Table 7.
Key characteristics of the winning algorithms. Colored circles in Awards represent first (gold), second (silver) and third (bronze) prizes a team has won in the challenge. Abbreviations: resolution (res), binary (bin) or multiclass (mul) segmentation (seg), localization and extraction of custom ROI (ROI crop), Cross-Entropy (CE), intersection over union (IoU), centerline-boundary Dice (cb-Dice), binary topological interaction (BTI), skeleton recall (SkelRecall).
| Team | Awards | Input requiring paired modalities | Training using both modalities | Additional data used | 3D data used | Data augmentation | CoW ROI used | # Stages | Multi-stage | Architectures | Loss function | Ensemble | Topological optimizations |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NexToU |
|
✓ | ✓ | 2 | low-res bin seg + full-res seg | nnUNet; NexToU | Dice + CE + cb-Dice + BTI | ✓ | cb-Dice, BTI | ||||
| NIC-VICOROB-1 |
|
✓ | ✓ | 1 – 2 | bin seg + mul seg | nnUNet | Dice + CE | ✓ | |||||
| Organizers |
|
✓ | ✓ | ✓ | custom | 2 | ROI crop + seg | nnDetection; nnUNet | CE + IoU; Dice + CE | ✓ | |||
| refrain |
|
✓ | ✓ | custom | 2 | ROI crop + seg | nnUNet | Dice | |||||
| sjtu_eiee_2–426lab |
|
✓ | ✓ | custom | 2 | ROI crop + seg | nnUNet | Dice + CE | |||||
| UW |
|
✓ | ✓ | 1 | nnUNet | Dice + CE + TopK | ✓ | ||||||
| WilliWillsWissen |
|
✓ | ✓ | ✓ | 1 | nnUNet | Dice + CE + clDice + SkelRecall | ✓ | clDice, skeleton recall |