thon rings visible in the 

Fourier transform. (C) Fitted envelope function diagnostic plot. (D) Power Spectrum showing the relative ice thickness. (E) 2D 

Patch result. (F) CTF fit plot. The frequency, measured in inverse angstroms (Å⁻¹), is represented on the X-axis, while the 

correlation metric between the power spectrum (PS) and CTF value is shown on the Y-axis. The black line corresponds to the 

observed experimental power spectrum, the red line represents the calculated CTF, and the cyan line indicates the cross-

correlation (fit). 

The 3D surface plot (Figure 2E) shows the local defocus estimated throughout the micrograph. The surface 

plot in blue illustrates the defocus that has been fitted for each position along the micrograph. The x- and 

y-coordinates align with the micrograph's coordinates, while the z-coordinate represents the defocus values. 

The X, Y, and Z axes are all expressed in Angstrom units. The Contrast Transfer Function fit plot, illustrated 

in Figure 2F, depicts the alignment between the simulated and observed Thon rings in the micrograph, 

accounting for variations in defocus and astigmatism. The cyan curve indicates the cross-correlation fit 

level. The CTF fit resolution (3.749 angstroms) is the resolution at which this value drops below a threshold.  

The vertical green line in the plot signifies the frequency at which the fit deviates from cross-correlation 

threshold of 0.3, indicating a successful fit. 
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3. Manual Particle Picking and 2D Class Formation 

Following the CTF estimation, we manually identified and selected true virus particles interactively from 

aligned and motion-corrected micrographs with the aim of generating some particle templates. We specify 

the particle diameter based on the virus particles' size and shape. Picking particles directly from raw noisy 

micrographs is challenging (Figure 3A). So we adjusted the 'Contrast Intensity Override' using low pass 

filter while inspecting micrographs to achieve the most distinct view for particle selection (Figure 3B). 

Additionally, we employed a visual guide to encircle virus particles (Figure 3C), ensuring that the chosen 

particles are well-centered for improved results in subsequent 2D alignment steps. 

Manually selecting particles from raw micrographs with smaller defocus values proves to be quite 

challenging. To create a comprehensive set of ground-truth templates covering a broad range of defocus 

values, we manually picked particles from numerous micrographs exhibiting diverse defocus and CTF fit 

values. Given the time-intensive nature of manual picking, we chose a small subset of micrographs (around 

15% of the micrographs) specifically for generating templates. The detailed information about the manually 

picked particles and the micrographs considered for the manual picking can be found in Supplementary 

Table S1. 

 

Figure 3: The manual Picking Process. (A) Raw micrograph obtained from EMPIAR. (B) Preprocessed Micrograph with Low 

Pass filter: 28 A to ease particle recognition and picking. (C) Manually picked true virus particle encircled in yellow, carbon 

region colored in Red, ice patches and artifacts pointed by white arrows, and cut particles in edges colored in blue.  

After manually picking the virus particles, the coordinates of particle centers and the designated box size 

are used to extract particles from the original micrographs. During this process, the box size is defined to 

provide ample padding, usually ranging from 25% to 50% extra space around the particles. The manually 

selected particles undergo a 2D classification step, where we categorized and chose the most favorable 

classes. This classification step organized particles into distinct 2D classes, streamlining the cleaning of the 

particle stack and removal of undesirable particles. Finally, we assessed the quality of the particles and 

eliminated classes containing unwanted particles. The remaining particle classes are used by the template-

based picking for the identification of high-quality particle classes. 

4. Template-based Picking 

After exporting the optimal particle classes, we employed templates created in the ‘2D Class Formation’ 

step in CryoSPARC. We followed an iterative approach, wherein the output from 'template-based picking 

and inspection' is once again utilized in the ‘2D Class Formation' step to select only the high quality 2D 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.12.25.573312doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.25.573312
http://creativecommons.org/licenses/by/4.0/


particles discarding the false positives. This cycle was repeated until we obtained high-resolution particles 

that encompass all possible viewing directions of the virus particle. 

Using CryoSPARC's Template Picker job, we employed the high-resolution templates to precisely pick 

virus particles that align with the geometry of the target structure. We set specific constraints, such as the 

Particle diameter in angstrom and a minimum distance between the particles for generating templates based 

on the SK97 sampling algorithm [29]. 

5. Manual Particle Inspection and Extraction 

The acquired particles above underwent the manual inspection, in which we scrutinized and refined the 

picked particles using different thresholds. We fine-tuned parameters such as the lowpass filter, normalized 

cross-correlation (NCC), and power threshold (Figure 4A) to eliminate false positives. The 2D colored 

histogram plots were employed to carefully analyze the median pick scores of micrographs against defocus, 

aiding in the extraction of coordinates for high-quality virus particles as depicted in Figure 4B. 

 

Figure 4: Particle Quality inspection. (A) particle filtration achieved by manipulating the NCC score on the X-axis and local 

power score on the Y-axis for EMPIAR 11060.  (B) high quality true virus particles (depicted by green circles) chosen through 

the template-based picking process and eliminated radiation-damaged, cut, and false positive particles, represented by red 

crossed markers. 

Ultimately, we applied a 2D Classification step to perform a final examination of the selected particles. The 

Select 2D job categorized particles into various 2D classes (usually 50 in our case), aiding in stack cleaning 

and the elimination of undesired particles. This process is valuable not only for assessing particle quality 

before entering the 3D reconstruction phase but also for qualitatively exploring the distribution of views 

within the dataset. Following 2D Classification, certain classes are identified as "junk" classes, representing 

non-particle images, ice crystals, or instances of two particles being conjoined. Consequently, we filtered 

out the particles associated with these "junk" classes from the picked particles. More information about the 

overall intermediate metadata and the final set of true virus particles can be found in Supplementary Table 

S1. 
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These final true particles are exported in the form of particle stacks, star files and csv files, which include 

a lot of information about the particles in micrographs like: X-coordinate, Y-coordinate, Angle-Psi, Origin 

X (Ang), Origin Y (Ang), Defocus U, Defocus V, Defocus Angle, Phase Shift, CTF B Factor, Optics Group, 

and Class Number. 

Data Records 

CryoVirusDB includes 9 virus subsets (each including approximately 1200 cryo-EM micrographs) along 

with the labelled coordinates of the virus particles in the micrographs. The total size of the CryoVirusDB 

database is 634 GB. The organizational structure of the directories of CryoVirusDB is depicted in Figure 

5. 

 

 

Figure 5: The directory structure of CryoVirusDB. The numbers in the blocks on the left side are the respective EMPIAR IDs. 

1. Motion Corrected Micrographs 

These are the two-dimensional images captured by the microscope during the imaging process. All the 

micrographs in CryoVirusDB are stored in .mrc image format. Each sub-dataset (named with EMPIAR ID) 

in CryoVirusDB contains around 1200 micrographs.  

2. Virus Particle Stack 

The particle stack consists of .mrc files, each named after the corresponding micrograph's filename, 

containing ground truth virus particles. These files form a three-dimensional grid of voxels, where each 

voxel value corresponds to electron density, essentially forming a stack of 2D images. To view and inspect 

the particle stacks, one can use EMAN2 [30] or UCSF Chimera [31]  / ChimeraX [32] . 
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3. Ground Truth Labels (Coordinates) 

The ground truth directory includes particle coordinates (in .csv format), false positives (in .csv format), 

intermediate data (in .star file), and the collective star file of all ground truth particles. The false positives 

contain viruses like particles that are actually ice contaminations, aggregates, radiation damaged particles, 

and false particles over carbon regions.  

Technical Validation 

1. 2D Particle Class Validation  

We compared our picked virus particles with a popular AI-based particle picking method, Topaz [33], 

considering factors such as the total number of classes, number of picked particles, 2D resolution, and visual 

orientation. Our manually picked particles have a better 2D class resolution than Topaz. It's noteworthy that 

a higher particle count alone does not ensure higher resolution. Instead, selecting a substantial number of 

high-quality particles across a broad angular distribution is crucial for achieving both high 2D and 3D 

resolution. The 2D class comparison for two databases: EMPIAR 10205 and EMPIAR 10193  (each 

containing 1000 micrographs) are shown in Table 3 and Figure 6. In both cases, Topaz picked many more 

particles than CryoVirusDB but it had a worse 2D class resolution.  

Table 3: 2D classification result comparison for EMPIAR 10205 and EMPIAR 10193 

EMPIAR 10205  

 
2D Particle Class Statistics 

(Topaz) 

2D Particle Class Statistics 

(CryoVirusDB) 

Number of Picked Particles 155,953 81,037 

Weighted Average Resolution of 2D classes 

(N=50) 

9.41 Å 

 

6.59 Å 

 

Weighted Average Resolution of 2D classes 

(N=10) 

13.42 Å 

 

10.96 Å 

 

 

EMPAIR 10193  

 
2D Particle Class Statistics 

(Topaz) 

2D Particle Class Statistics 

(CryoVirusDB) 

Number of Picked Particles 239,852 96,126 

Weighted Average Resolution of 2D classes 

(N=50) 

18.52 Å 

 
15.02 Å 

Weighted Average Resolution of 2D classes 

(N=10) 

23.68 Å 

 
21.72 Å 

We also assessed the density projections derived from the intermediate output during the ab initio 

reconstruction phase, as depicted at the bottom of each block in Figure 6. The plot illustrates the integrated 

density values along the perpendicular direction to that plane. The heatmap's color scheme represents scalar 

density values at each voxel, with the intensity of color indicating the magnitude of density. This indicates 

the high quality of the virus particles in CryoVirusDB.  
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Figure 6: The comparison of 2D particle classification and density projections from the intermediate output of the ab initio 

reconstruction phase for EMPIAR 10205 and EMPIAR 10193. For each EMPIAR ID, the 2D classes are visualized at the top and 

the density projects are visualized at the bottom. The color scheme in the heatmap corresponds to the scalar density values at each 

voxel. 

2. 3D Density Map Validation  

We reconstructed 3D density maps from the particles in CryoVirusDB and from those picked by Topaz for 

two datasets: EMPIAR 10205 and EMPIAR 10193, each comprising 1000 micrographs. The ab-initio 

density map reconstruction and homogenous refinement were carried out in CryoSPARC using the 

generated star files that included the selected particles. To ensure an unbiased evaluation, we repeated the 

ab-initio 3D reconstruction experiment with three distinct random seeds for each method. 

Figure 7 presents a comparison of the resolution and distribution direction of the reconstructed 3D density 

maps. The Fourier Shell Correlation (FSC) plots include a 'loose mask' curve that utilizes an automatically 

generated mask with a 15 Å falloff, and a 'tight mask' curve that employs an auto-generated mask with a 

falloff of 6 Å for all FSC plots.  

In the case of EMPIAR 10205, Topaz picked around 75,000 more particles compared to our manual picking. 

Despite this, the density map reconstructed from particles selected by CryoVirusDB achieved a resolution 
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of 4.34 Å, substantially better than Topaz's resolution of 6.48 Å. This indicates the high quality of the 

picked particles in CryoVirusDB. For EMPIAR 10193, the resolution of CryoVirusDB is 5.16 Å, also better 

than 5.74 Å of Topaz.  

The heightened intensity of the red color in the direction distribution shown in the lower section of each 

block in Figure 7 corresponds to an increased number of particles in the elevation vs azimuth plots. 

CryoVirusDB demonstrated superior particle picking by capturing a substantial number of particles with a 

wide angular distribution, evident in the red coloration on the heatmap for both validation cases. 

 

Figure 7: The comparison of 3D density resolution and direction distribution obtained by Topaz and CryoVirusDB on EMPIAR 

10205 and EMPIAR 10193. 
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Table 4: 3D density map result comparison for EMPIAR 10205 and EMPIAR 10193. Bold fonts highlight the resolution of the 

best of the three trials for each method.  

EMPIAR 10205  

 3D Density Map Statistics 

(Topaz) 

3D Density Map Statistics 

(CryoVirusDB) 

Number of Picked Particles 155,953 81,037 

GSFSC Resolution (Å) 
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

6.97 6.59 6.48 4.34 4.40 4.47 

No Mask Resolution (Å) 9.3 9.5 9.2 7.9 8.8 8.1 

Loose Mask Resolution (Å) 7.7 7.2 7.3 5.7 7.1 6.3 

Tight Mask Resolution (Å) 6.8 6.6 6.5 4.3 4.5 4.4 

Corrected Mask Resolution (Å) 7 6.6 6.5 4.3 4.4 4.5 

 

EMPAIR 10193  

 3D Density Map Statistics 

(Topaz) 

3D Density Map Statistics 

(CryoVirusDB) 

Number of Picked Particles 239,852 96,126 

 

GSFSC Resolution (Å) 
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

5.86 5.74 5.82 5.16 5.22 5.18 

No Mask Resolution (Å) 12 13 11 12 9.4 9.1 

Loose Mask Resolution (Å) 5.9 6.1 5.8 5.3 5.8 5.5 

Tight Mask Resolution (Å) 5.8 5.8 5.7 5.2 5.2 5.2 

Corrected Mask Resolution (Å) 5.9 5.7 5.6 5.2 5.2 5.3 

 

The detailed comparison of the 3D density map reconstruction of three trials for CryoVirusDB and Topaz 

is provided in Table 4. The density maps constructed from the labeled particles in CryoVirusDB 

consistently exhibit a higher quality than Topaz in terms of multiple resolution metrics, even though the 

number of particles in CryoVirusDB is much smaller than the number of particles picked by Topaz, 

indicating that Topaz may pick quite some false positives and/or miss some true positives representing 

different views. 

Code Availability 

The GitHub repository: https://github.com/BioinfoMachineLearning/CryoVirusDB contains all the scripts 

used in every stage of data curation. It also provides instructions on how to download and use the data. 
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