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Abstract 26 

Glycosylation is increasingly recognized as a potential therapeutic target in Alzheimer’s 27 

disease. In recent years, evidence of Alzheimer’s disease-specific glycoproteins has been 28 

established. However, the mechanisms underlying their dysregulation, including tissue- and 29 

cell-type specificity, are not fully understood. We aimed to explore the upstream regulators of 30 

aberrant glycosylation by integrating multiple data sources using a glycogenomics approach. 31 

We identified dysregulation of the glycosyltransferase PLOD3 in oligodendrocytes as an 32 

upstream regulator of cerebral vessels and found that it is involved in COL4A5 synthesis, 33 

which is strongly correlated with amyloid fiber formation. Furthermore, COL4A5 has been 34 

suggested to interact with astrocytes via extracellular matrix receptors as a ligand. This 35 

study suggests directions for new therapeutic strategies for Alzheimer’s disease targeting 36 

glycosyltransferases. 37 

 38 
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Introduction 42 

Alzheimer's disease (AD) is an age-related neurodegenerative disease1,2. The primary 43 

causes are neurogenic cell loss, accumulation of misfolded proteins, oxidative stress, and 44 

inflammatory responses3. Genomic, transcriptomic, and epigenetic mechanisms have been 45 

intensively examined4. However, our knowledge of the post-translational modifications that 46 

regulate cellular functions and interactions between cells is still lacking5. In particular, 47 

glycosylation is the most diverse and abundant post-translational modification among protein 48 

modifications6. 49 

Protein glycosylation is a complex multistep process involving approximately 200 50 

different glycosyltransferases6–8. There are 16 major glycosylation pathways, including lipid 51 

glycosylation, N-glycosylation, O-glycosylation, C-mannosylation, lipid glycosylation, and 52 

glycosylphosphatidylinositol (GPI)-anchored synthesis. Recently, glycomics / glycoproteomics 53 

analysis of the human AD postmortem brain9,10, serum,11–17 and cerebrospinal fluid18–20 for N-54 

glycosylation, the most abundant glycosylation pathway, has revealed dysregulated 55 

glycoproteins. In addition, the biological functions of abnormal glycans in AD pathology have 56 

been reported in some cases; for example, it is known that inhibition of BACE1 glycosylation 57 

reduces the cleavage of the amyloid β precursor protein (APP) 21–23. However, most biological 58 

functions of glycosylation in the pathogenesis of AD are poorly understood. 59 

Glycan structures are not independent of the DNA template, and glycosylation 60 

depends on a combination of approximately 200 glycosyltransferases and 500 related 61 

proteins6–8. Thus, their dysregulation may act as an upstream regulatory factor that triggers 62 

abnormal glycosylation processes24. In addition, it is difficult to elucidate biological 63 

glycosylation mechanisms at the single-cell resolution using glycomics / glycoproteomics alone 64 

because current technology is limited to probing with glycosylation-specific antibodies and 65 

glycan-binding proteins, such as lectin 6. Therefore, a glycogenomics approach that integrates 66 

genomics, or functional genomics, and glycoproteomics is critical for a comprehensive 67 
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understanding of biological glycosylation pathways24,25. 68 

Here, we present the factors upstream of aberrant glycosylation in AD. We performed 69 

an integrated analysis of bulk and single-cell/nuclear transcriptomic and glycoproteomics data 70 

from human AD brain tissues. In particular, we showed that the extracellular matrix (ECM) 71 

is a common signature in the glycoproteome and transcriptome, and that ECM gene 72 

expression signatures are enriched for cerebral vascular-related pathways. We identified 73 

Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) as an upstream 74 

glycosyltransferase common to ECM pathway. Through an integrated analysis of multiple 75 

single-cell expression data, we showed that PLOD3 is involved in the regulation of collagen 76 

type IV alpha 5 chain (COL4A5), which is strongly correlated with amyloid fiber formation. 77 

Cell–cell interaction and signaling pathway analyses suggested that PLOD3-COL4A5 cascade 78 

is involved in the stress response via the ECM receptor in astrocytes. 79 

 80 

Results 81 

Hyperglycosylated proteins are primarily enriched in the ECM 82 

To examine the association between the molecular pathogenesis of AD and 83 

glycosylation, we accessed glycoproteomic data consisting of 2 cohorts of postmortem brain 84 

tissue from AD patients 9,10 (Figure 1A). The first dataset consisted of dorsolateral prefrontal 85 

cortex tissue from 8 neuropathologically confirmed AD cases and 8 age-matched controls. The 86 

second dataset comprised a subset of the ROSMAP cohort14. Glycoproteomic analysis was 87 

performed on the postmortem brains of 10 patients with asymptomatic AD, 10 patients with 88 

symptomatic AD, and 10 healthy brains in which none of the above were present.  89 

In each cohort, 92 and 10 AD-specific hyperglycosylated proteins (Supplementary 90 

Table S1) were identified, respectively, and pathway enrichment analysis was performed 91 

(Figure 1A). Among the pathways significantly enriched in the 2 cohorts, we identified the 92 

ECM pathway as the most common pathway among 7 pathways (Figure 1B, C). The 93 
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relationship between AD and ECM has recently been recognized as a new molecular 94 

pathogenesis, along with other major pathological hypotheses26,27. ECM components contain 95 

glycoproteins, including glycosylated proteoglycans and collagen, as major elements27, and 96 

many glycosylations play important roles in ECM formation and maintenance. 97 

 98 

Meta-analysis of the transcriptome reveals that glycogenes are enriched in the ECM 99 

We explored the upstream factors that regulate ECM hyperglycosylation in AD. We 100 

accessed the AD Knowledge Portal (https://adknowledgeportal.synapse.org), which contains 101 

postmortem brain transcriptome data from multiple cohorts of patients with AD, and compiled 102 

gene expression data. The glycogene set consisting of 214 glycosyltransferases was defined 103 

using the gene list in the Glycogene Database (GGDB: https://acgg.asia/ggdb2/)28 and 104 

literature6,29,30 (Figure 2A, Supplementary Table 2). This gene set was also categorized 105 

according to its glycosylation pathway and synthesis steps (Figure 2A). 106 

We derived transcriptional signatures of glycogenes based on a meta-analysis. We 107 

identified 46 differentially expressed genes (DEGs) in the glycogenes (Figure 2B, Table S3). 108 

We mapped glycogenes to glycosylation pathways to determine the pathways enriched for the 109 

DEGs (Figure 2C). Glycosyltransferases were differentially expressed in all pathways (Figure 110 

2C), indicating that the signals triggering aberrant glycosylation had already been observed 111 

at the transcriptional level. 112 

Next, we analyzed the biological functions of these glycogene signatures. The 779 113 

globally enriched biological pathways were estimated based on the effect size from the 114 

differential expression obtained by meta-analysis using all genes (FDR < 5%) (Figure 2D, 115 

Supplementary Table S2–S4). Subsequently, a post-hoc enrichment analysis was performed to 116 

infer which glycosylation pathways were associated with these enriched biological pathways 117 

(Figure 2D, Supplementary Table S5). Significant glycosylation pathways were extracted with 118 

a hypergeometric test as the final estimation results (Figure 2D, Table S4–S5; p-value < 5%). 119 
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We found that the ECM is a common biological signature of the transcription and glycosylation 120 

layers in AD (Figure 3A). The ECM cluster was strongly associated with the hydroxyl 121 

galactose glycosylation pathway (Figure 2D).  122 

 123 

PLOD3 is identified as a functional hub glycogene for ECM 124 

Next, we performed an in-depth analysis of the glycogenes that play a central role in 125 

the ECM. Of the 779 globally enriched pathways, we constructed a bipartite graph consisting 126 

of glycogene–pathway relationships based on 48 pathways, including the differentially 127 

expressed glycogenes (Figure 3B). We inferred the glycogene importance based on the number 128 

of neighboring pathways, that is, the network degree (Figure 3C). As a result, PLOD3 was 129 

identified as a hub glycogene with the highest degree (Figure 3C).  130 

PLOD3 is an enzyme that mediates essential glycosylation during the early stages of 131 

collagen formation31. In general, collagen is broadly modified by the hydroxylation of proline 132 

and lysine and glycosylation of specific hydroxylysine residues32. Hydroxylation of lysine is 133 

catalyzed by PLOD333,34; hydroxylysine undergoes further glycosylation, and COLGALT1 134 

transfers galactose, which are critical steps for maintaining collagen integrity32. 135 

 To further confirm the results at the gene expression level, we examined whether 136 

the changes in PLOD3 expression were consistent among the AD cohorts included in the meta-137 

analysis. We found that PLOD3 was consistently upregulated in individual cohort studies 138 

(Figure 3D), and the expression signatures of ECM organization and collagen formation 139 

showed a consistent overexpression trend (Figure 3D). Based on this analysis, we 140 

hypothesized that hyperglycosylation of the ECM in AD brain tissue is mediated by PLOD3. 141 

 142 

PLOD3 is expressed in oligodendrocytes and co-expressed with COL4A5 143 

We sought to determine the cellular origin of the PLOD3 and collagen genes. First, 144 

we accessed the scRNA-seq data of normal brain tissue from the Human Protein Atlas 145 
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(v22)35,36. We found that PLOD3 was co-expressed with COL4A5 in oligodendrocytes (Figure 146 

4A). These two genes showed distinct oligodendrocyte-specific expression signatures (Figure 147 

4B). We also accessed a human AD cohort of single-nucleus RNA-seq data for the entorhinal 148 

cortex (GSE138852)37. The entorhinal cortex is one of the brain regions that shows 149 

neurodegeneration in the early stages of AD38–40. The cohort included both non-cognitive 150 

impairment (NCI) and AD brain. Six cell types were identified: microglia, astrocytes, neurons, 151 

oligodendrocyte progenitor cells, oligodendrocytes, and endothelial cells (Figure 4C). PLOD3 152 

and COL4A5 were highly expressed in oligodendrocytes (Figure 4C). These genes were also 153 

predominantly expressed in the AD group (Figure 4C). 154 

 155 

COL4A5 consistently correlated with amyloid fiber formation in multiple cohort studies 156 

 COL4A5 is partially correlated with amyloid plaque accumulation41. However, this 157 

finding has not been validated in large clinical samples. We tested whether COL4A5 158 

expression was significantly correlated with APP expression. We analyzed the bulk RNA-seq 159 

data used in the meta-analysis and examined their relationship with APP gene expression 160 

separately for each brain region. The results showed that COL4A5 was strongly correlated 161 

with the APP gene in all datasets (Figure 4D). Furthermore, we defined the gene signatures 162 

of the amyloid plaque formation pathway and analyzed the correlation between their 163 

eigengene expression and COL4A5 in the same way. As expected, a strong correlation was 164 

confirmed (Figure 4D). PLOD3 was evaluated similarly, showing a weaker correlation than 165 

COL4A5, but it was significant in several datasets (Supplementary Figure 1). 166 

 167 

Cerebrovasculature most strongly associated with ECM dysregulation 168 

We explored whether overexpression of the PLOD3–COL4A5 axis is involved in 169 

biological processes in the AD brain. First, we analyzed the biological pathways that best 170 

explained ECM activity. We used AES-PCA42–44, a principal component analysis (PCA)-based 171 
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regression model with ECM activity as the outcome variable and all other biological pathway 172 

activities as predictors, for each AD cohort used in the meta-analysis (Figure 5A, 173 

Supplementary Table S6). The estimated p-values were statistically combined using Fisher’s 174 

method (Figure 5A). Four of the top 10 enriched genes were associated with the vascular 175 

system (Figure 5A) and were overexpressed in the AD group at the expression level (Figure 176 

5B). We hypothesized that the PLOD3–COL4A5 axis is involved in the cerebrovascular 177 

microenvironment. 178 

 179 

PLOD3 and COL4A5 are expressed in oligodendrocytes of the cerebrovasculature 180 

microenvironment 181 

We analyzed recently reported scRNA-seq data from the vascular microenvironment 182 

of the human brain (GSE16357)45. These data were used to quantify gene expression by VINE-183 

seq in the cerebral blood vessels in 8 NCI and 9 AD samples (Figure 5C). Gene expression was 184 

quantified in 143,793 cells from 14 cell types, including vascular endothelial cells (arterial, 185 

capillary, and venous), mural smooth muscle cells (SMCs), pericytes, astrocytes, macrophages, 186 

T cells, and perivascular and medullary fibroblasts (Figure 5C). We examined cell types 187 

expressing PLOD3 and COL4A5, which were most strongly expressed in oligodendrocytes 188 

(Figure 5D, E). In contrast, other type IV collagens were mainly expressed in pericytes and 189 

SMCs, which is consistent with the fact that type IV collagen constitutes the vascular 190 

basement membrane46. 191 

 192 

Oligodendrocytes interact with astrocytes via the COL4A5 ligand 193 

Next, we analyzed the biological functions and pathways mediated by the PLOD3–194 

COL4A5 axis in the cerebrovascular microenvironment. According to the KEGG pathway 195 

analysis, COL4A5 may contribute to cell-to-cell communication via ECM ligand receptors 196 

(hsa04512). We analyzed how the PLOD3–COL4A5 axis of oligodendrocytes mediates 197 
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intercommunication between cell types. CellChat47 allows for the estimation of cell–cell 198 

interactions for each signaling pathway. We estimated cell–cell interactions based on collagen 199 

signaling pathways in the AD group. Oligodendrocytes interacted with astrocytes via the 200 

COL4A5 ligand and CD44 receptor (Figure 6A). This was verified using NicheNet48, another 201 

intercellular communication estimation algorithm. Among oligodendrocytes, COL4A5 was 202 

identified as one of the most promising candidates (Figure 6B). In addition to CD44 identified 203 

by CellChat, SDC4, DDR2, ITGB8, and ITGAV were predicted to be astrocyte receptors 204 

(Figure 6B). These receptors were highly expressed in astrocytes (Figure 6C). 205 

 206 

COL4A5 ligand is involved in the regulatory cascade of the astrocyte stress response  207 

We performed a detailed analysis of signaling pathways to understand the biological 208 

functions of COL4A5-mediated interactions between oligodendrocytes and astrocytes. We 209 

integrated the predicted COL4A5 ligand–receptor pairs (CD44, SDC4, DDR2, ITGB8, and 210 

ITGAV) into the prior knowledge of the signaling network constructed from multiple 211 

perturbation experiments and databases using NicheNet. The results indicated that the 212 

COL4A5 ligand targeted and activated B-cell/CLL lymphoma 6 (BCL6) and serum and 213 

glucocorticoid-regulated kinase 1 (SGK1) via ECM receptors in astrocytes (Figure 6D). BCL6 214 

is a transcription factor and master regulator of humoral immunity and B-cell 215 

lymphomagenesis, while SGK 1 encodes a serine/threonine protein kinase that plays an 216 

important role in cellular stress responses49–51. Both genes were found to be expressed in 217 

astrocytes (Figure 6E). 218 

Based on these results, we inferred the biological functions of the BCL6 and SGK1 219 

gene modules in astrocytes. An astrocyte-specific co-expression network was constructed 220 

based on gene expression using the hdWGCNA algorithm52 (Figure 6F). Next, we applied the 221 

random walk with restart (RWR) algorithm53, which is a network propagation algorithm 222 

starting from BCL6 and SGK1 on the astrocyte-specific network topology (Figure 6F). The 223 
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RWR allows for the evaluation of the proximity of the network between BCL6, SGK1, and 224 

other neighboring genes. Based on these results, we prioritized the top 30 neighbors (Figure 225 

6G). GO analysis of these neighboring gene groups revealed that they were enriched mainly 226 

for processes involved in stress response (Figure 6H). These enriched pathways were also 227 

observed in the GO analysis of BCL6 and SGK1 and were independently identified using the 228 

network propagation method (Supplementary Figure 3). 229 

 230 

Discussion 231 

Our knowledge of the involvement of glycosylation, a major post-translational 232 

modification, in the pathogenesis of AD is lacking. We systematically explored the 233 

pathogenesis and driving factors based on an integrated analysis of the emerging dimensions 234 

of glycosylation in combination with transcriptomics.  235 

In the brain tissue of patients with AD, hyperglycosylation in the ECM is the main 236 

signature shared by the glycome and transcriptome, and the glycosyltransferase PLOD3 is an 237 

upstream regulator that acts as a functional hub. PLOD3 is predominantly expressed in 238 

oligodendrocytes in AD brain tissue and the cerebrovasculature and is co-expressed with 239 

COL4A5. Importantly, COL4A5 significantly correlated with APP levels and the activity of the 240 

amyloid fiber formation pathway. Single-cell/nuclear analysis revealed that COL4A5 is a 241 

ligand for oligodendrocytes that can mediate cell–cell interactions via ECM receptors on 242 

astrocytes. In addition, signaling pathway network analysis identified BCL6 and SGK1 as its 243 

target genes, and their neighboring genes in the astrocyte-specific network analysis revealed 244 

that these two genes are involved in the regulation of the stress response. 245 

 The involvement of the ECM in AD has been supported by a large amount of 246 

literature27,54–58. The physiological roles of the ECM are diverse and include developmental 247 

regulation, tissue homeostasis, cell migration, cell proliferation, cell differentiation, neuronal 248 

plasticity, and neurite growth59. In particular, the ECM is extensively involved in the 249 
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dysregulation of perineuronal networks in AD58,60–68, which are involved in the maintenance 250 

of spatial structure, neuronal plasticity, scaffolding,69 and the regulation of aggregation; it is 251 

also involved in amyloid protein dynamics27,70–75 and brain–blood barrier integrity 41,54,76–79. 252 

As glycoproteins are the major components of the ECM55,59,80, glycan synthesis is important 253 

for ECM homeostasis in the brain. The enrichment of dysregulated glycoproteins in the ECM 254 

is natural in this sense (Figure 1A, B). 255 

We discovered that PLOD3 was enriched in the ECM and upregulated in the AD 256 

meta-analysis (Figure 2B–D). PLOD3 is a multifunctional enzyme, and in addition to its role 257 

as a lysyl hydroxylase, it has collagen galactosyltransferase and glucosyltransferase 258 

activity34,81–83. Although no direct evidence of PLOD3 in AD has been reported, it is known to 259 

play an essential role in the formation of collagen, a major component of ECM84. For instance, 260 

defects in PLOD3 (or lysyl hydroxylase 3; LH3) have been implicated in inherited connective 261 

tissue disorders and have been shown to cause cerebral small vessel injury85,86, maintenance 262 

of the structural integrity of cerebral blood vessels, and the regulation of inflammatory 263 

processes87. This enzyme is also a promising biomarker of AD, as its expression has been 264 

reported to fluctuate in cell-free RNA expression in blood samples from patients with AD88.  265 

PLOD3 mediates glycosylation during early collagen formation31. Type IV collagen is 266 

an essential protein in the cerebral vasculature of patients with AD and is responsible for 267 

network formation in the basement membrane. Indeed, in our analysis of single-cell 268 

expression levels in cerebral vessels, many type IV collagens 269 

(COL4A1/COL4A2/COL4A3/COL4A4) were predominantly expressed in pericytes and SMCs 270 

(Figure 5E). In contrast, COL4A5 behaves differently from other type IV collagens and is 271 

predominantly expressed in oligodendrocytes. Oligodendrocytes have been shown to stably 272 

bind to cerebral blood vessels by zonation analysis based on single-cell/nuclear sequencing 273 

analysis89,90 and electron microscopy91. Interestingly, data from multiple studies support that 274 

COL4A5 is strongly correlated with APP and amyloid fiber formation (Figure 4D), suggesting 275 
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a relationship with amyloid plaque accumulation. This may be relevant because the 276 

overexpression of type IV collagen generally leads to an increase in cortical basement 277 

membrane thickness and has been implicated in the degeneration of cerebral vascular 278 

structures55. The functional role of type IV collagen in AD cerebrovasculature should be 279 

examined in detail in future studies. 280 

We also performed an in silico analysis of cell–cell interactions. COL4A5 functioned 281 

as a ligand in oligodendrocyte–astrocyte interactions (Figure 6A). Analysis of the signaling 282 

pathway network suggested that this cell–cell interaction may contribute primarily to the 283 

stress response via SGK1 or BCL6 (Figure 6D–H). SGK1 is known to be transcriptionally 284 

upregulated under cellular stress49–51. On the other hand, both factors have also been reported 285 

to be involved in inflammatory responses in the central nervous system. Recent studies have 286 

shown that inhibition of SGK1 can suppress the NF-κB-mediated inflammatory pathway in 287 

glial cells92. There is also evidence that BCL6 plays a central role in regulating astrocytes and 288 

NF-κB in response to inflammatory stimuli and disorders93. Indeed, in our glycoprotein 289 

analysis, the immune response pathway was enriched next to the ECM (Figure 1B, C), and 290 

inflammatory cytokines were also significantly associated with the ECM organization 291 

pathway at the transcriptome level (Figure 5A, Supplementary Figure S2A). Inflammatory 292 

pathways are key signatures in the AD brain; however, their mechanisms of action in the 293 

stress response remain unclear. Further examination of the mechanisms underlying BCL6- 294 

and SGK1-mediated stress responses is required. 295 

This study has several limitations. First, the AD glycomic analysis was limited to N-296 

type glycans. Therefore, evidence of ECM hyperglycosylation should be verified in future 297 

studies using comprehensive glycoproteomic data. Second, the AD cohort data used in the 298 

meta-analysis were limited to those deposited on the AD knowledge portal. To establish a 299 

higher level of evidence, data from other large cohort studies should be included. Third, single-300 

cell sequencing data were collected from several different sources; therefore, there is no 301 
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guarantee that the results reflect the differential expression results of the bulk sequencing 302 

used in the meta-analysis. It is expected that this limitation can be overcome in the future as 303 

multilayered omics data are collected. However, validation, including experimental 304 

approaches, is required. 305 

Our results suggest that glycosylation is involved in the pathogenesis of AD through 306 

several unknown mechanisms. Our results also indicate that glycogenomics analysis 307 

integrating genetic approaches is a promising method for highlighting the biological functions 308 

of glycans and the molecular pathogenesis of diseases at a single-cell resolution. Data on AD 309 

glycoproteomics in human subjects are limited. However, as glycoproteomic analysis 310 

technology matures, it will be applied to various disease areas, and a vast amount of 311 

glycoproteomic data will be accumulated in the next decade. In the near future, the 312 

glycogenomics approach will play an important role as a bridge between the established AD 313 

genetic pathology and the emerging dimensional omics field of glycoproteomics.  314 

 315 

Methods 316 

Glycoproteomics enrichment analysis 317 

The first set of glycoproteomics data9 was used for enrichment analysis. This dataset 318 

was analyzed for glycoproteins overexpressed in the AD group (BRAAK ≥ 5) and the normal 319 

group (BRAAK ≤ 2), as defined in the original paper, using the canonical pathway collection 320 

of MSigDB (c2.cp.v2022.1.Hs.symbols.gmt). All genes were analyzed as backgrounds using the 321 

fedup package in R (https://github.com/rosscm/fedup), and the top 30 significantly enriched 322 

pathways were identified. The second set of glycoproteomics data9 was analyzed in the same 323 

manner. Comparisons were made between the symptomatic group (BRAAK ≥ 5 and CERAD 1 324 

or 2), the asymptomatic group (BRAAK ≥ 3 and CERAD 1 or 2), and the normal group (BRAAK 325 

≤ 2 and CERAD 4), as defined in the original paper. Glycoproteins specifically identified in the 326 

symptomatic group were extracted. Enrichment analysis was performed to identify the top 30 327 
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significantly enriched pathways. 328 

 329 

Meta-analysis 330 

Meta-analysis using RNA-seq harmonization of AMP-AD followed the published AD-331 

CONTROL analysis protocol (https://github.com/th1vairam/ampad-DiffExp/tree/df3efa793f, 332 

379730bae6d4c9e62910fb2c37e525/gene_level_analysis). First, meta-information was used 333 

for data from 3 cohorts (ROSMAP, MSSM, and Mayo), including seven different brain regions, 334 

to define patients with definitive late-onset AD from a clinical and neuropathological 335 

perspective, that is, neurofibrillary changes, neuritic amyloid plaques, and cognitive 336 

dysfunction. The AD control group consisted of patients with AD. 337 

AD controls were defined as patients with few plaques and neurofibrillary changes 338 

and no cognitive impairment; in ROSMAP, LOAD cases were those with a BRAAK of 4 or more, 339 

a CERAD score of 2 or less, and a cognitive diagnosis of probable AD with no other causes 340 

(cogdx = 4); LOAD controls were those with a BRAAK of 3 or less, a CERAD score of 3 or more, 341 

and a cognitive diagnosis of "no cognitive impairment" (cogdx = 1). For the MSBB, LOAD cases 342 

were defined as those with a CDR score of at least 1, a BRAAK score of at least 4, and a 343 

CERAD score of at least 2. LOAD cases were similarly defined as those with a CDR score of 344 

0.5 or less, a BRAAK of 3 or less, and a CERAD of 1 or less as LOAD controls. In Mayo, cases 345 

were defined based on neuropathology, with LOAD cases defined as having a BRAAK score of 346 

4 or higher and LOAD controls as having a BRAAK score of 3 or lower. 347 

A meta-analysis using a mixed-effects model was performed to determine the 348 

differences in the expression levels of each gene in each of the seven brain regions in each 349 

cohort. Effect sizes were estimated using the restricted maximum likelihood method based on 350 

the standard mean difference using Hedge. The Metacont function from the meta package of 351 

R was used for the analysis. The p-values were corrected for multiple testing by "fdr" using 352 

the p.adjust function from the stats package. 353 
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 354 

Enrichment map 355 

Gene Set Enrichment Analysis (GSEA) was performed on all genes included in the 356 

meta-analysis. The gene set was c2.cp.v2022.1.Hs.symbols from the MsigDB collection, which 357 

was loaded using Enrichment Map in Cytoscape and drawn using default settings. After 358 

drawing the pathways, we manually classified them into several categories and created 359 

several clusters in the network. The list of glycan-related genes manually defined for each 360 

glycosylation pathway was then analyzed by post-hoc analysis using the hypergeometric test 361 

and the Wilcoxon test, and pathways with FDR ≤ 5% and that were significant by two tests 362 

were extracted. Significant pathways in the two tests were extracted. 363 

 364 

Functional hub glycogene identification 365 

Among the enriched pathways based on the same GSEA results as the enrichment 366 

map, only pathways containing glycogenes were extracted, and from these, a two-part graph 367 

of the pathway–glycogene was extracted. Based on the two-part graphs obtained, each gene 368 

was ranked according to its degree of expression. The glycogene with the highest degree was 369 

defined as the functional hub glycogene. The results of querying the extracted PLOD3 to the 370 

String database (v11) are shown in Figure 2D. Forest plots of PLOD3 are shown with 371 

estimated effect sizes and 95% confidence intervals from the meta-analysis. For pathway 372 

activity, GSEA was performed using the R fgsea package, with gene ranks for effect sizes for 373 

each cohort and c2.cp.v2022.1.Hs.symbols for the gene set. Normalized enrichment scores 374 

were used for the forest plots. 375 

 376 

Cell-type specificity of PLOD3 377 

For the cell-type specificity of healthy tissues, information was obtained from the 378 

Human Proteome Atlas (V22) website by entering the gene name. For data on the entorhinal 379 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2024. ; https://doi.org/10.1101/2023.12.25.573290doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.25.573290
http://creativecommons.org/licenses/by/4.0/


 17 

cortex, information was obtained by entering gene names from http://adsn.ddnetbio.com/.  380 

 381 

Pathway-based PCA regression and GSEA 382 

Pathway-based PCA is a PCA-based method for analyzing pathways and phenotypic 383 

associations43,44,94. The R Bioconductor PathwayPCA package42 was used for the analysis. 384 

Using region-specific gene expression data from each AD cohort (Mayo, MSSM, and ROSMAP), 385 

we specified the mean expression levels of the ECM pathway component genes as the ECM 386 

pathway activity for the objective variable and each pathway other than the ECM pathway 387 

for the explanatory variables. The gene set used was c2.cp.v2022.1.Hs.symbols from MSigDB. 388 

The pathway names containing "ECM," "Extracellular," or "Collagen" were defined as ECM 389 

pathways. The genes involved in these pathways were defined as signatures. 390 

The p-values of the list of pathways significantly associated with ECM were combined 391 

using Fisher’s method to calculate the integrated p-value. For the calculation, the log-sum 392 

function of the R metapackage95 was used, and the p-values of the individual datasets were 393 

entered for each pathway. In addition, we cross-checked whether significantly related 394 

pathways were sufficiently enriched at the expression level. Focusing on the top 10 pathways, 395 

we applied GSEA based on the gene set c2.cp.v2022.1.Hs.symbols from MSigDB using the 396 

effect sizes of the 3 cohort meta-analysis as the gene rank. To further validate that the top 10 397 

pathway activities tended to increase by cohort and region, the means of the effect sizes and 398 

confidence intervals were calculated for the signature genes and illustrated as forest plots. 399 

 400 

Analysis of brain vasculature with scRNA-seq 401 

Count data were preprocessed using the Seurat package in R. Normalization, feature 402 

selection with VST, scaling, and dimensional reduction using PCA and UMAP were performed. 403 

The cell types were visualized using those previously identified in an original paper45. Next, 404 

for each cell type, variation analysis between the AD and cognitively normal groups was 405 
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performed using Seurat’s FindMarkes function, and enrichment analysis for the identified 406 

groups of DEGs was performed using the R fedup package. The c2.cp.v2022.1.Hs.symbols from 407 

MSigDB was used as the gene set to determine which cell types were enriched in ECM-related 408 

pathways. We selected gene sets with pathway names containing "ECM," "Extracellular," 409 

"Matrisome," or "Collagen" in the pathway name. The enriched p-values were further 410 

transformed as -Log10(FDR) from the multiple-test-corrected FDR, considered as 411 

differentially expressed activity signals, and visualized using a heatmap. The expression 412 

levels per cell type were obtained by querying https://twc-stanford.shinyapps.io/human_bbb/ 413 

for PLOD3. 414 

 415 

Cell–cell interaction and signaling network analysis 416 

Cell–cell interactions were analyzed using the R package CellChat47 417 

(https://github.com/sqjin/CellChat). Oligodendrocytes and astrocytes identified with CellChat 418 

were further analyzed using another algorithm, NicheNet48 (https:// 419 

github.com/saeyslab/nichenetr). For a detailed analysis, the ligand–receptor prior information 420 

was input by integrating the ligand–receptor pair information used in CellChat with the 421 

ligand–receptor pair information used in NicheNet. This was also used for the signal network 422 

analyses. A pre-built model was downloaded 423 

(https://github.com/saeyslab/nichenetr/blob/master/vignettes/model_construction.md), and 424 

both the ligand–receptor information and expression information were identified in the cell–425 

cell interactions. 426 

 427 

Astrocyte cell-type specific network propagation 428 

For astrocyte-specific network construction using cerebrovascular scRNA-seq, the 429 

Toplogical Overlap Measure (TOM) was estimated using hdWGCNA52, and edges were further 430 

defined only if they had a TOM above the 90th percentile as a threshold. The network 431 
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propagation method was applied using the R package RandomWalkRestartMH53. In other 432 

words, we performed an RWR starting from SGK1 and BCL6 in the obtained network topology. 433 

The 30 most relevant neighbors were narrowed down and plotted using the R package igraph. 434 

The R package fedup was used for the enrichment analysis. To estimate the transcriptional 435 

activity of BCL6, curated regulon information was first obtained using the R package 436 

DoRothEA96, and transcription factor target genes were estimated using the Viper97 algorithm. 437 

The R package decoupleR98 was used for the analysis. 438 

 439 
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Figure 1 - Hyperglycosylated proteins are primarily enriched in the ECM. 713 
A Analysis of glycoprotein data from 2 AD cohorts, using glycoproteins from prefrontal tissues of 2 714 
independent AD cohorts. The first cohort (AD cohort 1) consisted of 8 samples each from healthy subjects 715 
and those with AD, and the second cohort (AD cohort 2) consisted of 10 samples each from healthy subjects, 716 
asymptomatic AD, and symptomatic AD. In each cohort, 92 and 10 AD-specific glycoproteins were identified, 717 
respectively. 718 
B Pathway enrichment of AD-related glycoproteins. Over-representation analysis of AD-specific 719 
glycoproteins was performed. 720 
C Significantly enriched pathways that were common in both cohorts are shown. The horizontal axis is the 721 
p-value representing the enrichment, which is the logarithm of the nominal p-value multiplied by a negative 722 
value. 723 
Figures were created with BioRender.com.  724 
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Figure 2 - Meta-analysis of the global transcriptome reveals that glycogenes are enriched in the ECM. 725 
A Number of glycogenes constituting the glycosylation pathway used for transcriptome analysis. 726 
B Meta-analysis of differential gene expression in multiple AD cohorts. Transcriptome data from 3 AD 727 
cohorts: the Mayo cohort (n = 313), the MSSM cohort (n = 315), and the ROSMAP cohort (n = 1168). A meta-728 
analysis of DEGs based on gene-level expression levels (FDR < 5%) was performed; 46 glycogenes were 729 
identified as DEGs. In the volcano plot, the horizontal axis represents the effect size summarizing the 730 
difference in expression between the non-AD and AD groups across cohorts, and the vertical axis represents 731 
the log of the p-value from the meta-analysis (bottom is 10) multiplied by a negative value. 732 
C Mapped glycosyltransferase DEGs. In total, 46 glycogene DEGs were mapped. Genes overexpressed in the 733 
meta-analysis are shown in red, genes underexpressed are shown in blue, and genes that did not show 734 
significant mutations are shown in gray. Genes are classified into 16 major glycosylation pathways, 735 
including initiation, core elongation, elongation/branching, capping, and sulfation. Glycosyltransferases 736 
with and without pathway specificity are also distinguished. 737 
Figure created by BioRender.com.  738 
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Figure 3 - PLOD3 is identified as a hub glycogene for the ECM. 739 
A Comparison of AD trascriptome and glycoprotein signatures. Common pathways are shown. 740 
B Relationship between glycogenes and globally enriched pathways. Orange nodes represent globally 741 
enriched pathways, and green nodes represent glycogen enriched in each pathway. 742 
C Functional hub glycogenes in globally enriched pathways. To identify functional hub glycogenes involved 743 
in multiple pathways, we constructed a pathway–gene bipartite graph, calculated the degree of each 744 
glycogene (number of genes directly connected to the pathway), and ranked the importance of each 745 
glycogene. The vertical axis of the bar graph represents the order of each glycogene. 746 
D Activity changes in PLOD3, ECM, and collagen formation in AD brains in each transcriptome cohort. 747 
Forest plots of Log2 fold changes in PLOD3, ECM organization, and collagen formation activity between 748 
non-AD and AD are plotted by cohort and brain region. 749 
DLPFC: dorsolateral prefrontal cortex; STG: superior temporal gyrus; PHG: parahippocampal gyrus; IFG: 750 
inferior frontal gyrus; FP: frontal pole; TCX: temporal cortex; CBE: cerebellum. Dots indicate estimated 751 
mean effect sizes, bar widths are 95% confidence intervals of the estimates, and vertical lines with red dots 752 
indicate zero (no change).  753 
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Figure 4 - PLOD3 is expressed in oligodendrocytes and is co-expressed with COL4A5. 754 
A Cell-type specificity of PLOD3 in healthy brain tissues. Cell clusters obtained from gene expression in 755 
healthy brain tissue by Human Protein Atlas (v22) scRNA-seq, and the Transcripts Per Million (TPM) in 756 
each cluster. PLOD3 and COL4A5 are highly expressed in oligodendrocytes and belong to the same cluster. 757 
B Expression levels of PLOD3 and COL4A5 per cell type. 758 
C Cellular specificity of PLOD3 and collagen in the enthorhinal cortex. Scatter plots show the cluster 759 
structure of cell populations projected by UMAP to 2D coordinates based on gene expression; the first panel 760 
shows cell types, the second non-AD and AD, the third and fourth panels show cell type-specific expression 761 
of PLOD3 and COL4A5 in oligodendrocytes, respectively. 762 
D Correlation of COL4A5 with the expression of APP (upper panel) and the activity of amyloid fiber 763 
formation (lower panel) for each cohort and each region. 764 
DLPFC: dorsolateral prefrontal cortex; STG: superior temporal gyrus; PHG: parahippocampal gyrus; IFG: 765 
inferior frontal gyrus; FP: frontal pole; TCX: temporal cortex; CBE: cerebellum.  766 
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Figure 5 - Cerebrovasculature most strongly associated with ECM dysregulation. 767 
A Pathways significantly associated with the activity of the ECM organization were estimated for each 768 
cohort tissue using the AES-PCA model. The p-values estimated for each cohort and for each brain tissue 769 
were estimated as integrated p-values, and the top 10 pathways are shown in the figure. Figures were 770 
generated by BioRender.com. 771 
B Enrichment of pathways involving the cerebrovasculature in AD with gene set enrichment analysis 772 
(GSEA) (FDR < 5%). Forest plots shown below each enrichment plot indicate Log2 fold change for each 773 
pathway in each cohort and each region. 774 
C Analysis using cerebrovascular scRNA-seq data (8 NCI, 9 AD). 775 
D Expression of PLOD3 per cell type. 776 
E Expression of type IV collagen per cell type. 777 
DLPFC: dorsolateral prefrontal cortex; STG: superior temporal gyrus; PHG: parahippocampal gyrus; IFG: 778 
inferior frontal gyrus; FP: frontal pole; TCX: temporal cortex; CBE: cerebellum.  779 
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Figure 6 - COL4A5 ligand is involved in the regulatory cascade of the astrocyte stress response. 780 
A Estimated cell-to-cell communication based on ECM ligand–receptor expression. 781 
B Receptor candidates for oligodendrocyte-derived COL4A5 ligands predicted to bind in astrocytes. 782 
C Cell type-specific expression levels of receptors for COL4A5. 783 
D COL4A5-mediated signaling pathways and target genes in astrocytes. 784 
E Expression levels of target genes BCL6 and SGK1 per cell type. 785 
F Analysis flow of the exploration of neighboring genes and functional estimation using network propagation 786 
in astrocyte-specific co-expression networks. 787 
G Top 30 neighboring genes estimated by network propagation based on BCL6 and SGK1. 788 
H Gene set analysis of BCL6 and SGK1 neighbor genes.  789 
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Supplementary Figure 1 - Correlation of PLOD3 with APP activity (upper panel) and amyloid fiber formation 790 
(lower panel) for each cohort and each region.  791 
DLPFC: dorsolateral prefrontal cortex; STG: superior temporal gyrus; PHG: parahippocampal gyrus; IFG: 792 
inferior frontal gyrus; FP: frontal pole; TCX: temporal cortex; CBE: cerebellum.  793 
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Supplementary Figure 2 - ECM activity is strongly associated with inflammatory cytokines. 794 
A Enrichment of pathways involving the immune system in AD with GSEA (FDR < 5%). Forest plots shown 795 
below each enrichment plot indicate Log2 fold change for each pathway in each cohort and each tissue. 796 
B Pathways significantly associated with ECM activity obtained by applying AES-PCA for each cohort and 797 
region. 798 
DLPFC: dorsolateral prefrontal cortex; STG: superior temporal gyrus; PHG: parahippocampal gyrus; IFG: 799 
inferior frontal gyrus; FP: frontal pole; TCX: temporal cortex; CBE: cerebellum.  800 
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Supplementary Figure 3 - COL4A5 ligand is involved in the regulatory cascade of the astrocyte stress 801 
response. 802 
A Top 30 neighboring genes estimated by network propagation based on BCL6. 803 
B Gene set analysis of BCL6 neighbor genes. 804 
C Top 30 neighboring genes estimated by network propagation based on SGK1. 805 
D Gene set analysis of SGK1 neighbor genes. 806 
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