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ABSTRACT  36 

 37 

Glioblastomas (GBM) are lethal central nervous system cancers associated with tumor and systemic 38 

immunosuppression. Heterogeneous monocyte myeloid-derived suppressor cells (M-MDSC) are 39 

implicated in the altered immune response in GBM, but M-MDSC ontogeny and definitive phenotypic 40 

markers are unknown. Using single-cell transcriptomics, we revealed heterogeneity in blood M-MDSC 41 

from GBM subjects and an enrichment in a transcriptional state reminiscent of neutrophil-like 42 

monocytes (NeuMo), a newly described pathway of monopoiesis in mice. Human NeuMo gene 43 

expression and Neu-like deconvolution fraction algorithms were created to quantitate the enrichment 44 

of this transcriptional state in GBM subjects. NeuMo populations were also observed in M-MDSCs 45 

from lung and head and neck cancer subjects. Dexamethasone (DEX) and prednisone exposures 46 

increased the usage of Neu-like states, which were inversely associated with tumor purity and 47 

survival in isocitrate dehydrogenase wildtype (IDH WT) gliomas. Anti-inflammatory 48 

ZC3HA12/Regnase-1 transcripts were highly correlated with NeuMo expression in tumors and in 49 

blood M-MDSC from GBM, lung, and head and neck cancer subjects. Additional novel transcripts of 50 

immune-modulating proteins were identified. Collectively, these findings provide a framework for 51 

understanding the heterogeneity of M-MDSCs in GBM as cells with different clonal histories and may 52 

reshape approaches to study and therapeutically target these cells. 53 

  54 



 3 

INTRODUCTION  55 

 56 

The concept of an immunosuppressive network operating in the tumor microenvironment that impacts 57 

hematopoiesis and circulating immune compartments is well established across many cancer types1.   58 

The GBM immune landscape is dominated by myeloid-derived cells2. While the cancer is confined to 59 

the central nervous system, GBM patients display systemic immune defects3. Central players in this 60 

network are bone marrow-derived polymorphonuclear and mononuclear myeloid cell populations4-6. 61 

Among these are monocytes (Lineagenegative/CD33+/CD14+ cells) that lack cell surface expression of 62 

major histocompatibility complex (MHC) class II proteins (e.g., HLA-DR) and that inhibit T cell response 63 

in vitro. These cells have been widely studied and termed monocytic myeloid-derived suppressor cells 64 

(M-MDSC)7. There is strong support for the association of flow-cytometrically (FCM) defined M-MDSCs 65 

with poor survival and tumor resistance to radiation8 and immunotherapies9,10. Lack of HLA class II 66 

expression reflects monocyte dysfunction11, reduced responsiveness to microbial stimuli12, and is 67 

associated with T cell immunosuppression13. In human GBM, expansion of putative 68 

immunosuppressive myeloid cells, including M-MDSCs, has been documented14-19, and their numbers 69 

were increased in the blood of subjects exposed to the synthetic glucocorticosteroid, dexamethasone 70 

(DEX)14,20. High levels of M-MDSCs in recurrent GBM tumor tissue have been associated with poor 71 

survival17. The abundance of monocytic MDSCs has also been reported to be prognostic in infectious 72 

diseases, including bacterial sepsis21-23 and, most recently, COVID-1924,25. In the latter, FCM-measured 73 

M-MDSC frequencies, early in the course of infection, were strongly associated with disease severity 74 

and T cell suppression, indicating an essential role for M-MDSCs in the dysregulated COVID-19 75 

immune response26. Other researchers confirmed that elevated burdens of HLA-DR negative 76 

monocytes were strongly related to immunosuppression and poor COVID-19 survival27. The 77 

involvement of M-MDSCs in diverse pathological conditions, including cancer and infectious diseases, 78 

underscores the broad impact of myeloid cell populations as moderators of immune response and 79 
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outcome. These findings also highlight the substantial therapeutic opportunities that could be created 80 

by monitoring and modulating MDSC biology28-31.  81 

 82 

Despite extensive clinical support for M-MDSC as essential markers of pathology, there are still 83 

significant gaps in our understanding of the origins and phenotypic characteristics of these cells32. The 84 

ontogeny of M-MDSCs is unknown, and in most studies, definitive evidence of T cell suppression by in 85 

vitro assays is not assessed. Even when observed, the potential contributions of cell heterogeneity in 86 

bulk proliferation assays cannot be ascertained33. Thus, the M-MDSC designation has been viewed as 87 

ambiguous and self-limiting13,34. Beyond absence of HLA-DR expression, no consensus exists on 88 

specific M-MDSCs markers, although the ectoenzyme Vannin-2/VNN235,36, alarmin proteins S100A8, 89 

S100A9, and S100A1237, CXCR138, and annexin-A1 (ANXA1)39 have been proposed. The lack of 90 

specific M-MDSC markers is a barrier to both improved prognostication and the development of 91 

therapeutics to mitigate myeloid immunosuppression. In a search for "internal" markers of MDSCs, 92 

which do not rely on cell surface expression, investigators have examined altered DNA methylation40 93 

and transcriptional signatures26,41,42.    94 

 95 

Recent single-cell transcriptomic studies (scRNA-seq) have shed light on the complex landscape of the 96 

myeloid cell space and challenge the conventional linear model of monopoiesis. This model traditionally 97 

follows a progression from common myeloid progenitors (CMP) to classical monocytes through 98 

granulocyte-macrophage progenitors (GMPs), monocyte dendritic cell progenitors (MDPs), and 99 

ultimately a restricted common monocyte progenitor (cMoP)43-45. In contrast, combining scRNA-seq 100 

and lineage tracing in mice revealed two routes of monocyte differentiation that leave an imprint on 101 

mature cells43,46,47. The first ontogenetic pathway led to a neutrophil-like monocyte (Neu-like) that was 102 

proposed to arise from GMP cells, whereas the second derived from MDP cell progenitors and gave 103 

rise to a dendritic cell-like monocyte (DC-like). Other researchers have questioned the relevance of the 104 

MDP population in the production of neutrophil-like monocytes48. Gene markers of alternate 105 
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developmental pathways of human monocytes have been suggested47, and multiple scRNA-seq 106 

studies support the existence of distinct transcriptional states that resemble previously described 107 

neutrophil-like and dendritic-like murine monocytes. In a seminal study of healthy blood donors, Villani 108 

et al.49 found a novel monocyte population, cluster “Mono3”, that was distinguished from classical and 109 

non-classical subtypes. In COVID-19 subjects, and consistent with the earlier single-cell analysis49, 110 

Silvin et al.50 reported the presence of a novel monocyte cluster (cluster “hMono3”) that expressed a 111 

set of neutrophil-associated genes, including S100A8/S100A9 and colony-stimulating factor 3 receptor 112 

(CSF3R); the latter being an essential growth factor receptor for polymorphonuclear phagocytes. 113 

Mulder et al.51 assembled a comprehensive atlas of tissue and circulating mononuclear phagocytes 114 

that revealed six monocyte populations, including one with low or negative HLA-DRB1 mRNA 115 

expression (cluster #8; CD14+/S100A8/S100A9/S100A12hi) that was mapped to subjects with severe 116 

COVID-19 in a reanalysis of the Silvin et al. data50. Schulte-Schrepping et al.52 identified six monocyte 117 

populations and found one with a gene signature reminiscent of the earlier reported classical monocyte 118 

expressing neutrophilic genes (cluster 0; HLA-DRlow, S100A8/S100A9/S100A12high). Cluster 0 cells 119 

accumulated during viral infection and were sustained in subjects suffering severe but not mild COVID-120 

19 disease52. Thus, the innate immune system, mainly monocytes, is linked to the heterogeneity of the 121 

COVID-19 disease course. In systemic bacterial infection, Reyes et al.53 identified a blood CD14+ 122 

monocyte state they termed MS1, which was closely associated with sepsis in multiple cohorts. The 123 

MS1-B subcluster exhibited high S100A8/S100A12 and VNN2 expression, previously implicated as an 124 

M-MDSC markers in glioma36. In lung cancer tissue and blood, Zilionis54 described a subtype of 125 

classical monocytes (termed hbMono3: blood; hMono3: tissue) that uniquely expressed a set of 126 

neutrophil-associated genes, including S100A8/S100A9 and CSF3R. The hbMono3 transcriptional 127 

signature was associated with shorter survival times and was conserved in mouse blood and human 128 

lung tumor infiltrates. Finally, scRNA-seq analysis of GBM tumor tissues revealed five myeloid cell 129 

signatures and three (MC2–MC5, and MC7) as independent prognostic indicators of patient survival55 130 
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The ontogenic relationships among these novel monocyte-related transcriptional states across different 131 

studies or to FCM-gated M-MDSCs are poorly defined.  132 

 133 

The association of several M-MDSC features with putative Neu-like monocyte phenotypes led us to 134 

compare M-MDSC gene expression in GBM subjects with an assemblage of the aforementioned single-135 

cell mononuclear signatures and with our scRNA-seq data from isolated M-MDSC and monocytes from 136 

GBM subjects. Our results indicate the enrichment of a novel transcriptional state resembling an 137 

alternate pathway of monocyte development. Subclusters within this state were marked by potentially 138 

drug-able immunoregulatory targets, thus providing a new framework to discern the heterogeneity of 139 

M-MDSCs. 140 

 141 

RESULTS 142 

 143 

M-MDSCs from GBM subjects display differentially expressed genes.  144 

Demographic and DEX exposure data are shown in Supplementary Table 1. Differentially expressed 145 

genes (DEGs) between paired peripheral blood M-MDSC and monocyte samples using bulk RNA-seq 146 

were determined separately for GBM patients who were dexamethasone (DEX) exposed and non-147 

exposed (Fig. 1) at the time of blood draw. Some subjects classified as non-exposed had previous 148 

exposures (Supplementary Table 1). M-MDSC expressed low but detectable levels of HLA-DR and 149 

other MHC transcripts compared to paired monocytes (Supplementary Fig. 1).  The Yes-DEX samples 150 

had 422 up-regulated and 356 down-regulated genes in M-MDSCs compared to monocytes (Fig. 2a, 151 

Supplementary Table 2). The No-DEX samples had 1637 up-regulated and 1478 down-regulated 152 

genes (Fig. 2a, Supplementary Table 2). There were 667 DEGs in common between Yes-DEX and No-153 

DEX comparisons, with the No-DEX having 2448 unique DEGS and Yes-DEX having 111 unique 154 

DEGs. There were 40 overrepresented Ingenuity pathways in common to both Yes-DEX and No-DEX 155 

(Supplementary Fig. 2). 156 

Dexamethasone predominately attenuates differential gene expression in M-MDSCs  157 
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We found that differential expression in DEGs was predominately attenuated by comparing fold 158 

changes in gene expression in DEX-exposed to non-exposed subjects. That is, of the 666 DEGs with 159 

log2 fold changes (FC) in the same direction between the Yes-DEX and No-DEX groups a majority 160 

(67%) of the Yes-DEX log2-FC values for a gene were markedly lower than the No-DEX log2FC, which 161 

we term DEX attenuation. To characterize the DEX attenuation effect in DEGs, we defined the ratio of 162 

log2FCs. This statistic is simply the Yes-DEX log2-FC for a gene divided by the No-DEX log2FC for the 163 

same gene; thus, the statistic is a positive number, and a ratio between 0 and 1 indicates DEX 164 

attenuation of expression of a gene. There were 447 DEGs that exhibited DEX attenuation (Fig. 2b). 165 

The 25 DEGs with the most considerable DEX attenuation (i.e., the smallest ratio of log2FCs) are shown 166 

in Fig. 2c. To assess the chance of observing 447 genes with DEX attenuation, we derived the 167 

distribution of genes with DEX attenuation under the null hypothesis. Our observed value of 447 genes 168 

is far above the range of this distribution [216, 323], thus indicating that the number of genes with DEX 169 

attenuation is higher than expected. We performed an overrepresentation analysis using the DEX 170 

attenuated genes. We found they are enriched in Ingenuity pathways (Fig 2d) and Gene Ontology (GO) 171 

biological processes (Fig 2e) such as neutrophil degranulation and immune effector process.  An 172 

instructive example of attenuation is seen in ENTPD1, in which the DEX attenuation leads to a loss in 173 

differential expression. That is, a greater abundance of ENTPD1 transcripts in M-MDSC compared to 174 

paired monocytes in No-DEX subjects (log2FC = 0.27, FDR = 0.002) were observed, but not in Yes-175 

DEX subjects (log2FC = 0.11, FDR = 0.268), giving a ratio of log2FCs of 0.41. (Fig. 2f).  176 

Differential expression of candidate immune modulatory transcripts in GBM M-MDSCs 177 

The abundance of 56 gene transcripts in recognized immunomodulatory pathways was evaluated 178 

(Supplementary Table 3) in the M-MDSCs and monocytes.  Lower expression (compared with 179 

monocytes) of several costimulatory transcripts (CD86, LGALS9, ICOSLG, B7-H6) was observed. No 180 

evidence of significant overexpression was found (FDR>0.05) for many of the classic immune 181 

checkpoint genes (e.g., PD1, PDL1, CTLA4, LAG3, TIGIT) or proposed MDSC immunosuppressive 182 

effector genes (e.g., ARG1, IDO1, NOS2). Many had non-detectable transcript levels. Overexpressed 183 
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genes in No-DEX samples included ZC3H12A/Regnase-1, TNFAIP3, ENTPD1, , SIRPA, ADAM17 and 184 

RC3H1, whereas in Yes-DEX only ZC3H12A/Regnase-1 and TNFAIP3 were significantly 185 

overexpressed. Regnase-1 expression was examined across M-MDSCs and monocytes (Fig. 2g). M-186 

MDSCs showed the highest levels of expression, followed by monocytes from GBM patients and 187 

classical monocytes from healthy individuals. Intermediate monocytes and non-classical monocytes 188 

show the lowest levels of Regnase-1 expression. We also studied Regnase-1 expression in three 189 

datasets with paired M-MDSC and HLA-DR+ monocyte samples: GBM (this study), head and neck 190 

squamous cell cancer (HNSCC), and non-small cell lung cancer (NSCLC). Across all three, M-MDSC 191 

consistently showed higher expression of Regnase-1 (Fig. 2h). To compare the effect of change in 192 

expression, a metric called the equivalent change index (ECI) was used. The ECI of Regnase-1 for the 193 

pairwise comparisons of the three studies were greater than 0.5. Change in expression of Regnase-1 194 

between M-MDSC and monocytes was most equivalent between GBM and HNSCC (ECI=0.77) and 195 

GBM and NSCLC (ECI=0.73). 196 

Gene set enrichment analysis of scRNA-seq myeloid cell populations 197 

Seven single-cell expression reports were reviewed49-54, from which 80 signature gene sets of 198 

monocytic phagocyte populations were collated (Supplementary Table 4). The studies encompassed 199 

cells from healthy donors, COVID-19, bacterial sepsis, and lung cancer subjects. We included one 200 

study of resident and bone marrow-derived cells isolated from GBM tumor tissue55. Given their 201 

association with neutrophil-like monocytes, we noted 15 of the signature gene sets included S100A8, 202 

S100A9, S100A12, or VNN2 and the putative neutrophil-like monocyte phenotype (NeuMo). To 203 

examine the similarity of M-MDSC genes identified from our bulk RNA-seq and these signature gene 204 

sets, we conducted a gene set enrichment analysis (GSEA). The GSEA identifies which of the 80 205 

signature gene sets are enriched with up-regulated genes (i.e., positive enrichment, normalized 206 

enrichment score (NES)>0) or down-regulated genes (i.e., negative enrichment, NES<0) in M-MDSC 207 

compared to monocytes from our bulk RNA-seq data. We chose the signature gene sets with an 208 

NES>2.5 to determine which contain genes with the most highly up-regulated in M-MDSCs compared 209 
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to monocytes in bulk RNA-seq. Six gene sets and ten gene sets for the Yes-DEX and No-DEX groups, 210 

respectively, passed this threshold (Figs. 3a, 3b).  211 

Creating the neutrophil-like monocyte (NeuMo) expression scores 212 

The leading-edge genes from the GSEA for the six positively enriched gene sets in Yes-DEX 213 

(Supplementary Table 5) and ten positively enriched gene sets in No-DEX (Supplementary Table 6) 214 

were compared to find similar genes that were also defining genes of M-MDSCs across all the signature 215 

gene sets. There were 39 leading-edge genes present in a majority of the selected positively enriched 216 

gene sets in both Yes-DEX and No-DEX (Figs. 3c, 3d). The 39 in common genes were used to create 217 

a NeuMo metagene expression score (Fig. 3e, Supplementary Table 7). The NeuMo score represents 218 

the average expression in a sample across the 39 genes. We also identified an expanded NeuMo gene 219 

set by selecting genes with high correlation (R>0.7) with the 39 gene NeuMo score in monocytes and 220 

matched M-MDSCs to take advantage of the deeper sequence depth of bulk RNA sequencing. An 221 

additional 531 genes met these criteria (Supplementary Table 8), including Regnase-1 (R=0.78, Fig 222 

3f). This expanded NeuMo gene set is enriched in GO biological processes such as signal release, 223 

phagocytosis, and myeloid leukocyte migration (Fig 3g). 224 

Increased NeuMo expression scores in cancer subjects  225 

The NeuMo score was compared in paired M-MDSC and monocyte samples from three cohorts: GBM 226 

(this study), HNSCC (GSE183854), and NSCLC (GSE162353). The NeuMo score was significantly 227 

higher in M-MDSCs compared to monocytes from individuals in all three cohorts (Fig. 4a, 4b). 228 

Performing a meta-analysis, with a random-effects model, the pooled effect size was a mean difference 229 

in M-MDSC and monocytes of 1.00 (95% CI = [0.74, 1.26]) (Fig. 4b).  In a study of GBM patients, the 230 

NeuMo score was significantly higher in whole blood from GBM patients compared to non-GBM donors 231 

(Δ =0.74, p = 0.0002, Fig. 4g), even after adjustment for neutrophil levels (Δ = 0.55, p = 0.005).  232 

Enriched fractions of Neu-like monocytes in M-MDSC  233 

To provide a complementary and independent approach to evaluate neutrophil transcriptional state in 234 

M-MDSCs and monocytes, samples were deconvoluted with a semi-supervised non-negative matrix 235 
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factorization (NMF) algorithm using a guide matrix of published marker genes for Neu-like monocytes 236 

and DC-like monocytes47 (Figs. 4d, 4e, 4f). The Neu-like fraction was significantly higher in M-MDSCs 237 

than in monocytes from individuals with GBM, HNSCC, and NSCLC (Figs. 4d, 4e). Again, a meta-238 

analysis was performed, with a random-effects model that revealed a pooled effect size difference of 239 

0.36 (95% CI = [0.21, 0.52]) (Fig. 4e). The NeuMo score and Neu-like fraction were positively correlated 240 

in both M-MDSC (R=0.62) and Mono (R=0.72), however their slopes were not significantly different (p 241 

= 0.22) (Fig. 4h). 242 

Glucocorticoid exposure expands the neutrophil-like transcriptional state.  243 

The NeuMo score and Neu-like fraction were consistently increased in M-MDSC and monocytes from 244 

Yes-DEX samples (Figs 4c, 4f). Although for the NeuMo score, one sample in the No-DEX group was 245 

an outlier. This sample came from an individual who was DEX exposed 15 days prior. Thus, we also 246 

compared samples from individuals DEX exposed at blood draw (i.e., the original Yes-DEX) and those 247 

who have not been exposed to DEX in the prior month (N=4, Supplementary Table 1). The NeuMo 248 

score in this comparison was significantly higher in Yes-DEX samples (Δ = 0.46, p = 0.0002).  In a 249 

study of giant cell arteritis (GCA)57, the NeuMo scores were increased in monocytes from GCA subjects 250 

exposed to prednisone compared to monocytes from healthy individuals (Δ = 0.288, p = 0.001) and to 251 

monocytes from individuals with GCA not exposed to prednisone (Δ = 0.243, p = 0.0005) (Fig. 4i). The 252 

Neu-like fraction was also elevated in prednisone exposed subjects (Fig. 4i). 253 

M-MDSCs display canonical transcriptional and epigenetic features of monocytes.  254 

Given that M-MDSCs are enriched with neutrophil-related transcripts, we asked whether they also 255 

display canonical neutrophilic epigenetic or gene expression features. Using the lineage discriminating 256 

CpG probes that drive methylation deconvolution58, we observed that M-MDSCs clustered tightly with 257 

monocytes rather than neutrophils (Fig. 4j). CIBERSORTx deconvolution of gene expression was 258 

concordant with the DNA methylation results, indicating monocyte identity of isolated M-MDSCs in GBM 259 

subjects irrespective of DEX status. CIBERSORTx predicted all samples to have a monocyte fraction 260 

greater than 93%, and all samples had a 0% predicted neutrophil fraction (Supplementary Table 9). 261 
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 262 

Significant differences of Neu-like expression in classical, intermediate, and non-classical 263 

monocytes.  264 

Because M-MDSCs are isolated and identified through differential expression of MHC class II surface 265 

expression and conventional monocyte subtypes by their differential expression of CD14 and CD16, 266 

we estimated NeuMo scores and Neu-like fractions of classical, intermediate, and non-classical 267 

monocytes from healthy individuals (Figs 4k, 4l). M-MDSCs had the highest NeuMo scores and Neu-268 

like fractions compared to all other monocyte subtypes. Non-classical cells exhibited the lowest NeuMo 269 

scores and Neu-like fractions (p<.0001, Supplementary Table 17).  We confirmed the markedly lower 270 

NeuMo scores and Neu-like deconvolution fraction in non-classical compared to classical monocytes 271 

in an independent data set of healthy control blood donors (Supplementary Table 17)59. 272 

 273 

NeuMo scores and Regnase-1 expression are elevated in IDH WT compared with IDH MT tumors 274 

and associated with low tumor purity and poor survival.  275 

Using TCGA and CGGA data, we estimated NeuMo scores in glioma samples. We observed higher 276 

scores among IDH WT tumors compared to IDH mutant tumors (Fig. 5a). The NeuMo score was 277 

dichotomized into a high NeuMo score group and a low NeuMo score group, using a cutpoint/threshold 278 

determined in the TCGA data only. Among all grades and mutation groups of glioma, a high NeuMo 279 

score was associated with shorter survival in the TCGA (HR = 5.18, 95% CI = [3.99, 6.72], Fig. 5b). 280 

The CGGA was used as a validation set, and among all grades and mutation groups of glioma, we also 281 

saw a high NeuMo score was associated with shorter survival (HR = 2.14, 95% CI = [1.75, 2.62], Fig. 282 

5b). In a similar analysis, using only IDH WT tumors, a high NeuMo score was associated with worse 283 

survival in both the TCGA (HR = 1.93, 95% CI = [1.43, 2.62]) and the CGGA (HR = 1.37, 95% CI = 284 

[1.10, 1.70]) datasets (Fig. 5c). The TCGA also had estimates of tumor purity, which was inversely 285 

associated with NeuMo score (Fig. 5d). In multivariate analysis of all glioma samples a high NeuMo 286 

score remained significantly associated with shorter survival, when adjusted for IDH status (as a strata), 287 
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grade, and age in TCGA (HR = 1.56, 95% CI = [1.13, 2.15]). In the same model in the CGGA, a high 288 

NeuMo score remained associated with shorter survival, but was not significant (HR = 1.09, p=0.43) 289 

(Fig. 5e). In the TCGA, we also fit a model adjusting for tumor purity, however, both NeuMo score (HR 290 

= 1.413, 95% CI = [0.96, 2.07]) and tumor purity (HR = 0.41, 95% CI = [0.09, 1.82]) became not 291 

significant. This was similar in a multivariate analysis of only IDH WT tumor samples (Fig 5f). TNFAIP3 292 

and Regnase-1 expression was significantly higher in TCGA and CGGA IDH WT tumors compared to 293 

IDH mutant tumors (Supplementary Figs. 3a, 3b), and the expression of each of these two genes was 294 

correlated with the NeuMo score (Supplementary Figs. 3c, 3d). Regnase-1 was also inversely 295 

correlated with tumor purity (Supplementary Fig. 3e). In IDH WT tumors, higher Regnase-1 expression 296 

was associated with worse survival (Supplementary Fig. 3f).  297 

scRNA-seq reveals novel NeuMo and DC transcriptional states in M-MDSC from GBM subjects.  298 

We applied 10x scRNA-seq on isolated M-MDSC and paired PBMC samples from three GBM subjects. 299 

After QC and normalization, M-MDSC samples were integrated, and data from 12,411 cells was 300 

clustered. To align with two-compartment deconvolution (Neu-like, DC-like), 2-cluster models were 301 

created, which was also supported by a high average adjusted Rand index (ARI >.85). Cluster 0 302 

expression was defined with genes such as NAMPT, SAMSN1, S100A12 and S100A8, and cluster 1 303 

was defined by MTSS1, ID2, HLA-DRA, and HLA-DPA1 (Fig. 6a). We define cluster 0 and cluster 1 in 304 

this 2-state model as Neu-like (S100A8/A9) and DC-like (HLA-DR, CD74, ID1/ID2), respectively. These 305 

classifications were done based on the marker genes from each cluster, as well as creating NeuMo 306 

and DC-like gene expression module scores, which showed the mapping of cluster 0 to a Neu-like state 307 

and cluster 1 to a DC-like state (Fig. 6b). At the 2-cluster level, Neu-like and DC-like clusters were 308 

observed in approximately 70%/30% proportions. Using paired PBMC samples, data were integrated 309 

and clustered, and cell type prediction performed using Azimuth (Fig. 6c). We extracted only the 310 

CD14+/CD16- monocytes and predicted the cell type identity using the M-MDSC 2-cluster models as 311 

the references. Across a four-experiment average, the Neu-like transcriptional states (i.e., predicted 312 

cluster 0) were a lower fraction (38%) compared to the M-MDSC (68%) (Fig. 6d). The cells predicted 313 
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to be cluster 0 were also those cells with the highest NeuMo module score (Fig. 6e). In each of the 314 

three paired samples, M-MDSC Neu-like fractions were greater than CD14+ monocytes (Fig. 6f) 315 

(p<0.001).  316 

Based on ARI (>0.83), indicating the stability of 4-cluster models, we split the 2-cluster model into a 4-317 

cluster model revealing further heterogeneity and two Neu-like (GBM 4 cluster 0, GBM 4 cluster 1) and 318 

two DC-like transcriptional states (Fig. 7a).  319 

The similarity of published single--cell states with scRNA-seq GBM M-MDSC. 320 

Using the cluster marker genes of each GBM cluster (Supplementary Table 10), another GSEA with 321 

the bulk RNA-seq M-MDSC/monocyte data was performed (Supplementary Tables 11, 12). The GBM 322 

scRNA-seq marker clusters were integrated with published studies by computing the overlap 323 

coefficients for each pairwise comparison of the total 86 clusters (Supplementary Tables 13, 14, 324 

Supplementary Fig. 4). The overlap coefficient was calculated using the sets of leading-edge genes 325 

from the GSEA. The NeuMo cluster marked by S100A8/9/12 (GBM-4cluster-1) showed a greater 326 

overlap coefficient with four published monocyte clusters (Zilionis hbMono3, Reyes M1-B, Duterte-1, 327 

Mulder 8) compared to the 2-cluster model suggesting refined subcluster definition (Fig. 7b). The 328 

similarity of "GBM-4cluster-0" with published data was reduced compared to literature data suggesting 329 

GBM unique transcripts. RNA velocity estimates confirmed the similarity of mRNA processing in marker 330 

genes used to define GBM subclusters (Fig. 7c, Supplementary Fig. 5). Based on these results and 331 

published work, we propose a scheme to understand M-MDSC heterogeneity based on the putative 332 

dual lineage of human monocytes (Fig. 7d).  333 

Discussion 334 

Using the results of scRNA-seq studies in healthy and diseased subjects, we interrogated bulk RNA-335 

seq data from isolated M-MDSCs. We found a consensus transcriptional phenotype that embodies a 336 

neutrophil-like monocyte, or Neu-like, state. By using an independently derived marker gene set to 337 

deconvolute neutrophil-like monocytes, we reinforced our conclusion that M-MDSC gated cells in GBM 338 

are enriched in this transcriptional program. Finally, single-cell analyses confirmed higher Neu-like 339 
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transcriptional clusters in isolated M-MDSC in GBM subjects. Further attesting to the robust nature of 340 

these associations, we confirmed greater Neu-like expression in M-MDSC of lung and head and neck 341 

cancer subjects. While much remains to be learned about the Neu-like monocytes, we note that M-342 

MDSC displayed canonical gene expression and epigenetic marks (DNA methylation) of normal 343 

monocytes and not those of granulocytes. This argues against artifactual contamination of our M-MDSC 344 

cell isolates with neutrophils. Instead, these results indicate that a large portion of M-MDSCs are an 345 

outgrowth of an alternate Neu-like monocyte ontogenic pathway. The Neu-like and DC-like monocyte 346 

states in mice have been traced to different bone marrow progenitors (i.e., GMP and MDP, 347 

respectively)46,47. However, GMP fate-mapping and other evidence led to an alternative model wherein 348 

GMPs give rise to cMoPs and Neu-like monocytes, whereas MDP supports DC-like pools of cells48. 349 

Thus, while the existence of Neu-like and DC-like monocytes in mice is well established, the exact 350 

developmental intermediates and branching points between GMP and MDP progenitors remain to be 351 

clarified. The analogous human developmental schemes are less well studied47. 352 

The predominant enriched transcriptional clusters in human GBM M-MDSCs corresponded to 353 

previously observed mononuclear phagocyte states marked by S100A8/9/1249,51-55, which were 354 

clinically significant in severe COVID-19, bacterial sepsis, lung cancer, and GBM tissue. In contrast, 355 

negatively enriched states exhibited MHC class II, complement, and related antigen presentation 356 

transcripts and were designated DC-like. However, there was an exception to this alignment in one 357 

previously reported DC-like cluster. Our similarity matrix (Supplementary Fig. 4) showed a close 358 

relationship between our GBM Neu-like clusters with Villani et al.49 DC3 and Dutertre et al.60 cluster 359 

cMo1. Dutertre et al.60 previously noted the similarity of DC3 to their classical monocyte cMo1. They 360 

proposed that the comparison of DC3 with other DC-like cells and not with monocytes, as was done by 361 

Villani et al.49, led those researchers to designate DC3 as a dendritic cell.  Consistent with this latter 362 

interpretation, in our data, Dutertre cMo1 and Villani DC3 were significantly enriched in M-MDSC and 363 

contained many overlapping Neu-like genes.  Thus, we saw a consistent core of transcripts 364 

demarcating putative neutrophil and dendritic-like monocytes. 365 
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 366 

When juxtaposing our findings with the current classification of healthy monocytes as classical, 367 

intermediate, and non-classical based on CD14 and CD16 cell surface expression61, we observed a 368 

dramatic association of Neu-like transcription with classical versus non-classical monocytes. 369 

Depending upon the experiment, classical monocytes (CD14+CD16low) displayed approximately 25-370 

40% Neu-like and 60-75% DC-like transcriptional features, whereas non-classical monocytes 371 

(CD14lowCD16+) were predominately DC-like (i.e., 90-96%). Given that non-classical cells are thought 372 

to be derived from classical monocytes, these results suggest they arise from a distinct transcriptional 373 

subtype of DC-like cells. In M-MDSCs, the DC-like cluster was detected at lower abundance (i.e., 374 

approx. 30%) compared with paired HLA-DR+ monocytes. While still detectable in MDSC, MHC class 375 

II transcripts were expressed at significantly lower levels compared to paired HLA-DR+ monocytes, 376 

which is expected, as M-MDSCs are sorted based on their negative surface HLA-DR staining. The 377 

functional properties of DC-like M-MDSCs are uncertain. However, subcluster 3 (Fig. 7a) of these cells 378 

was marked by ANXA1, a gene implicated as a mediator of tumor immunosuppression39 and a 379 

previously proposed marker of M-MDSC.  380 

 381 

We and others have found that DEX treatments in glioma are associated with elevated M-MDSC 382 

concentrations in blood14,20. From the current study, we can add that the proportions of Neu-like clusters 383 

were increased in glucocorticoid-exposed MDSCs and paired monocytes from GBM subjects. Neu-like 384 

states represented up to 78% of M-MDSCs from GBM subjects exposed to DEX compared to only 13-385 

40% in healthy, non-glucocorticoid-exposed donor total monocytes. The influence of glucocorticoids 386 

was confirmed by the greater Neu-like fractions in monocytes from subjects with autoimmune giant cell 387 

arteritis treated with prednisone compared to untreated patients or healthy controls57.   The nature of 388 

DEX influence on differentially expressed genes that discriminated M-MDSCs from paired monocytes 389 

appeared quantitative rather than qualitative. The drug affected fold-change measurements of 390 

expression levels of M-MDSC-related genes but did not alter their identity. This was evident in the 391 
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significant overlap of gene enrichment and functional pathways in DEX-exposed and non-exposed 392 

subjects.  We use the term attenuation to describe the effect of DEX on differential gene expression. 393 

CD39/ENTPD1, which encodes ectonucleoside triphosphate diphosphohydrolase 1, the rate-limiting 394 

ectoenzyme that controls microenvironmental ATP concentration and is critical to initiate and maintain 395 

immune cell activation66, serves as an example. In non-exposed cells, ENTPD1 transcripts were 396 

significantly higher in M-MDSCs compared to paired non-exposed monocytes. However, transcript 397 

levels were increased in paired monocytes in DEX-exposed subjects. The net effect of DEX was to 398 

reduce the differential expression of the gene and loss of statistical significance.  A similar phenomenon 399 

was found for many other genes, as the drug influenced both cell populations differently. Thus, 400 

glucocorticoids as a drug class modify gene expression directly and bias the transcriptome of 401 

monocytes and M-MDSC towards a Neu-like state by altering the proportions of transcriptional states 402 

within monocyte populations. The possibility that DEX mediates the expansion of an alternate pathway 403 

of monopoiesis adds yet another dimension to the complex effects of glucocorticoids on the immune 404 

system.  405 

 406 

Myeloid cells constitute the dominant immune component of the GBM tumor microenvironment 407 

(TME)55,63,64. It is still a source of speculation as to which of the heterogeneous transcriptional states of 408 

circulating myeloid cells now identified contribute to tumor-infiltrating populations. Here, we noted the 409 

enrichment of NeuMo gene transcripts in GBM tissues55. Arguing in favor of Neu-like expression as a 410 

bridge between blood and the TME were previous results in lung cancer54 that found high concordance 411 

of the hbMono3 transcriptional state in blood with hMono3 in lung tumors54. In GBM, we discovered 412 

that hbMono3 was enriched in bulk-sequenced M-MDSC and contained many overlapping genes with 413 

scRNA-seq GBM NeuMo clusters. Genes marking the "GBM-4 cluster-1" (Fig. 7b) completely 414 

overlapped and were a proper subset of the hbMono3 gene set. An earlier scRNA-seq study55 of bone 415 

marrow--derived myeloid cells in glioma reported five specific myeloid gene signatures (MC2–MC5 and 416 

MC7) as independent prognostic indicators of glioma patient survival. The MC5 state was described as 417 
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a pro-tumorigenic macrophage with high expression of the alarmins, including S100A4. In non-DEX 418 

exposed subjects' M-MDSC, we observed enrichment of the MC4 and MC5 clusters, although S100A4 419 

was not observed. We also found NeuMo scores to be strongly associated with low tumor purity. Earlier 420 

studies showed low tumor purity reflected bone marrow-derived myeloid infiltration related to poor 421 

patient survival65. This suggests that NeuMo expression signals the myeloid contributions within the 422 

TME. In TCGA and CGGA analyses, tumor purity and NeuMo scores were associated with survival in 423 

univariate analyses. NeuMo scores achieved statistical significance in multivariate survival models of 424 

IDH WT glioma, indicating the clinical relevance of NeuMo transcriptional signatures. In TCGA data 425 

when both NeuMo scores and tumor purity were included neither remained statistically significant. 426 

 427 

To elucidate bulk-sequenced transcripts supporting M-MDSC effector functions of therapeutic import, 428 

we queried known immunoregulatory gene transcripts in M-MDSC31. Not unexpectedly, negative fold-429 

change estimates were observed for transcripts encoding costimulatory proteins. Consistent with other 430 

studies of human M-MDSC42, we did not find increased expression of arginase (ARG1) or many 431 

immunomodulatory therapeutic targets (e.g., immune checkpoints). The aforementioned ENTPD1 432 

transcripts were overexpressed in No-DEX but not in Yes-DEX subjects. ENTPD1 encodes 433 

ectonucleoside triphosphate diphosphohydrolase 1, the rate-limiting ectoenzyme that controls 434 

microenvironmental ATP concentration and is critical to initiate and maintain immune cell activation66.  435 

After considering false discovery to focus on the most generalizable immunomodulatory targets, we 436 

prioritized genes over-expressed in both DEX naïve and DEX exposed cells. Two genes meeting these 437 

criteria were Regnase-1 and TNFAIP3.  TNFAIP3 was associated with M-MDSC in HNSCC but not in 438 

NSCLC. Regnase-1 was overexpressed in both NSCLC and HNSCC as well as being associated with 439 

glioma molecular subtype, tumor purity and survival. 440 

Because Regnase-1 transcripts were not detectable in GBM scRNA-seq clusters, we could not map 441 

them to a specific subcluster. However, they were highly correlated with NeuMo gene expression 442 

(R=0.78) in bulk sequencing and, like NeuMo scores, were associated with glioma molecular subtype 443 
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and survival in TCGA and CGGA data. The differential expression of Regnase-1 in M-MDSC was not 444 

attenuated by DEX treatment even though it contains glucocorticoid receptor binding sites and 445 

cooperates with the drug in regulating inflammation56. The gene product of Regnase-I is an RNA-446 

binding endoribonuclease and deubiquitinase that plays a critical role in inflammation by targeting 447 

mRNA stem-loop structures and degrading transcripts of inflammatory cytokines (e.g., IL-6, IL-1β, 448 

ICOS)67,68. By controlling RNA stability, Regnase-1 joins a growing family of RNA binding proteins69,70, 449 

promising drug-able targets in immunity.  Multiple strategies have evolved to modify RNA binding 450 

proteins to enhance anti-cancer immunotherapies71; most have focused on T and B adoptive cell 451 

therapies72-74. Targeting myeloid populations in the CNS has received less attention. However, the 452 

antisense-mediated loss of Regnase-1 function in brain microglial cells prevented neuroinflammation 453 

and neuronal damage75. Intracranial delivery of antisense oligonucleotides targeting stem-loops in 454 

Regnase-1 mRNA achieved clinical benefit in mouse experimental autoimmune encephalitis (EAE). 455 

Modulating Regnase-1 in EAE suppressed proinflammatory cytokines, prevented bone marrow-derived 456 

myeloid cell recruitment, and modified resident microglia76. The mucosal-associated lymphoid tissue 457 

gene (MALT1), a negative regulator of Regnase-1 and other RNA binding proteins, was shown to 458 

regulate glioma cell survival77. Another potential drug-able target, identified as a NeuMo "GBM-4cluster-459 

0" marker, was nicotinamide phosphoribosyl transferase (NAMPT)78. NAMPT is an active area of small 460 

molecule drug development79. The NAMPT gene product has been implicated in mobilizing MDSCs78 461 

and targeting the degradation of NAMPT-augmented antitumor immunity in an animal model80. 462 

Transcripts of other immune-modulating genes (PELI181, ANXA182, MAFB83) were identified as GBM 463 

subcluster markers.   464 

  465 

The resemblance of the neu-like monocyte state to MDSCs was alluded to recently47,84, but the 466 

implications of these observations have not been explored in human glioma. Our results indicate that 467 

the concept of a dual ontogeny of human monocytes and M-MDSC may be helpful in GBM and 468 
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provide a conceptual framework for understanding the heterogeneity of these cells that has eluded 469 

investigators. This may have implications in other malignancies, including lung and head and neck 470 

cancer. Even broader applications are suggested by the similarity of M-MDSC transcriptional states 471 

with those observed in COVID-19 and bacterial sepsis. Our results help elucidate the heterogeneity of 472 

the M-MDSC transcriptome and support a novel hypothesis that M-MDSCs are at least partly derived 473 

from a newly described monocyte development pathway associated with cancer, severe infection, 474 

and glucocorticoid exposure.  475 

 476 

METHODS  477 

Patient and control samples. Monocytes and M-MDSC were isolated from the UCSF Immune Profiles 478 

Study (IPS) volunteers, a prospective neurosurgery and neuro-oncology clinic-based collection of blood 479 

samples, imaging, and other clinical data from adult glioma patients. All studies were approved by the 480 

Institutional Review Board of the University of California, San Francisco, Human Research Protection 481 

Program in the Office of Ethics and Compliance under UCSF Federal-wide Assurance 00000068 and 482 

met all relevant ethical regulations. Informed consent was obtained from all study participants. 483 

Presurgery blood samples were typically taken the day before surgery; none were obtained during or 484 

after exposure to anesthesia. Blood samples were transferred the same day as drawn for fluorescence 485 

activated cell sorting (FACS) solation and bulk and scRNA studies. We collected a questionnaire during 486 

blood draws to document daily/cumulative DEX exposure. We designated GBM according to the WHO 487 

2021 classification as IDH wildtype grade 4 astrocytoma.  488 

FACS isolation of M-MDSCs and HLA-DR+ monocytes. Fresh anticoagulated blood was processed 489 

within 24 hours. Blood mononuclear cells were isolated with 1.077 Histopaque gradients, stained with 490 

a cocktail of fluorescently labeled antibodies (CD3, CD56, CD19, CD14, CD11b, CD16, HLA-DR, 491 

CD33, CD66b and CD1520 (Supplementary Fig. 6, Supplementary Table 18), treated with 492 

PE/Cyanine7 Streptavidin and resuspended at 1:5000 dilution of SYTOXTM Green. Cells were then 493 

run directly on a BD FACSAriaTM Fusion cell sorter. Forward scatter hi CD3- CD56- CD66b- Side 494 

scatter low CD11b+ CD33+ CD14+ CD15- monocytes were gated and plotted for HLA-DR 495 
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expression. CD3 HLA-DR- neg cells and CD19 HLA-DR+ positive B cells were used to set the sorting 496 

gate for M-MDSC cells lacking HLA-DR expression (i.e., HLA-DRneg/low). HLA-DRhigh cells (normal 497 

monocytes) were collected from the same individuals. In some subjects, the HLA--positive CD14 498 

monocytes were collected as two fractions representing the uppermost 20% in HLA-DR expression 499 

versus the bottom 80% yielding HLApos and HLA-DRhi fractions. The purity of isolates was checked 500 

using CIBERsort expression and a high-definition immune cell methylation deconvolution method58. 501 

To compare with conventional monocyte designations, classical, intermediate, and non-classical 502 

monocyte subtypes were isolated from 8 healthy subjects (1:1 male: female) using a combination of 503 

MACS (magnetic-activated cell sorting) and FACS. Briefly, leukoreduction system chambers were 504 

obtained and from the local blood donation center, back-flushed, and PBMCs were collected by 505 

Ficoll-Paque PLUS (Cytiva 17-440-02) gradient.  Samples were enriched for monocytes using pan-506 

monocyte MACS negative selection (Miltenyi kit #130-096-537) to deplete the bulk of unwanted 507 

cells.  The resulting pan-monocyte enriched cells were fluorescently labeled and cell sorted into 508 

monocyte sub-populations:  classical (CD14++, CD16-, HLA-DRlow), intermediate (CD14+, CD16++, 509 

CD36+, CCR2+) and two non-classical subsets (SLAN+:  CD14++, CD16+, HLA-DR+, SLAN+ 510 

CD14++, CD16+, HLA-DR+, SLAN-, CD36low/-, CCR2low) [See Supplementary Table 18 for antibody 511 

details]. The purity of isolated cells was 98% for classical, 71% for intermediate, and 95% for both 512 

SLAN – and SLAN + non-classical monocytes. All isolated cell pellets were stored at -80oC until DNA 513 

methylation or bulk RNA seq analyses. 514 

DNA and RNA isolation. Total RNA and genomic DNA were isolated from 200-500 X 105 monocytes 515 

or M-MDSCs using the AllPrep DNA/ RNA mini kit according to the manufacturer's instructions 516 

(Qiagen). RNA quality was assessed by bioanalysis (Agilent), with all samples having RNA integrity 517 

numbers > 9. Total RNA and genomic DNA concentrations were determined by Qubit® 2.0 Fluorometer 518 

(Life Technologies, Carlsbad, CA, USA).  519 

DNA methylation deconvolution. DNAm preprocessing and cell deconvolution was performed as 520 

described58. Data from M-MDSC and monocytes from glioma subjects were combined with monocyte 521 
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(N=5) and neutrophil (N=6) data from healthy subjects downloaded from the Flow.Sorted.Blood.EPIC 522 

Bioconductor package in R . The combined data were subset to CpG sites that define neutrophil and 523 

monocytes in cell mixtures.  A heatmap was used to visualize these cell types' methylation status at 524 

monocytes and neutrophils' canonical epigenetic features. 525 

RNA extraction and stranded RNA-seq library preparation. RNA samples (200 ng total RNA) that 526 

passed quality checks were used as input to KAPA RNA Hyperprep with RiboErase (Roche) library 527 

kits. Briefly, ribosomal RNA was depleted with RNase H and mRNA was enriched via polyA selection 528 

from input total RNA. Enriched mRNA was then fragmented, followed by first-strand cDNA synthesis 529 

with random priming and second-strand cDNA synthesis with dUTP. The 3′ adenylates were added to 530 

the double-stranded cDNA, followed by adaptor ligation and second--strand removal and amplification. 531 

Libraries were sequenced using the Illumina HiSeq2500 instrument (Illumina) to generate paired--end 532 

reads (2 x 100). The sequencing depth was approximately 40 million reads per sample, and an average 533 

of 14,000 detected genes.  534 

RNA sequencing data pre-processing. Sequence read quality was assessed with FastQC (v0.11.8; 535 

http://www.bioinformatics.babraham.ac.uk/ projects/fastqc/). Reads were mapped, and transcript 536 

abundance was quantified at the gene level using RSEM (v1.3.1) with the bowtie2 aligner (v2.3.5.1) 537 

and the UCSC hg38 human reference assembly.   538 

Differential expression analysis. Differential gene expression analysis used the Bioconductor 539 

package edgeR (v3.36.0). Genes with low expression across all libraries were removed from the 540 

analysis, keeping only genes that expressed more than one count per million (CPM) in more than 3 541 

samples.  Paired M-MDSC and monocyte samples from patients taking DEX at blood draw  (Yes-DEX, 542 

N=6) and not taking DEX at blood draw  (No-DEX, N=12) were tested separately. The quasi-likelihood 543 

negative binomial generalized log-linear model was used to test for differential expression between M-544 

MDSC and monocyte samples, considering their paired nature. The magnitude of the difference was 545 

calculated as the log2 transformed fold-changes of M-MDSC vs. monocyte. Differentially expressed 546 

genes were determined using a Benjamini-Hochberg false discovery rate (FDR) < 0.05. 547 
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DEX Attenuation. To identify common differentially expressed genes (DEGs) between M-MDSCs and 548 

monocytes in the presence or absence of DEX, we compared the log2 fold-changes (FC) of DEGs in 549 

both groups. We found 666 genes differentially expressed in the same direction in both groups. The 550 

ratios of the log2-FC for each common gene pair between the Yes/No DEX groups were calculated. If 551 

the ratio was less than 1, the gene was considered to have undergone DEX attenuation. Conversely, if 552 

the ratio was greater than 1, the gene was deemed to have undergone DEX potentiation. To assess 553 

whether the number of genes with DEX attenuation was significant, a null distribution was created by 554 

randomly sampling 666 genes from a set of ~13000 genes with log2-FC in the same direction, 555 

computing their Yes-DEX to No-DEX ratio of log2-FC and counting the number of ratios less than 1. 556 

This process was repeated 100,000 times, and the resulting distribution of the ratios less than 1 was 557 

compared to the observed number of ratios less than 1. 558 

Pathway Analysis of DEGs and DEX attenuated genes. Pathway analysis was performed for the 559 

Yes-DEX DEGs, No-DEX DEGs, and DEX attenuated genes. The Overrepresentation analysis (ORA) 560 

method was used with QIAGEN Ingenuity Pathway Analysis (IPA) and the Gene Ontology (GO) 561 

biological processes with the enrichGO function in the clusterProfiler R package. To simplify the output 562 

by removing redundant enriched GO terms, the simplify function in the clusterProfiler R package was 563 

used. An IPA Canonical Pathway or GO biological process was considered significantly over-564 

represented if the p-value< 0.05.  565 

Identifying scRNA-seq studies. A literature review was conducted to identify single-cell RNA-566 

sequencing (scRNA-seq) studies in which myeloid cell populations in inflammatory conditions/diseases 567 

were defined. Studies were included if the list of cluster-specific marker genes for each myeloid cell 568 

population was easily accessible and interpretable (Supplementary Table 4).  569 

Gene set enrichment analysis. A gene set enrichment analysis was conducted using log2-FC values 570 

from the differential expression analysis and the myeloid cell population marker genes from scRNA-571 

seq studies with the WebGestalt online tool (http://www.webgestalt.org/). Each cell-specific cluster's list 572 

of marker genes was treated as its own gene set (uploaded under "Function Database" on WebGestalt), 573 
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and the log2FC values for every gene tested for differential expression were input as the gene list 574 

(uploaded under "Gene List" on WebGestalt). Yes-DEX and No-DEX genes were tested separately. 575 

The output is an enrichment score indicating whether each gene set (i.e., cell-specific marker genes) 576 

is enriched with up-regulated or down-regulated genes in M-MDSCs compared to monocytes. 577 

NeuMo gene expression score. For the No-DEX and Yes-DEX groups, gene sets with enrichment of 578 

up-regulated genes in M-MDSCs were identified (normalized enrichment score ≥ 2.5 and FDR ≤ 0.05). 579 

These gene sets' leading-edge genes were compared to find genes in most gene sets (a gene was in 580 

≥50% of the enriched gene sets). Thirty-nine genes were found at the intersection between the No-581 

DEX and Yes-DEX groups (N=39 genes). This intersection of genes is the basis of the NeuMo score. 582 

The NeuMo score is the average log2 counts per million (CPM) of those 39 genes. 583 

Pathway analysis of NeuMo genes. To identify canonical signaling pathways and biological 584 

processes from the genes that make up the NeuMo score, the set of NeuMo genes was expanded. The 585 

enlarged set included genes whose expression correlated positively with the NeuMo score at a Pearson 586 

correlation coefficient of 0.7 or higher. Overrepresentation analysis (ORA) was performed using the 587 

Gene Ontology (GO) biological processes with the enrichGO function in the clusterProfiler R package. 588 

To simplify the output by removing redundant enriched GO terms, the simplify function in the 589 

clusterProfiler R package was used. A GO biological process was considered significantly over-590 

represented if the p-value< 0.05. 591 

External datasets for assessing NeuMo score. Three publicly available datasets from the Gene 592 

Expression Omnibus (Supplementary Table 15) containing bulk RNA-seq were used to assess the 593 

NeuMo scores for isolated M-MDSCs and monocytes. An HNSCC (GSE183854) dataset that has RNA-594 

seq : for five isolated M-MDSCs from HNSCC patients and five isolated monocytes from HNSCC 595 

patients. An NSCLC (GSE162353) dataset that has RNA-seq for 3 isolated monocytes, and 3 isolated 596 

M-MDSC samples from NSCLC patients. A giant cell arteritis dataset (GSE201753) that has RNA-seq 597 

for 29 isolated monocytes from healthy individuals, 33 isolated monocytes from individuals in remission 598 

treated with prednisone, and 29 isolated monocytes from individuals in remission not treated with 599 
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prednisone. A dataset with bulk RNA-seq in whole blood from patients with glioblastoma (GBM) from 600 

Qi et al. was also utilized85. This dataset includes RNA-seq in whole blood from 10 GBM patients and 601 

12 non-GBM donors. To assess the NeuMo score in a dataset with bulk RNA-seq in tumor tissue from 602 

patients with glioma, the publicly available data from The Cancer Genome Atlas (TCGA) and the 603 

Chinese Glioma Genome Atlas (CGGA) were used. For TCGA, the counts files for the GBM and LGG 604 

projects were downloaded using the GDC data portal. The log2(CPM) values were calculated from 605 

count data. This dataset includes RNA-seq for 702 tumor samples, of which 684 have IDH mutation 606 

status and survival data available and were used for downstream analysis. For the CGGA, two datasets 607 

were downloaded: the read counts from mRNAseq_693 (batch 1) and mRNAseq_325 (batch 2). The 608 

two-count matrices were combined, and the log2(CPM) values were calculated. Batch correction was 609 

conducted using the ComBat function in the sva Bioconductor package. The covariate for tumor grade 610 

(2, 3, or 4) was included in the batch correction. This dataset contains RNA-seq for 1013 tumor 611 

samples, of which 885 have IDH mutation status available and are used for downstream analysis. 612 

Semi-supervised NMF deconvolution of Neu-like and DC-like monocytes. A semi-supervised non-613 

negative matrix factorization (NMF) deconvolution algorithm called NITUMID was used to deconvolute 614 

M-MDSC and monocyte RNA-seq samples from GBM (this study), HNSCC (GSE183854), NSCLC 615 

(GSE162353), GCA and healthy (GSE201753) donors. Here, the semi-supervised NMF algorithm 616 

makes use of 14 marker genes to guide the factorization/deconvolution process and deconvolute a 617 

sample into Neu-like and DC-like fractions. The guide matrix for input into the NITUMID method was 618 

created by coding genes based on their expression level in a cell. A value of "1" indicates the gene is 619 

highly expressed in a cell; and a value of "0" indicates the gene is not expressed in the cell. Marker 620 

genes were selected from two cell types identified in Weinreb et al.47 (Neu-like and DC-like monocytes) 621 

using a log2 (fold-enrichment) cutoff of 0.58. Genes that pass this cutoff for the Neu-like monocytes are 622 

given 1 and 0 for the DC-like monocyte cell type. And vice-versa for genes that pass the cutoff for DC-623 

like monocytes (Supplementary Table 16). The NITUMID algorithm was run using the R package on 624 

GitHub (https://github.com/tdw1221/NITUMID).  625 

https://github.com/tdw1221/NITUMID
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Assessment of NeuMo score in isolated monocytes and M-MDSCs. The NeuMo score was 626 

calculated for our M-MDSCs and monocytes isolated from glioma patients, as well as for all the samples 627 

in the HNSCC (GSE183854), NSCLC (GSE162353), and GCA (GSE201753) datasets. To obtain a 628 

pooled estimate of the mean difference in NeuMo score between M-MDSCs and monocytes, a meta-629 

analysis with a fixed-effect model was performed with the glioma, HNSCC, and NSCLC data using the 630 

metacont function in the meta R package. Differences in NeuMo score between Yes-DEX and No-DEX 631 

monocytes and M-MDSCs were measured using Wilcoxon rank sum tests. Differences in NeuMo score 632 

between prednisone--exposed monocytes from healthy and GCA donors were measured using 633 

Wilcoxon rank sum tests. A p-value<0.05 was considered statistically significant. 634 

Assessment of NeuMo score in whole blood. NeuMo score was calculated for whole blood samples 635 

from a GBM and non-GBM donor study. First, CIBERSORTx with the LM22 signature matrix was run 636 

in absolute mode to deconvolute the whole blood samples. Then, a linear regression model was fitted, 637 

modeling the NeuMo score as the dependent variable and condition (GBM or non-GBM) and neutrophil 638 

level (obtained by CIBERSORTx) as the independent variables. 639 

Assessment of Neu-like deconvolution fraction in isolated monocytes and M-MDSCs. From the 640 

semi-supervised NMF deconvolution, the Neu-like fraction was compared across the GBM, HNSCC, 641 

NSCLC, and GCA datasets in the same way as the NeuMo score was assessed. 642 

Survival analysis in tumor tissue. Using all glioma samples, the NeuMo score was dichotomized into 643 

a high NeuMo score group and a low NeuMo score group. The TCGA samples (N=684) served as the 644 

training set, and the R package partDSA was used to determine the cutpoint at which the NeuMo score 645 

was partitioned. Individuals with a NeuMo score above the cutpoint fall into the high NeuMo score 646 

partition, and those below are in the low NeuMo score partition. The same cutpoint was applied to the 647 

CGGA samples (N=885), serving as a validation set. Kaplan-Meier survival curves and log-rank tests 648 

were used to visualize and determine the association between the NeuMo score group and survival. 649 

To conduct a multivariate analysis, Cox proportional-hazards (PH) models were fit independently to the 650 

TCGA and CGGA for the NeuMo score group and adjusted for IDH mutation status, tumor purity 651 
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(measured with consensus purity estimation (CPE) method is only available for the TCGA), age, and 652 

grade. Models were fit in R using the coxph function. The PH assumption was tested using Schoenfeld 653 

residuals. Since IDH status violated the PH assumption, it was fit as a stratum in the model. Both the 654 

TCGA and CGGA data were subset to only IDH WT tumors, and in the same way, the NeuMo score 655 

was dichotomized into groups using the TCGA as the training set and the CGGA as the validation set. 656 

Cox PH models were fit to the TCGA IDH WT and CGGA ID WT data with the NeuMo score group as 657 

a predictor and adjusted for tumor purity (only TCGA), age, and grade. A p-value < 0.05 was statistically 658 

significant.  659 

Single-cell RNA sequencing from GBM subjects' PBMCs and M-MDSCs. Cell sorting and library 660 

creation were performed by the UCSF Flow Cytometry and Genomics CoLabs, respectively (San 661 

Francisco, CA). PBMCs and FACS-sorted M-MDSC populations were normalized to 1000 cells/ul 662 

suspensions in 0.04%BSA/1x PBS. Twenty-five thousand cells were loaded onto the 10X Chromium 663 

System (10X genomics) and encapsulated using the Standard Chip. Single-cell Dual index 3'v3.1 Gene 664 

Expression Libraries were generated according to the manufacturer's instructions. Completed libraries 665 

were sequenced on the NovaSeq 6000 S4 (Illumina) platform at a targeted median read depth of 20,000 666 

paired reads per cell. Raw sequencing reads were aligned to GRCh38 (human) using Cell Ranger 667 

(v.7.1.0) software with default parameters. Subsequently, genes were quantified as UMI counts using 668 

Cell Ranger and initially visualized using the Cell Ranger web summary. Downstream analysis was 669 

performed on filtered feature counts generated by Cell Ranger. Low-quality single cells containing 670 

<2000 or >5000 expressed genes or <0.8 log10(Genes/UMI) or >5% mitochondrial transcripts were 671 

removed. Additionally, genes expressed in fewer than 10 single cells were removed. We identified and 672 

removed potential single-cell doublets using scDblFinder (v1.8.0) with the default settings. Using Seurat 673 

(v4.1.3), each sample was normalized using the "LogNormalize" method, and the 2000 top variable 674 

features were chosen using the "vst" method. Then, M-MDSC and PBMC samples were integrated 675 

using Seurat's (v4.1.3) integration methods. For the M-MDSC samples, only cells predicted to be 676 

CD14+ monocytes by the Azimuth program were kept for final clustering. The final clustering solution 677 
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for M-MDSC samples was determined by finding the optimal number of principal components (nPCs) 678 

and resolution were determined by assessing the robustness/stability of clusters. Briefly, for the nPCs 679 

chosen by the elbow method and for a specific/given resolution, 1) run the initial clustering solution at 680 

a set random seed, 2) run clustering 100 more times at that resolution, each time, with a different 681 

random seed, 3) compare clustering solution labels between original clustering from step 1 to all 682 

subsequent iterations by computing the adjusted Rand index (ARI) 4) repeat steps 1-3 by increasing 683 

the resolution by 0.05. Clustering was performed with the Louvain algorithm using resolutions from 0.1 684 

to 0.5, and the optimal resolution was chosen to be the one where the ARI began to decrease. For M-685 

MDSCs, the final clustering was defined with a resolution of 0.15, resulting in 2 clusters.  686 

Sub-clustering of M-MDSC. The ARI also indicated the stability of 4 clusters, so the FindSubCluster 687 

function in Seurat was used to split the 2-cluster M-MDSC model into smaller clusters. Each original 688 

cluster was divided into two smaller clusters with this function, resulting in a 4-cluster M-MDSC model.  689 

Differential expression analysis of M-MDSC clusters. Differentially expressed genes (i.e., markers 690 

of clusters) were determined for each cell cluster by a Wilcoxon rank-sum test that compares cells in a 691 

cluster to all other cells. Marker genes were defined to be expressed in at least 25% of cells, have a 692 

log2FC > 0.25, and an adjusted p-value<0.05. For visualization, UMAP projections were computed on 693 

that dataset's optimal number of PCs. This was done independently for the 2-cluster and 4-cluster M-694 

MDSC models. 695 

Gene expression module scores. The AddModuleScore function in Seurat was used to compute a 696 

NeuMo and DC-like gene expression module score. For the NeuMo module, the 39 NeuMo genes were 697 

used as features for the expression program. For the DC-like module, the 8 DC-like genes used in NMF 698 

deconvolution were used as features for the expression program. 699 

Transfer Labels to predict clusters in PBMC CD14 Monocytes. The PBMC data were clustered 700 

using the Seurat default settings. The data were subset to only CD14+ monocytes indicated by Azimuth. 701 
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This CD14+ monocyte data was re-clustered using the method described above for M-MDSCs. Seurat's 702 

transfer label’s method was used to determine the cell type identity of the CD14+ monocyte cells, 703 

according to our M-MDSC 2-cluster model. The reference group was the 2-cluster model built in the M-704 

MDSC data, and the query group was the CD14+ monocytes from PBMC. 705 

Overlap coefficient of single-cell gene sets. The GBM M-MDSC 4-cluster and 2-cluster gene sets 706 

were subjected to a GSEA as described earlier when analyzing the 80 published single-cell gene sets. 707 

The leading-edge genes from the GSEA from all 86 gene sets were used to compute the overlap 708 

coefficient for all pairwise comparisons.  709 

RNA Velocity. The velocyto and scVelo pipelines were used for RNA velocity analysis. Analysis was 710 

done in Python (v.3.9.6). 711 

Data Availability: Methylation and phenotype data used in this manuscript are available through 712 

dbGaP--controlled access. Methylation and phenotype data from the Immune Profiles Study are 713 

available through dbGaP Study Accession phs002998.v1.p1 714 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002998.v1.p1). Source data 715 

files have been provided with this manuscript.  716 
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Figure 1. Graphical summary of study design to identify M-MDSC differentially expressed genes 984 

and their associations with novel myeloid transcriptional states and clinical outcomes. 985 
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Figure 2: Bulk RNA-seq analyses of M-MDSC and paired HLA-DR+ monocytes (Mono) from GBM, 986 

head and neck and lung cancer subjects. A. Volcano plots visualizing the results of the differential 987 

expression analysis for Yes-DEX (N=3) and No-DEX (N=6) paired M-MDSC and Mono. The horizontal 988 

black line represents a p-value of 0.05.  Each point represents a gene. Red indicates the up-regulation 989 

of the gene in M-MDSC compared to monocytes (log2FC>0, FDR<0.05) and blue indicates down-990 

regulation (log2FC<0, FDR<0.05). B. Histogram showing the distribution of the ratio of log2FC in the 991 

666 DEGs in common and regulated in the same direction between Yes-DEX and No-DEX. C. Bar plot 992 

of the 25 DEGs with the most considerable DEX mediated attenuation. The x-axis is the log2FC from 993 

the differential expression test. A teal bar indicates the Yes-DEX group, and a light blue bar indicates 994 

the No-DEX group. D and E. Dot plot showing top 15 significant Ingenuity Pathways (D) and GO 995 

Biological Processes (E) from an over-representation analysis of DEX attenuated genes. The x-axis is 996 

the number of DEX attenuated genes that overlap with the pathway or GO term. The size of the dot 997 

reflects the magnitude of the overlap (i.e., Number of Overlapping Genes/Total Number of Genes in 998 

Pathway), while the color represents significance from the over-representation test. F. Boxplots of 999 

ENTPD1 in paired M-MDSC (purple) and Mono (red) in No-DEX and Yes-DEX groups. The y-axis is 000 

counts per million (CPM). Black lines connect M-MDSC and Mono from the same individual. The log2FC 001 

and FDR values are from the differential expression test in A. G. Boxplots of ZC3H12A/Regnase-1 002 

expression in M-MDSC (purple, N=9), Mono (red, N=10), Mono-HLA(hi) (dark green, N=8) from GBM 003 

patients and Classical Mono (brown, N=8), Intermediate Mono (pink, N=8), SLAN- non-classical Mono 004 

(light green, N=8) and SLAN+ non-classical Mono (yellow, N=8) from healthy individuals. The y-axis is 005 

in CPM. H. Boxplots of ZC3H12A/Regnase-1 in paired M-MDSC (purple) and Mono (red) across 3 006 

studies: GBM (this study), HNSCC (GSE183854), and NSCLC (GSE162353). Black lines connect 007 

paired samples. The y-axis is in CPM.  008 
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Figure 3: Identification of genes enriched in M-MDSCs and creating a NeuMo expression score 010 

that includes overlapping genes in DEX exposed and non-exposed subjects. A and B. Gene Set 011 

Enrichment Analysis (GSEA) results for Yes-DEX (A) and No-DEX (B) samples. The y-axis is the name 012 

of the scRNA-seq cluster derived from the literature. The x-axis is the normalized enrichment score 013 

(NES). The bar is colored in orange for "Positive Enrichment" (FDR<0.05, NES>0). This indicates a 014 

scRNA-seq cluster is overrepresented at the genes up-regulated in M-MDSC compared to Mono. The 015 

bar is blue for "Negative Enrichment" (FDR<0.05, NES<0). This indicates a scRNA-seq cluster is 016 

overrepresented at the down-regulated genes in M-MDSC compared to Mono (i.e., up-regulated in 017 

Mono). The bar is colored in grey if FDR>0.05. The red dashed line is at a NES=2.5. C and D. 018 

Heatmaps of the most common leading-edge genes among the 6 scRNA-seq literature-derived clusters 019 

from the Yes-DEX GSEA (C) and the 10 scRNA-seq literature-derived clusters from the No-DEX GSEA 020 

(D), genes on the y-axes and scRNA-seq clusters on the x-axes. These 6 and 10 gene sets were 021 

chosen due to their high NES (>2.5) and low FDR (<0.05). Red boxes denote genes found to be in the 022 

leading-edge for that cluster from the GSEA, and grey if not. E. A Venn diagram of the overlap between 023 

Yes-DEX, No-DEX leading-edge genes. F. Scatter plot of NeuMo score versus ZC3H12A expression 024 

in M-MDSC, Mono, and Mono-HLA (hi) from GBM samples, where “R” is the Pearson correlation 025 

coefficient, and the black line is the best fit line. G. Dot plot showing the results of a pathway enrichment 026 

analysis using Gene Ontology (GO) Biological Processes terms for the NeuMo (39) and NeuMo-027 

correlated genes (531). The y-axis contains the name of the GO term and the x-axis, the number of 028 

input genes NeuMo and NeuMo-correlated genes that overlap with the GO term. The size of the dot 029 

reflects the magnitude of the overlap (i.e., Number of Overlapping Genes/Total Number of Genes in 030 

Pathway), while the color represents significance from the over-representation test. 031 
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Figure 4: Assessment of the NeuMo score and Neu-like monocyte deconvolution fraction in bulk 033 

RNA-seq cancer and glucocorticoid exposure datasets. A and D.  NeuMo score (A) and Neu-like 034 

deconvolution fraction (D) in paired M-MDSC (purple) and monocytes (red) from GBM, HNSCC and 035 

NSCLC. B and E. Meta-analysis of NeuMo score (B) and Neu-like fraction (E). The points represent 036 

the mean difference between M-MDSC and monocytes, with the stippled lines (or diamond width) 037 

representing the 95% CI and the box size representing the sample size. C and F. NeuMo scores (C) 038 

and Neu-like fractions (F) split by DEX status in monocytes, HLA-DR high monocytes and M-MDSC. 039 

G. NeuMo score in whole blood from GBM (N=10) and non-GBM (N=12) individuals. H. Scatter plot of 040 

NeuMo score and Neu-like fraction. “R” depicts Pearson's correlation coefficient. I. NeuMo score and 041 

Neu-like fractions in monocytes from prednisone treated giant cell arteritis (GCA) subjects, untreated 042 

GCA subjects, and controls57. J. Heatmap of monocyte and neutrophil lineage-discriminating CpG 043 

probes for M-MDSC from GBM (N=9), Mono from GBM (N=10) and healthy donors (N=5) and 044 

neutrophils (Neu) from healthy individuals (N=6). The colors within the heatmap represent the beta-045 

value ranging from 0 (yellow) to 1 (blue). The monocyte fraction is estimated from CIBERSORTx using 046 

expression data. A monocyte fraction was not estimated for healthy Mono or Neu (colored in white). K. 047 

NeuMo score in M-MDSC (N=9), Mono (N=10), Mono-HLA (hi) (N=8) from GBM patients and Classical 048 

Mono (N=8), Intermediate Mono (N=8), SLAN- non-classical Mono (N=8) and SLAN+ non-classical 049 

Mono (N=8) from healthy individuals. Striped boxplots indicate sorting based on CD14 CD16 and no 050 

stripes indicate sorting based on HLA-DR. L. Average deconvolution fraction of Neu-like (orange) and 051 

DC-like (blue) cell states on bulk RNA-sequenced M-MDSC, Mono, Mono-HLA(hi) from GBM patients 052 

(this study), classical, intermediate, non-classical monocytes (SLAN- and SLAN+ were grouped 053 

together) from healthy individuals (this study), and classical, intermediate, and non-classical monocytes 054 

in another healthy individual cohort59. Error bars represent the standard error of the mean of the Neu-055 

like fraction. P-values in boxplots in C and F are based on Wilcoxon rank-sum test and in I on two-056 

sample t-test:  ns=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001 057 
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Figure 5: Association of tumor NeuMo score with glioma molecular subtype, tumor purity and 059 

survival in TCGA and CGGA. A. Boxplot of NeuMo score across tumor samples of isocitrate 060 

dehydrogenase wild type (IDH WT) (N=243 and N=418), IDH mutant (IDH MT) (N=270 and N=296), 061 

IDH MT-1p/19q codeletion (i.e. oligodendroglioma) (N=171 and N=171) from the TCGA and CGGA. P-062 

values based on a two-sample t-test: ns=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001 063 

B and C. Kaplan Meier plots showing survival probability of all glioma samples (B) and only IDH WT 064 

samples (C) in the TCGA and CGGA datasets. Groups are split into those with high (brown) or low 065 

(orange) NeuMo score for all glioma (B). Groups are split into high (dark purple) or low (light purple) 066 

NeuMo score for only IDH WT (C). P-value is based on log-rank test.  D. Scatter plot showing the 067 

inverse correlation between NeuMo score and consensus purity estimate (CPE) in the TCGA, stratified 068 

by IDH mutation status. Loess regression line shown with “r” (Spearman correlation coefficient) and 069 

associated p-value. E and F. Forest plots showing results from multivariable Cox PH models in the 070 

TCGA and CGGA – all glioma (E) (these models are also adjusted for IDH group, added as a strata in 071 

model) and for IDH WT only (F). 072 
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Figure 6: GBM scRNA-seq clusters at 2-compartment resolution and their prevalence in M-074 

MDSC and classical, intermediate and non-classical monocytes. A. Integrated and clustered M-075 

MDSC samples (N=3). The orange (cluster 0, Neu-like state) and blue (cluster 1, DC-like state) boxes 076 

represent each cluster's top 8 marker genes by log2FC. Donut plot indicates the proportion of cells in 077 

each of the two clusters. B. NeuMo and DC-like module scores for the M-MDSC integrated data. A 078 

darker purple indicates a higher score (i.e., increased expression of NeuMo-associated or DC-079 

associated genes) and a yellow color indicates a lower score. C. Integrated and clustered PBMC 080 

samples from healthy donors (N=4) with cells colored in by Azimuth cell type predictions. D. Integrated 081 

and clustered predicted CD14+ monocytes from PBMC. A cell’s cluster classification was predicted 082 

using the M-MDSC clusters in (A) as the reference. E. NeuMo module score for the CD14+ monocytes. 083 

A darker purple color indicates a higher score. F.  Donut plots comparing proportion of Neu-like and 084 

DC-like cells between M-MDSC and CD14+ monocyte samples from the same individual. The 085 

proportions are calculated by splitting the integrated M-MDSC data (A) and integrated CD14+ monocyte 086 

data (D) by individual.  087 
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Figure 7. Integrating GSEA analyses including 80 published gene sets with 4-cluster resolution 089 

GBM scRNA-seq as applied to differentially expressed genes in bulk sequenced M-MDSC. A. 090 

Sub-clustering of the M-MDSC 2-cluster model. Cluster 0 from Fig 6A is split into cluster 0 and 1. Cluster 091 

1 from Fig. 6A is divided in cluster 2 and 3. The boxes represent the top 8 marker genes by log2FC for 092 

each of the four clusters. B. Bar plots showing the overlap coefficient between Neu-like GBM single-093 

cell clusters and various Neu-like literature-derived single-cell clusters. The overlap coefficient between 094 

two clusters is computed by comparing the leading-edge genes for each cluster from the GSEA analysis 095 

with bulk RNA-seq data. GBM-2cluster-0 is cluster 0 from Fig6A. GBM-4cluster-0 and GBM-4cluster-1 096 

are cluster 0 and 1 from Fig 7A. C. UMAPs showing the RNA velocity and expression of a representative 097 

marker gene for each of the 4 clusters in A for one of the M-MDSC samples. D. Schema of M-MDSC 098 

heterogeneity.  099 
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