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1 

ABSTRACT 34 

 35 

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-36 

coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse 37 

chromatin accessibility, histone modification, and gene expression assays to discover cranial motor 38 

neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the 39 

congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN 40 

development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, 41 

identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 42 

putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic 43 

reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. 44 

Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, 45 

we achieved significant reduction in our variant search space and nominated candidate variants 46 

predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 – as well as new 47 

candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This 48 

work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable 49 

framework for nominating non-coding variants of potentially high functional impact in other Mendelian 50 

disorders. 51 

 52 

 53 
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2 

INTRODUCTION 62 

 63 

While the great majority of genetic variants associated with complex disease are common in the 64 

population and localize to non-coding sequences, less than 5% of the known Mendelian phenotype 65 

entries in OMIM have been attributed to non-coding mutations
1–4

. However, it remains unsettled the 66 

extent to which this disparity in coding:non-coding causal Mendelian variants is explained by the relative 67 

effect sizes of coding vs. non-coding variation, difficulty in deciphering the functional impact of non-68 

coding variation, and/or ascertainment due to greater number and size of exome- versus genome-69 

sequenced disease cohorts
1,5–8

. Nominating pathogenic non-coding variants in Mendelian disease 70 

remains a major challenge due to a vastly increased search space (98% of the genome) relative to coding 71 

variants. Compounding this challenge is the lack of a generalizable rubric for nominating non-coding 72 

pathogenic variants relative to the more readily interpretable molecular and biochemical constraints 73 

governing protein coding variant effects.  74 

 75 

In recognition of these challenges, large-scale functional genomics projects such as ENCODE and 76 

Roadmap Epigenomics have provided valuable and expansive genome-wide functional information 77 

across a growing array of potentially disease-relevant tissues and cell types
9,10

. Such efforts reveal that 78 

the non-coding genome is abundant with cis regulatory elements (cREs) - segments of non-coding DNA 79 

that regulate gene expression through transcription factor binding and three-dimensional physical 80 

interactions with their cognate genes. Biologically active cREs are associated with accessible chromatin, 81 

and combinations of accessible cREs vary dramatically among different cell types
11

. Therefore, 82 

understanding the chromatin accessibility landscape of cell types affected in disease is critical to 83 

identifying and interpreting disease-causing variation in the non-coding genome.  84 

 85 

Disease-relevant developmental processes are disproportionately driven by regulation of gene 86 

expression
12,13

, making congenital genetic disorders attractive candidates for non-coding etiologies. 87 

However, sampling developing human cell types remains particularly challenging, as samples are often 88 

restricted by cell location, assayable cells, invasiveness of sampling, and/or extremely narrow windows 89 

of biologically-relevant regulation of gene expression and development
14

. Thus, while fetal epigenomic 90 

reference sets are emerging for humans, samples are generally assayed at the whole-organ/tissue level 91 

and/or at later stages of development, making appropriate sampling and identification of early-born and 92 

rare cell types difficult
15

. By contrast, sample collection and marker-based enrichment in model 93 
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organisms can achieve substantial representation of disease-relevant cell types at early stages of 94 

development
16–18

.  95 

 96 

The congenital cranial dysinnervation disorders (CCDDs) are Mendelian disorders in which movement of 97 

extraocular and/or cranial musculature are limited secondary to errors in the development of cranial 98 

motor neurons (cMNs) or the growth and guidance of their axons (Figure 1a). Although a known subset 99 

of the CCDDs are caused by Mendelian protein-coding variants
19–28

, a substantial proportion of cases 100 

remain unsolved by whole exome sequencing, including pedigrees with Mendelian inheritance patterns 101 

and cases with classic phenotypic presentations lacking corresponding mutations in the expected genes 102 

(representing potential locus heterogeneity)
29

.  Moreover, most CCDD cases are sporadic or segregate in 103 

small dominant families for which non-coding variant prioritization is extremely difficult. 104 

 105 

The CCDDs represent an attractive test case for dissecting cell type-specific disorders, as defects in 106 

specific cMN populations are highly stereotyped with predictable corresponding human phenotypes
30

. 107 

By contrast, many complex and even some Mendelian diseases are not immediately attributable to an 108 

unambiguous, singular cell type of interest, making assaying appropriate cell types a major challenge
31–

109 

33
. Moreover, while sampling and identification of developing cMNs at disease-relevant timepoints is 110 

extremely difficult in developing human embryos, cMN birth, migration, axon growth/guidance, and 111 

mature anatomy/nerve branches are exquisitely conserved between humans and mice
30

. Motor neuron 112 

reporter mice permit sample collection and marker-based enrichment of cMNs at these key stages of 113 

development. Importantly, we have previously demonstrated that such mouse models helped to 114 

characterize non-coding pathogenic variants that alter gene expression in HCFP1, a disorder of facial 115 

nerve (cMN7) development
34

. Here, to comprehensively discover the repertoire of cREs underlying 116 

proper cMN development, we have generated a chromatin accessibility atlas of developing mouse cMNs 117 

and adjacent cell types. We subsequently use this atlas to reduce our candidate variant search space 118 

and ultimately interpret and nominate non-coding variants among 270 unsolved CCDD pedigrees (Figure 119 

1b, Supplementary Table 1). 120 

 121 

RESULTS 122 

 123 

Defining disease-relevant cREs in the developing cMNs 124 

 125 
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To discover disease-relevant cREs and ultimately reduce our non-coding search space for nominating 126 

candidate pathogenic CCDD variants, we generated a single cell atlas of embryonic mouse cMN 127 

chromatin accessibility. Using wildtype or transgenic mice expressing GFP under the Isl1
MN

:GFP or 128 

Hb9:GFP motor neuron reporters
35,36

 (Figure 1ai), we performed fluorescence-assisted microdissection 129 

and FACS-based enrichment of GFP-positive primary mouse embryonic oculomotor (cMN3), trochlear 130 

(cMN4), abducens (cMN6), facial (cMN7), hypoglossal (cMN12), spinal motor neurons (sMNs), and 131 

surrounding GFP-negative non-motor neuron cells (-”neg”), followed by droplet-based single cell ATAC-132 

seq (scATAC). cMN birth and development occur continuously over a period of weeks in early human 133 

embryos and days (e9.0-e12.5) in mice
34,37

. For the known CCDD genes, mRNA expression and/or 134 

observed cellular defects typically overlap key developmental timepoints e10.5 and e11.5 in mice – both 135 

for cellular identity-related transcription factor
38–42

 and axon guidance-related
22,43,44

 variants. Therefore, 136 

we captured these two embryonic timepoints for each cMN sample, reasoning that a major proportion 137 

of relevant cellular birth and initial axonal wiring would be represented at these ages
34,37

. At these 138 

stages, these cranial nuclei contain only hundreds (cMN3, 4, 6) to thousands (cMN7, 12) of motor 139 

neurons per nucleus, per embryo
43–45

. 140 

 141 

We generated scATAC data across 20 unique sample types (cMN3/4, 6, 7, 12, and sMN for GFP-positive 142 

and -negative cells, each at e10.5 and e11.5), 9 with biological replicates and 2 with technical replicates 143 

for 32 samples in total and sequenced them to high coverage (mean coverage = 48,772 reads per cell). 144 

We included GFP-negative cells to reduce uncertainty in peak calling, further increase representation 145 

from rare cell types, and capture regional-specific cell types that could harbor elements conferring non-146 

cell-autonomous effects on cMN development. To generate a high-quality set of non-coding elements, 147 

we performed stringent quality control (Extended Data Figure 1a-h, Methods). Altogether, we 148 

generated high-quality single-cell accessibility profiles for 86,089 (49,708 GFP-positive and 36,381 GFP-149 

negative) cells, in some cases achieving substantial oversampling of cranial motor neurons in the 150 

developing mouse embryo (up to 23-fold cellular coverage). Our final dataset revealed prominent signals 151 

of expected nucleosome banding, a high frac�on of reads in peaks (xf̄rip = 0.66), transcription  152 

start site enrichment, and strong concordance between biological replicates (Figure 1c, Extended Data 153 

Figure 1d-h, Supplementary Table 2). In addition to evaluating per-sample and per-cell metrics, we 154 

estimated a decrease in global accessibility over developmental time, consistent with observations in 155 

other developing cell types (βtime = 0.049, p-value < 1 x 10
-15

, linear regression, Supplementary Note 156 

1)
46,47

. 157 
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 158 

We performed bulk ATAC on a subset of microdissected and FACS-purified cMN samples to evaluate the 159 

concordance between bulk and single cell peak representation. As expected, bulk and single cell cMN 160 

ATAC peaks are highly correlated in their matching dissected cell types (Extended Data Figure 2a,b). 161 

scATAC peaks were enriched for intronic/distal annotations (relative to exonic/promoter annotations, 162 

OR = 1.9, p-value < 2.2 x 10
-16

, Fisher’s exact test) compared to bulk ATAC intronic/distal annotations, 163 

thus better capturing regions that harbor the overwhelming majority of regulatory elements (Extended 164 

Data Figure 2c)
48

. Next, to test the cellular resolution of our scATAC data, we leveraged differences in 165 

the strategies used for bulk (cMN3 without cMN4) vs. scATAC dissection (cMN3 and cMN4 combined) 166 

and performed cluster analysis on cMN3/4 samples only (ad hoc clusters C1-C20, Extended Data Figure 167 

2a,d,e). We identified significant overlap between ad hoc clusters C18 and C20 scATAC peaks with bulk 168 

cMN3 peaks. Moreover, we confirmed accessibility of known cMN3 markers in C18 and C20, and cMN4 169 

markers in C19
49,50

 (Extended Data Figure 2e). When comparing the scATAC peaks to bulk ATAC peaks in 170 

ENCODE
9
 sampled from major developing brain regions (forebrain, midbrain, hindbrain) at comparable 171 

timepoints, we observed diminished overlap for GFP-positive cMN samples relative to GFP-negative 172 

samples (Extended Data Figure 3a). Further stratifying scATAC peaks based on cell type specificity 173 

scores
51

 revealed that highly specific scATAC peaks had consistently lower bulk coverage than peaks with 174 

low specificity (Extended Data Figure 3b,c), consistent with findings that cell-type specific regulatory 175 

elements often act within small populations of cells and may be more difficult to capture and annotate 176 

with bulk methods
52,53

. 177 

 178 

To further distinguish between rare, distinct cell types, we adopted an iterative clustering strategy 179 

(Methods)
51

. We first identified 23 major clusters that correspond with “ground truth” dissected cell 180 

types based on known anatomy (Figure 1c,d; Supplementary Table 3). Overall, GFP-positive clusters 181 

demonstrated much more uniform sample membership than GFP-negative clusters, as reflected by their 182 

differences in cluster homogeneity
54

 (hgfp-positive = 0.84 vs. hgfp-negative = 0.16) and purity metrics (Figure 1d, 183 

Extended Data Figure 4a, Supplementary Table 4, Methods). Upon examining differentially accessible 184 

genes and elements through manual curation, review of the literature, and gene ontology analysis, we 185 

assigned provisional cell identities to the 23 major clusters, of which 10 clusters are cranial and 5 are 186 

spinal motor neurons based on dissection origin, and 9 are cranial and 4 are spinal motor neurons based 187 

on putative annotation (Supplementary Table 3). To further resolve the heterogeneity within clusters 188 

and to identify functionally and anatomically coherent subpopulations, we performed iterative 189 
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clustering
51

 on each major cluster and identified 132 unique subclusters (Extended Data Figure 4bi,ii). 190 

Of these, 59 have GFP-positive membership > 90%, representing highly pure motor neuron populations 191 

(Extended Data Figure 4c). We observe even more distinct anatomic/temporal membership at the 192 

subcluster level, particularly for GFP-negative samples (subcluster homogeneity hgfp-positive = 0.87 vs. hgfp-193 

negative = 0.43). These findings are consistent with highly dynamic and proliferative neurodevelopmental 194 

processes during this time period
12

. Neither major cluster nor subcluster membership was driven by 195 

experimental batch (Extended Data Figure 4d). 196 

 197 

cMN cRE functional conservation between mouse and human 198 

 199 

Common disease risk loci tend to overlap non-coding accessible chromatin in their corresponding cell 200 

types - including accessible chromatin that is more readily ascertained in mouse versus human 201 

tissues
15,51

. However, with the exception of a few exemplary elements (e.g., see refs 
55–57

), the extent of 202 

overlap between human/mouse elements underlying Mendelian traits is largely unknown. Therefore, to 203 

evaluate the functional conservation of cREs in our cranial motor neuron atlas, we performed in vivo 204 

humanized enhancer assays on a curated subset (n = 26) of our candidate scATAC peaks that were 205 

absent from the VISTA enhancer database
58

 and had peak accessibility/specificity in cMNs and general 206 

signatures of enhancer function (i.e., evolutionary conservation and non cMN-specific histone 207 

modification data
59

, Supplementary Table 5, Methods). These results validated our approach, as we 208 

detected positive enhancer activity (any reporter expression) in 65% (17/26) of candidates. Moreover, 209 

11 of the 17 validated enhancers (65%, 42% overall) recapitulate the anatomic expression patterns 210 

(motor neuron expression) predicted from the scATAC accessibility profiles to the resolution of 211 

individual nuclei/nerves. By contrast, of 3,229 total non-coding elements assayed in the VISTA enhancer 212 

database, only 67 (2.1%) show reproducible evidence of enhancer activity in the cMNs. Thus, high 213 

quality single cell accessibility profiles are highly predictive of cell type specific regulatory activity.  214 

 215 

Motif enrichment and footprinting reveal putative cMN regulators 216 

 217 

To identify transcription factors/motifs responsible for cell type identity, we performed motif 218 

enrichment and aggregated footprinting analysis across all 23 major clusters and identified both known 219 

lineage-specific motif enrichment as well as new potential cMN transcription factor/motif relationships 220 

(Figure 2a,b). For example, we identified significant motif and footprinting enrichment of midbrain 221 
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transcription factor OTX1 in populations corresponding to developing oculomotor/trochlear motor 222 

neurons (cluster cMN3/4.10) and the midbrain-hindbrain boundary (cluster MHB.7)
60

. We also identified 223 

notable footprints for ONECUT2 in multiple motor neuron populations, including cMN3/4, cMN7, and 224 

putative pre-enteric neural crest-derived cells (clusters cMN3/4.19, cMN7.11, enteric.17; Figure 2b). 225 

Importantly, we detected positive footprint signals for known lineage-specific regulators such as JunD 226 

footprints in the spinal and lymphoid lineages
61,62

 (clusters sMN.15, WBC.18) and GATA1 footprints in 227 

the erythroid lineage
63

 (cluster RBC.20; Figure 2b). Due to the relatively high homogeneity across the 228 

motor neuron clusters, we also compared motif enrichment across broader anatomic/functional classes 229 

of motor neurons and brain regions (Figure 2c). We identified strong enrichment of regional markers 230 

such as DMBX1
64

 in midbrain samples (i.e., cMN3/4, cMN3/4neg). We also found motifs enriched among 231 

the ocular motor neurons (i.e., cMN3/4, cMN6) such as PAX5, providing new potential avenues for 232 

comparative studies. 233 

 234 

Assigning cell type specific cREs to their cognate genes 235 

 236 

A chief barrier to interpreting non-coding regulatory elements is identifying their cis target genes. While 237 

enhancers often regulate adjacent genes, many important regulatory links also occur over much longer 238 

distances, including known disease causing events
55,57,65–69

. Therefore, we generated scRNA data from 239 

GFP-positive and -negative cMN3/4, 6, and 7 at e10.5 and e11.5 (Methods) using reporter constructs, 240 

microdissection, and collection strategies analogous to those use used to generate the scATAC datasets. 241 

We then integrated these scRNA data with the cMN chromatin accessibility data to generate peak-to-242 

gene links at the single cell level for putative cREs within +/- 500kb of a given gene (see Methods
70–72

). In 243 

total, we identified 145,073 known and putative enhancers with peak-to-gene links across the 23 244 

clusters (median = 2 genes per enhancer, range = 1-37; Supplementary Table 6).  245 

 246 

Because the accuracy of peak-to-gene links inferred from separate assays of ATAC and RNA data 247 

(“diagonal integration”)
73

 depends heavily on cell pairings, we performed multiple analyses to ensure 248 

that both our ATAC-RNA pairings and gene expression estimates were well calibrated. We compared our 249 

imputed single cell gene expression estimates to independently collected in-house bulk RNAseq 250 

experiments from cMN3, 4, 6, and 7 at e10.5 and e11.5 annotated with ground truth dissection labels 251 

(Methods). We identified strong positive concordance between imputed gene expression and measured 252 

bulk RNAseq signal in the appropriate cell types (Figure 3a,b). We also found that our ATAC-RNA 253 
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pairings and peak-to-gene links were sensitive to the cellular composition of our scRNA integration data. 254 

If the identical master peakset was compared to scRNA data from e10.5 to e11.5 mouse brain (“MOCA 255 

neuro”) or e9.5 to e13.5 mouse heart (“MOCA cardiac”)
74

 in place of our cMN-enriched scRNA data, we 256 

found fewer significant peak-to-gene links and fewer concordant cognate genes (Figure 3c-f; Methods).   257 

 258 

Next, we performed a joint ATAC-RNA coassay (“scMultiome”) on a subset of e11.5 GFP-positive cells 259 

represented in our main scATAC dataset (cMN3/4, cMN7, cMN12, sMN), thereby allowing us to 260 

benchmark our inferred ATAC-RNA pairings against direct experimental measurements (“vertical 261 

integration”; Extended Data Figure 5a-d). We found that scMultiome peak-to-gene links were highly 262 

concordant with our original scATAC peak-to-gene links (Figure 3g-i). We then examined the single cell 263 

accessibility profiles of four highly characterized cMN enhancers with known connection to the Isl1 gene 264 

– a cMN master regulator embedded in a gene desert (Figure 4a-c)
58,75

. Strikingly, both by diagonal and 265 

vertical integration, we found that for these four enhancers (mm933, CREST1/hs1419, CREST3/hs215, 266 

and hs1321), chromatin accessibility alone was a significant predictor of in vivo Isl1 expression patterns 267 

in the anatomically appropriate cMN (Figure 4d,e; Extended Data Figure 5d; Wald test p-value = 0.011; 268 

Methods).  269 

 270 

Lastly, we integrated histone modification signatures into our enhancer predictions by performing 271 

H3K27Ac scCUT&Tag on e11.5 GFP-positive cMN3/4, cMN6, and cMN7 and e10.5 cMN7 (7 replicates 272 

total) and generated Activity-by-Contact (ABC) enhancer predictions for each cell type (Methods
76,77

). Of 273 

6,072 total ABC enhancers, 4,925 (81%) directly overlapped our peak-to-gene links, including multiple in 274 

vivo ground truth enhancers (Extended Data Figure 6a, Figure 3i, Figure 4a, Supplementary Table 7). 275 

Because availability of cell type specific experimental data can be a limiting factor in accurate enhancer 276 

prediction, we assessed the relative contribution of cell type-specific chromatin accessibility versus 277 

histone modification data to ABC prediction accuracy. Specifically, among 67 annotated cMN enhancers 278 

in the VISTA enhancer database (visualized at e11.5 by presence of beta-galactosidase in the nucleus 279 

and/or nerve), 49 had some evidence of expression in cranial nerve (CN)7. Among these, we identified 280 

seven that had both visible CN7 expression and ABC cMN7 enhancer predictions at e11.5. For all seven 281 

enhancers (100%), ABC cognate gene predictions were concordant with peak-to-gene predictions. We 282 

then reran our ABC predictions, replacing either our cMN7 ATAC data with mouse embryonic limb e11.5 283 

ATAC data (ENCODE ENCSR377YDY; “Limb ATAC”) or our cMN7 histone modification data with mouse 284 

limb histone modification data (ENCODE ENCSR897WBY; “Limb H3K27Ac”) and compared predictions. 285 
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Substituting limb ATAC for cMN7 ATAC data resulted in only 14% (1/7) concordance, while substituting 286 

limb H3K27Ac for cMN7 H3K27Ac data resulted in 57% (4/7) concordance (Extended Data Figure 6b). 287 

Thus, for this curated set of data, we find that cell type-specific ATAC signal is a better predictor of 288 

reproducible cognate gene predictions than cell type-specific histone modification signal or non-cell-289 

type-specific ATAC signal.   290 

 291 

Embryonic mouse chromatin accessibility atlas 292 

 293 

In summary, we generated a chromatin accessibility atlas of the developing cMNs and surrounding cell 294 

types (reference tracks in the UCSC Genome Browser will be provided here). We combined GFP-positive 295 

(n = 49,708) and -negative (n = 36,381) cells to improve joint peak calling performance and to capture 296 

potential regional heterogeneity of non-motor neuron cell types as well as motor neuron progenitors
78

. 297 

Cluster analysis revealed 9 putative cMN, 4 putative sMN, and multiple non-MN/non-neuronal clusters 298 

(of 23 total). Although sMNs are not directly implicated in CCDDs, they may provide value for 299 

comparative studies with cMNs
79,80

. We also performed iterative clustering to identify 132 subclusters, 300 

of which 58 are highly pure groups of motor neurons. Although we are currently unable to annotate 301 

subclusters, more detailed spatial and developmental profiling of the cMN subnuclei may help to 302 

identify functionally-relevant groups of cells and/or cell states. Finally, a high quality and cell type-303 

specific catalog of cMN elements and their cognate genes can be used to interpret and prioritize CCDD 304 

variants, as we describe below. 305 

 306 

Human phenotypes and genome sequencing  307 

 308 

We enrolled and phenotyped 899 individuals (356 affected, 543 family members) across 270 pedigrees 309 

with CCDDs. 202 probands were sporadic (simplex) cases enrolled as trios, while 42 and 19 pedigrees 310 

displayed clear dominant or recessive inheritance patterns, respectively (Supplementary Table 8). Of 311 

note, the dominant pedigrees included 3 with CFP that we have reported to harbor pathogenic SNVs in a 312 

non-coding peak, “cRE2”, within the HCFP1 locus on chromosome 3
34

. The CCDDs included congenital 313 

fibrosis of the extraocular muscles (CFEOM), congenital ptosis (CP), Marcus Gunn jaw winking (MGJW), 314 

fourth nerve palsy (FNP), Duane retraction syndrome (DRS), congenital facial palsy (CFP), and Moebius 315 

syndrome (MBS) (Supplementary Table 8). Importantly, these CCDD phenotypes can be connected to 316 

maldevelopment of their disease-relevant cMNs: CFEOM to cMN3/4, CP to the superior branch of 317 
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cMN3, FNP to cMN4, DRS to cMN6, CFP to cMN7, and MBS to cMNs 6 and 7 (Figure 1a, Supplementary 318 

Table 1). Affected individuals could have isolated or syndromic CCDDs. 319 

 320 

We performed whole genome sequencing (WGS) and variant calling of the 899 individuals (Methods). 321 

First, to generate a comprehensive and unbiased set of genetically plausible candidates, we performed 322 

joint single nucleotide variant (SNV) and insertion/deletion (indel) genotyping, quality control, and 323 

variant frequency estimation from > 15,000 WGS reference samples in the Genome Aggregation 324 

Database (gnomAD)
81,82

. We identified 54,804,014 SNV/indels across the cohort. Of these, 1,150,021 325 

(2.1%) were annotated as exonic, 18,761,202 (34.2%) intronic, 34,512,518 (63.0%) intergenic, and 326 

364,300 (0.7%) within promoters. We next performed initial SNV/indel variant filtering based on 327 

established and custom criteria, including genotype quality, allele frequency, and conservation 328 

(Methods)
83,84

. We incorporated family structures to include or exclude genetically plausible candidates 329 

that are consistent with known modes of Mendelian inheritance. Applying this approach to the 330 

54,804,014 SNVs/indels across our cohort, we identified 26,000 plausible candidates (mean = 101 331 

variants per pedigree). We also performed short read structural variant (SV) discovery using an 332 

ensemble SV algorithm (GATK-SV) that was comparable to SVs generated in gnomAD and the 1000 333 

Genomes Project
81,85

 and identified 221,857 total SVs (including transposable elements and other 334 

complex events). These WGS from deeply phenotyped CCDD pedigrees present a rich catalog of 335 

otherwise unannotated candidate Mendelian disease variants, as reflected in our report of noncoding 336 

SNVs and duplications as a cause of isolated facial weakness
34

.   337 

 338 

Integrating epigenomic filters with human WGS variants 339 

 340 

To further refine the 26,000 CCDD candidate SNVs/indels, we eliminated from further analysis 37 341 

pedigrees definitively solved by coding variants and reported separately, and then applied cell type-342 

specific filters from our scATAC peakset to each CCDD phenotype (Methods). We identified 5,353 343 

unique segregating SNVs/indels (3,163 de novo/dominant, 1,173 homozygous recessive, and 1,017 344 

compound heterozygous) that overlapped cMN-relevant peaks of accessible chromatin (23.6 and 13.6 345 

candidates per monoallelic and biallelic pedigree, respectively). Applying an analogous cell type-aware 346 

framework for SVs, we identified 115 candidates (72 deletions, 27 duplications, 1 inversion, 13 mobile 347 

element insertions, and 2 complex rearrangements encompassing multiple classes of SVs). There was 348 

substantial overlap between candidate variants and CCDD-relevant cMN peaks when compared to size-349 
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matched randomized peaks (median de novo Z-score = 10.9, median dominant inherited Z-score = 30.1, 350 

p-value < 2.0 x 10
-4

, permutation test; Supplementary Table 9). Using these 5,468 cell type-aware non-351 

coding CCDD candidate SNVs/indels/SVs and ATAC-based cMN enhancers, we next identified strong 352 

candidate variants using gene-centric and peak-centric approaches.  353 

 354 

We adopted a gene-centric aggregation approach by first identifying non-coding candidate variants 355 

connected to a restricted set of 16 known CCDD disease genes
19,21–26,28,42,86–93

. We identified non-coding 356 

variants connected to four: MAFB, PHOX2A, CHN1, and EBF3 (Table 1). We also identified compound 357 

heterozygous variants connected to ISL1 in a proband with CFP; ISL1 is not a known disease gene but is a 358 

master cMN regulator (Extended Data Figure 7a,b). Extending this approach to the entire genome, we 359 

identified 559 genes with multiple connected peaks containing dominant candidate variants (“multi-hit 360 

genes”, range of connected variants per gene = 2-6, Supplementary Table 10). 361 

  362 

EBF3, which encodes the EBF transcription factor 3, is an example of both a CCDD gene and a multi-hit 363 

gene. Monoallelic EBF3 loss-of-function (LoF) coding mutations cause Hypotonia, Ataxia, and Delayed 364 

Development Syndrome (HADDS)
94

, and two individuals are reported with HADDS and DRS, one with a 365 

coding missense variant and one with a splice site variant
92,95

. We identified a series of coding and 366 

noncoding EBF3 variants (Supplementary Table 11).  Two probands with DRS have large de novo multi-367 

gene deletions (Figure 5a), and one proband with fourth nerve palsy has a de novo stop-gain coding 368 

variant (Figure 5b). These three individuals also have phenotypes consistent with HADDS. We also 369 

identified three inherited non-coding variants with peak-to-gene connections to EBF3 (Figure 5b). 370 

Pedigrees S25 (distal indel), S176 (intronic SNV), and S95 (intronic SNV) segregate non-coding candidate 371 

variants with isolated CFEOM, MGJW, and ptosis, respectively. The multiple ocular CCDD phenotypes we 372 

observed potentially reflect pleiotropic consequences of EBF3 variants, a phenomenon previously 373 

observed for coding mutations in other CCDD genes
96

.  Moreover, the differences in syndromic versus 374 

isolated phenotypes may reflect more cell type-specific effects of non-coding variants. Indeed, multiple 375 

Mendelian disorders with non-coding etiologies are restricted to isolated cell types or organ 376 

systems
57,65,97–100

. Notably, EBF3 is broadly expressed across cMNs (Figure 5c) and is one of the most 377 

constrained genes in the human genome as measured by depletion of coding LoF variants in gnomAD 378 

and SV dosage sensitivity (loeuf = 0.1500 and pHaplo = 0.9996, respectively; Figure 5d)
82,101,102

. We 379 

observed exceptional conservation of non-coding elements within EBF3 introns, comparable to or 380 

exceeding exonic conservation. This includes the ultraconserved element UCE318 (Figure 5b,e) located 381 
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in intron 6 with a peak-to-gene link to EBF3 (r = 0.69, FDR = 6.2 x 10
-69

). We also detected a peak-to-gene 382 

link from VISTA enhancer hs737 to EBF3 (r = 0.60, FDR = 4.8 x 10
-49

), an element located > 1.2 Mb 383 

upstream of the gene that was previously reported to be linked to EBF3 and to harbor de novo variants 384 

associated with autism with hypotonia and/or motor delay
103

. We did not observe any candidate 385 

variants in UCE318, consistent with extreme depletion of both disease-causing and polymorphic 386 

variation within ultraconserved elements
104

, nor in hs737, consistent with its non-CCDD phenotype. 387 

 388 

Second, we took a peak-centric approach by examining all 5,468 (5,353 SNV/indels, 115 SVs) cell type 389 

aware non-coding variants, irrespective of cognate gene. When aggregating variants within appropriate 390 

cMN peak with corresponding CCDD phenotype, we identified 28 peaks harboring variants in more than 391 

one pedigree (“multi-hit peaks”). Fourteen multi-hit peaks contained variants obeying a dominant mode 392 

of inheritance (28 unique dominant/de novo variants with one variant present in two unrelated families, 393 

and including the 3 pathogenic chromosome 3 “cRE2” SNVs that cause CFP
34

),  and 14 multi-hit peaks 394 

contained variants obeying a recessive mode of inheritance (35 unique recessive variants; 395 

Supplementary Table 12). Moreover, 10 of these multi-hit peaks were also linked to multi-hit genes. 396 

Because enhancers confer cell type-specific function, we reasoned that true functional non-coding 397 

SNV/indels are less likely than coding variants to cause syndromic, multi-system birth defects. 398 

Interestingly, when stratifying pedigrees by isolated/syndromic status, we found a significant 399 

overrepresentation of isolated CCDD phenotypes for our dominant multi-hit peaks (OR = 5.9, p-value = 400 

2.3 x 10
-3

, Fisher’s exact test), but not for our recessive multi-hit peaks (OR 0.8, p-value = 0.64). 401 

 402 

Among the multi-hit peaks, we identified 3.6 kb homozygous non-coding deletions centered over peak 403 

hs2757 in two probands with DRS; in each case, the consanguineous parents were heterozygous for the 404 

deletion. The probands had extended runs of homozygosity with a shared 16 kb haplotype surrounding 405 

the deletion, consistent with a founder mutation (Figure 6a-c). hs2757 is broadly accessible in multiple 406 

cMN populations, including cMN6, and is located 307 kb upstream of its nearest gene, MN1; MN1 407 

imputed gene expression estimates revealed widespread expression across all sampled cell types, 408 

including cMN6 (Figure 6d)
82,101

. Monoallelic LoF coding mutations in MN1 cause CEBALID syndrome, a 409 

disorder affecting multiple organ systems. A subset of individuals with coding variants in MN1 are 410 

reported to have CEBALID syndrome with DRS
89

.  MN1 is exceptionally constrained against LoF variation 411 

and dosage changes (loeuf = 0.087; pHaplo = 0.9901, Figure 6e)
82,101

 We performed in vivo enhancer 412 

testing on hs2757 which revealed reporter expression in a subset of tissues with known Mn1 413 
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expression
105

, including expression in the hindbrain overlapping the anatomic territory of cMN6 (Figure 414 

6f). Surprisingly, in this case we did not observe a peak-to-gene link between hs2757 and Mn1 and did 415 

observe links with genes C130026L21Rik (whose sequence maps to a different chromosome in human) 416 

and Pitpnb (Supplementary Table 12). Multiple scenarios may explain this result, such as active Mn1 417 

enhancement occurring prior to the mouse e10.5-e11.5 window investigated here. Alternatively, our 418 

regression-based peak-to-gene estimates may be less sensitive at detecting enhancers for ubiquitously 419 

expressed genes, a phenomenon previously observed for other enhancer prediction methods
76

. 420 

 421 

Mechanistic insights of non-coding disease variants 422 

 423 

Mendelian disease variant interpretation often relies on variant level predictions of pathogenicity
106,107

. 424 

However, such prediction algorithms are typically agnostic to cell type- or disease-specific information. 425 

More recent approaches have incorporated cell type-specific epigenomic data to annotate non-coding 426 

variants in common diseases
53,108,109

. To leverage our cell type-specific accessibility profiles for variant 427 

level functional interpretation, we trained a convolutional neural network
110

 to generate cell type-428 

specific predictions of chromatin accessibility for each cranial motor neuron population. When 429 

evaluating held-out test data, we consistently observed high concordance between our accessibility 430 

predictions and true scATAC coverage for each cell type (median Pearson’s r = 0.84; range = 0.81 to 0.95; 431 

Figure 7a; Extended Data Figure 8a-c).  Thus, to predict the effects of participant variants on element 432 

accessibility, we used our trained model to generate cell-type specific SNP Accessibility Difference 433 

(SAD)
110

 scores.  434 

 435 

Our peak-centric approach successfully re-identified the HCFP1 cRE2 SNVs that we reported to be 436 

pathogenic for CFP
34

, and scATAC data revealed that cRE2 was accessible in cMN7 at mouse e10.5 but 437 

not e11.5 (Figure 7a). Examining cRE2 SNV SAD scores, we found that all four Cluster A LoF variants were 438 

predicted to close the chromatin (SAD Z-scores of -4.88, -3.60, -6.29, and -3.93). Moreover, these 439 

predicted variant effects were specific to cMN7 at e10.5 (but not e11.5, Figure 7b), further underscoring 440 

the importance of accurately parsing both cell type and developmental cell state. We then 441 

experimentally corroborated the predicted variant effect on chromatin accessibility by performing 442 

scATAC on two CRISPR-mutagenized mouse lines harboring HCFP1 cRE2 Cluster A SNVs (previously 443 

reported cRE2
Fam5/Fam5

 and new cRE2
Fam4/Fam4

 mouse models)
34

. Consistent with our machine learning 444 

predictions, we observed subtle yet consistent reductions in cis chromatin accessibility for both mutant 445 
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lines when compared to wildtype (4/4 replicates total; mean normalized mutant / wildtype coverage = 446 

0.59; Figure 7c). We also found positive evidence for site-specific footprinting overlapping the cRE2 447 

NR2F1 binding site in wildtype, but not in the two mutant lines (Figure 7b,d), consistent with results 448 

from targeted antibody-based assays
34

. Finally, to circumvent batch and normalization effects across 449 

separate experiments, we performed scATAC on embryos from wildtype-by-mutant crosses from 450 

cRE2
Fam5/Fam5

 and directly measured the resultant heterozygous mutant allele fraction in cis (“binomial 451 

ATAC”; Figure 7e). This approach generates an internally calibrated estimate of effect size and is 452 

sufficiently powered to detect true differences at relatively low sequencing coverage (i.e., chromatin 453 

accessibility profiles of rare or transiently developing cell types). We found a significant depletion of 454 

Fam5 mutant alleles across multiple replicates, again consistent with a LoF mode of pathogenicity 455 

(wildtype / mutant counts = 4.2; p-value = 2.4 x 10
-14

; binomial test). These multiple lines of evidence, 456 

both at the epigenome-wide level and at a well-characterized individual locus provide support that our 457 

machine learning model is well calibrated and not overfitted. 458 

 459 

We next examined the predictions of the neural net at epigenome-wide level, and among our 5,353 cell 460 

type-aware candidate SNVs/indels, identified 114 additional variants with normalized absolute SAD Z-461 

scores > 2; that is, variants predicted to significantly increase or decrease accessibility in cis within their 462 

disease-relevant cellular context, including 7 variants linked to multi-hit genes (Supplementary Table 463 

13). When incorporating these SAD scores, we identified several cell type-aware candidate variants and 464 

peaks with convergent lines of evidence. First, several of the non-coding variants connected to known 465 

CCDD genes had significant SAD scores (Table 1). The EBF3 non-coding variants 466 

chr10:129794079TTGAG>T, chr10:129884231C>A, and chr10:129944464G>C had SAD scores of -11.77, 467 

+0.11, and +0.98, respectively. The variant connected to CHN1 segregated in a parent and child with a 468 

mixed CFEOM-DRS phenotype was predicted to increase accessibility (SAD Z-score = +2.29). This is 469 

notable because CHN1 coding variants result in atypical DRS through a gain-of-function 470 

mechanism
23,43,111

. Second, combining multiple layers of evidence can be used to elevate candidate 471 

variants connected to potentially novel CCDD disease genes. For example, compound heterozygous 472 

variants in two DRS probands in the multi-hit CRK promoter region had significant negative scores 473 

consistent with LoF (SAD Z-scores = -13.69, -2.06; Supplementary Table 12). Such highly annotated non-474 

coding variants are attractive candidates for downstream functional validation, as they provide distinct, 475 

refutable predictions for gene targets, cell types, and effect on accessibility. 476 

 477 
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Nominated cell type-specific variants alter expression in vivo 478 

 

479 

Although we show that single cell chromatin accessibility is a strong predictor of cMN enhancer activity, 480 

even highly conserved and presumably functional enhancers can be surprisingly robust to 481 

mutagenesis
8,112–114

. Therefore, to evaluate the functional consequences of our nominated CCDD 482 

variants, we selected 33 elements harboring cell type-aware candidate SNVs for in vivo humanized 483 

enhancer assays. For testing, we prioritized these variants based on multiple annotations from our 484 

framework, including conservation, significant SAD scores, multi-hit peaks/genes, and cognate gene 485 

predictions (Supplementary Table 14). We first screened the wildtype human enhancer sequences and 486 

detected positive enhancer activity in 82% (27/33) of candidates. Combining these with the 26 487 

previously tested, we found enhancer activity in 44/59 total (75%). Importantly, we note that these 488 

elements were not selected randomly and therefore not intended to reflect generalizable patterns 489 

across the genome.  490 

 491 

Next, we tested 4 of the 27 positive elements by introducing the nominated CCDD SNVs into the 492 

wildtype sequence. Remarkably, one mutant enhancer harboring multiple candidate variants for DRS 493 

and MBS (“hs2777-mut”) showed visible gain of expression compared to wildtype (“hs2777”), including 494 

in midbrain, hindbrain, and neural tube (Extended Data Figure 9a,b). Wildtype hs2777 is accessible 495 

across multiple cell types and has peak-to-gene links to seven genes (Cdk5rap3, Nfe2l1, Sp2, Tbx21, 496 

Npepps, Socs7, and Snx11), and ABC enhancer prediction for Cdk5rap3, specifically to cMN7 at e10.5. 497 

hs2777-mut contains four SNVs (1 DRS, 2 MBS, 1 off-target, mutating 0.21% of original wildtype base 498 

pairs; Extended Data Figure 9c,d). To better decompose the individual effects of these variants, we 499 

performed in silico saturation mutagenesis across the entire hs2777 sequence (Extended Data Figure 500 

9e). We observed notable gain-of-function effects for two of the three on-target SNVs (DRS “Variant C”, 501 

and MBS “Variant D”; chr17:48003826C>T and chr17:48003752A>C) within the affected cell types, with 502 

corresponding SAD Z-scores ranging from +1.12 to +4.34.  503 

 504 

DISCUSSION 505 

 506 

We have developed a publicly available atlas of developing cranial motor neuron chromatin accessibility 507 

and have combined it with cell type-specific histone modification and in vivo transgenesis information to 508 

generate a reference set of enhancers with cognate gene predictions in a set of rare, transiently 509 
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developing cell types. Such a resource can be used to discover highly specific cREs and target genes 510 

underlying the molecular regulatory logic of cMN development. Furthermore, we can leverage known 511 

properties of the cMNs to inform comparative studies across diverse cell types. For example, the ocular 512 

cMNs are known to be selectively resistant to degeneration (compared to sMNs) in diseases such as ALS. 513 

Therefore, understanding the differentially accessible cREs that underlie differences between 514 

cMNs/sMNs could render important clues to the mechanisms of selective resistance/vulnerability and 515 

ultimately open new therapeutic avenues
80

. Finally, a deeply sampled, highly specific chromatin 516 

accessibility atlas may help to learn generalizable features that predict enhancer activity in additional 517 

cell types. Importantly, cranial nerve expression is a core readout for tested cREs in the VISTA enhancer 518 

database, thereby providing invaluable ground truth data at an overlapping developmental timepoint 519 

(e11.5)
58

. 520 

 521 

We used this reference to nominate and prioritize non-coding variants in the CCDDs, a set of Mendelian 522 

disorders altering cMN development and demonstrate that principled prioritization approaches can 523 

select appropriate candidates for downstream functional validation (e.g., transgenic reporter assays, 524 

non-coding in vivo disease models, etc.), which are otherwise often costly and labor-intensive with high 525 

rates of failure. To aid in interpretation, we connected non-coding variants to their cognate genes using 526 

imputed gene expression values from separate assays (diagonal integration). This approach allowed us 527 

to leverage existing information of cognate coding genes, including known disease associations and 528 

coding constraint
82

. Moreover, such integrated cell type-aware datasets provide important context to 529 

cell type-agnostic estimates of non-coding constraint (discussed in ref. 
115

). When applying this 530 

framework to our CCDD cohort, we achieved a search space reduction of 4 orders of magnitude, making 531 

non-coding candidate sets human-readable and tractable for functional and mechanistic studies (23.6 532 

candidates per monoallelic pedigree; 13.6 per biallelic pedigree). Furthermore, we incorporated multiple 533 

lines of evidence such as allelic aggregation, cognate gene identification, mutational constraint, and 534 

functional prediction.  This approach successfully re-identified the pathogenic variants in our cohort at 535 

the GATA2 cRE2 locus
34

 and led us to nominate novel candidate disease variants (Table 1).  We also 536 

identified compelling individual candidate variants and peaks without multiple hits. Such candidates will 537 

be easier to resolve with larger cohort sizes and larger families.  Indeed, our ability to reduce candidate 538 

variant numbers was limited by the large proportion of unsolved small dominant pedigrees in our 539 

cohort, which are notoriously difficult to analyze. Moreover, while de novo and recessive mutations are 540 

clearly an important source of causal pathogenic variation in sporadic cases, such cases are also more 541 
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likely to involve non-genetic etiologies. 542 

 543 

Although a given peak can harbor hundreds of predicted transcription factor binding motifs, we 544 

demonstrate in principle that locus-specific footprinting can implicitly reduce a ~1 kb peak to a ~10 bp 545 

individual transcription factor binding site of interest. Given sufficient sequencing coverage
116

 and data 546 

quality, such approaches could immediately be applied to other rare diseases and cell types. 547 

Alternatively for common diseases, causal non-coding variants are more abundant, but also confounded 548 

by linkage disequilibrium. In this case, locus-specific footprinting (in concert with careful demarcation of 549 

element boundaries, chromatin accessibility QTL analysis
117

, and statistical fine-mapping
118

) may further 550 

resolve causal common variants and identify affected transcription factor binding sites across the 551 

genome – all inferred from a single assay. Proof of feasibility of such approaches in rare diseases could 552 

also influence data collection strategies for common diseases
119

. 553 

  554 

Through our analysis, we also encountered potential limitations affecting non-coding variant 555 

interpretation. We in part leveraged sequence conservation and constraint to prioritize pathogenic 556 

variants. However, while the known genes and cREs underlying cMN development are highly conserved, 557 

a conservation-based strategy may not identify pathogenic variants in human-specific and/or rapidly 558 

evolving sequences
114,120,121

. Strikingly, we also found that even relatively subtle differences in cellular 559 

composition and ATAC/RNA collection strategies can distort cognate gene estimates. These findings 560 

should inform appropriate sampling strategies in the future, such as single cell multiomic assays. 561 

Unbiased genetic strategies such as partitioned LD score regression can be extremely useful towards 562 

defining disease-relevant cell types, though such approaches are effectively restricted to common 563 

diseases
122

. Moreover, we find that even when sampling the appropriate cell type, subtle differences in 564 

cell state can profoundly influence variant interpretation. We provide a concrete example at the well-565 

characterized non-coding GATA2 locus
34

, where pathogenic variant effects are no longer detectable in 566 

the same cell type within a mere 24 hours of development (i.e., embryonic day 10.5 versus 11.5). 567 

Moreover, we sampled cMNs at e10.5 and e11.5 based on developmental patterns of previously 568 

described protein-coding mutations, but we do not exclude the possibility that novel disease mutations 569 

may also be relevant at different timepoints. Therefore, while our genetic framework can generalize to 570 

other disorders, we suspect that appropriate prospective or retrospective epigenomic cell sampling will 571 

benefit from highly detailed biological knowledge of each specific disease process.  572 

 573 
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Finally, the interpretation of non-coding variants can benefit from our knowledge of coding variants as 574 

they share challenges in common – namely, practical limitations in allelic expansion and functional 575 

validation. Here, we present generalizable approaches that aggregate plausible alleles based on physical 576 

(“peak-centric”) and biological (“gene-centric”) proximity to facilitate allelic expansion in a principled 577 

manner. These challenges may be further alleviated by expanding rare disease data sharing platforms
123

 578 

to more comprehensively incorporate non-coding variation. Finally, development of functional 579 

perturbation assays that balance both scalability
113

 and specificity
124

 will disproportionately benefit 580 

validation of non-coding variants, which are naturally more abundant and cell type-specific than coding 581 

variants. The outputs of such assays would also iteratively provide training material for further refined 582 

functional prediction algorithms. 583 

 584 

Rapid advances in next generation sequencing technologies have led to a renaissance in Mendelian gene 585 

discovery. As access to WGS and functional genomics data becomes less limiting, alternative analytical 586 

and experimental frameworks will be needed to finally resolve Mendelian cases and disorders that are 587 

otherwise recalcitrant to traditional exome-based approaches. 588 
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Figure 1. Integrating Mendelian pedigrees with single cell epigenomic data. 637 

a. Schematic depicting subset of human cMNs and their targeted muscles. cMN3 (blue) = 638 

oculomotor nucleus which innervates the inferior rectus, medial rectus, superior rectus, inferior 639 

oblique, and levator palpebrae superior muscles; cMN4 (purple) = trochlear nucleus which 640 

innervates the superior oblique muscle; cMN6 (green) = abducens nucleus which innervates the 641 

lateral rectus muscle (bisected); cMN7 (pink) = facial nucleus which innervate muscles of facial 642 

expression; cMN12 (black) = hypoglossal nucleus which innervates tongue muscles. 643 

Corresponding CCDDs for each cMN are listed under diagram and color coded. CFEOM: 644 

congenital fibrosis of the extraocular muscles; CP: congenital ptosis; FNP: fourth nerve palsy; 645 

DRS: Duane retraction syndrome; MBS: Moebius syndrome; CFP: congenital facial palsy. 646 

b. Overview of the experimental and computational approach. i) Generating cell type-specific 647 

chromatin accessibility profiles. Brightfield and fluorescent images of e10.5 Isl1
MN

:GFP embryo 648 

(left) from which cMNs are microdissected (yellow dotted lines, dissociated, FACS-purified 649 

(middle), followed by scATAC and data processing (right; red and blue lines represent adapters, 650 

black line represents DNA, orange cylinders represent nucleosomes, grey pentagons represent 651 

Tn5). ii) WGS of 270 CCDD pedigrees (left; 899 individuals; sporadic and inherited cases) 652 

followed by joint variant calling, QC, and Mendelian variant filtering (right). iii) Integrating 653 

genome-wide non-coding variant calls with epigenomic annotations for variant nomination 654 

(top). To aid in variant interpretation, we identify cognate genes (2
nd

 row), aggregate candidate 655 

variants, generate functional variant effect predictions (3
rd

 row), and validate top predictions in 656 

vivo (bottom). 657 

c. UMAP embedding of single cell chromatin accessibility profiles from 86,089 GFP-positive cMNs, 658 

sMNs, and their surrounding GFP-negative neuronal tissue colored based on GFP reporter status 659 

(left, GFP-positive green, GFP-negative grey), sample (middle, with sample key under UMAP) 660 

and cluster (right, with cluster annotations in Supplementary Table 3). Gridlines in middle 661 

UMAP apply to left and right UMAPs as well. The inset shows the relative proximity of Cluster 2 662 

cells dissected from the same cell type (cMN7 e10.5) from different technical and biological 663 

replicates. 664 

d. Heatmap depicting the proportions of dissected cells within each of the 23 major clusters. 665 

Homogeneity/completeness metrics are shown for GFP-positive versus GFP-negative clusters. 666 

cMN6 and cMN7 are in close spatial proximity and are commonly co-dissected.  667 

 668 
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 669 

Figure 2. Motif enrichment and aggregate footprint analyses distinguish cell type specific TF binding 670 

motifs. 671 

a. Heatmap depicting enriched transcription factor binding motifs within differentially accessible 672 

peaks by cluster. Each entry is defined by its cluster identity (“clusterID.clusterNumber”). 673 

Corresponding cluster IDs and annotations are depicted.  Color scale represents hypergeometric 674 

test p-values for each cluster and motif. Specific motifs and motif families vary significantly 675 

amongst clusters. Cluster annotations are defined in Supplementary Table 3. 676 

b. Aggregated subtraction-normalized footprinting profiles for a subset of cluster-enriched 677 

transcription factors (OTX1, ONECUT2, JunD, and GATA1) from (a), centered on their respective 678 

binding motifs. Specific clusters display positive evidence for TF motif binding for each motif. 679 

Corresponding motif position weight matrices from the CIS-BP database are depicted above 680 

each profile. Cluster IDs with corresponding color are below.  681 

c. Motif enrichment comparing broad classes of neuronal subtypes. Midbrain subtype contains 682 

motifs from cMN3/4neg cells; hindbrain from cMN6neg, cMN7neg, and cMN12neg cells; 683 

somatic MN from cMN3/4, cMN6, and cMN12 GFP-positive cells; branchial MN are from cMN7 684 

GFP-positive cells; midbrain MN are cMN3/4 GFP-positive cells; hindbrain MN are cMN6, cMN7, 685 

and cMN12 GFP-positive cells; ocular MN are cMN3/4 and cMN6 GFP-positive cells; lower MN 686 

are cMN7, cMN12, and sMN GFP-positive cells. For each graph, the first listed subtype is 687 

enriched relative to the second listed subtype. 688 

 689 

Figure 3. Effects of RNA input data on peak-to-gene accuracy. 690 

a. Scatterplots depicting imputed gene expression values projected onto scATAC clusters 691 

cMN3/4.10, cMN6.6, and cMN7.2 (x axis) versus measured gene expression values from 692 

independently collected bulk RNA-seq samples (y axis). Imputed gene expression shows a 693 

significant positive relationship when compared with corresponding bulk samples (cMN3/4, 694 

cMN6, and cMN7, respectively). 695 

b. Feature plots depicting imputed gene expression for three classic cMN marker genes (Phox2a 696 

(top, boxed in blue), Mnx1 (middle, boxed in red), and Hoxb1 (bottom, boxed in black))
37

. 697 

Expression is restricted to corresponding clusters cMN3/4.10 (Phox2a), cMN6.6 (Mnx1), and 698 

cMN7.2 (Phox2a, Hoxb1) as expected. 699 
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c. Stacked barplot depicting total number of unique and shared peak-to-gene links using three 700 

distinct scRNA integration datasets against the common scATAC cMN peakset. cMN: scRNA-seq 701 

data from age- and dissection-matched, oversampled cranial motor neurons (this work). MOCA 702 

Neuro: age-matched, uniformly sampled embryonic neural tissue from the MOCA database. 703 

MOCA Cardiac: non-age-matched, uniformly sampled embryonic cardiac tissue from the MOCA 704 

dataset
74

. 705 

d. Distribution of peak-to-gene effect sizes using different scRNA integration datasets (shared links 706 

only). Estimated effect sizes are significantly stronger using cMN scRNA integration when 707 

compared to MOCA neuro and MOCA cardiac integration. 708 

e. Barplot depicting peak-to-gene elements from the three scRNA integrations overlapping 67 709 

experimentally validated cMN enhancers (“vista cMN”, left). i. “Matched peak” indicates 710 

overlapping peaks irrespective of predicted cognate gene (middle). ii. “Matched gene” indicates 711 

both overlapping peaks and identical cognate gene within the VISTA cMN enhancers (right, note 712 

that the vista cMN enhancers to not have defined target genes). Toggling between scRNA 713 

integrations can alter or eliminate target gene predictions. i and ii represent intersect and 714 

distinct peaks, respectively. 715 

f. In vivo enhancer assay for cMN VISTA enhancer hs2081 (lateral view). This enhancer overlaps a 716 

predicted peak-to-gene link using both cMN and MOCA cardiac scRNA input. However, enhancer 717 

activity is positive in cranial nerves 3, 7, and 12 (arrows) and negative in embryonic heart 718 

(dotted lines). 719 

g. Comparing scATAC versus scMultiome peak-to-gene effect sizes for four motor neuron 720 

transcription factors (Nkx6-1, Isl1, Phox2a, and Phox2b)
37

. Each circle represents a peak. All four 721 

genes show a positive linear relationship across both assays. 722 

h. scATAC (top) and scMultiome (bottom) accessibility profiles with peak-to-gene connections for a 723 

100kb window centered around Phox2a. scATAC profiles are parsed by sample while 724 

scMultiome profiles are parsed by predicted cluster label. Peak-to-gene predictions are highly 725 

concordant across both assays. Novel cMN enhancer hs2678 is accessible in cMN3/4 and cMN7 726 

and is predicted to enhance Phox2a by both scATAC (r = 0.84) and scMultiome (r = 0.69) peak-727 

to-gene estimates. 728 

i. (Top) hs2678 orthologous region in the human genome. hs2678 is 70.3 kb distal to human 729 

PHOX2A and is embedded in coding and intronic sequence of CLPB. (Bottom) In vivo enhancer 730 

assay using human hs2678 sequence is positive in cMN3 and cMN7 (arrows), recapitulating 731 
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known Phox2a gene expression patterns
41

. Reporter expression views are shown as lateral (left) 732 

and dorsal through the 4
th

 ventricle (right). 733 

 734 

Figure 4. Exceptional gene regulation of cranial motor neuron master regulator Isl1. 735 

a. Pseudobulked chromatin accessibility profiles for all annotated clusters over a 1.5 Mb window 736 

centered about Isl1. Imputed gene expression profiles for each cluster are shown to the right. 737 

Isl1 is located within a gene desert with the nearest up- and downstream flanking genes 1.2 and 738 

0.7 Mb away, respectively. Peak-to-gene predictions match known Isl1 enhancers (CREST1 in 739 

motor neurons and CREST3 in sensory neurons
75

; mm933 in multiple cranial motor nerves, 740 

dorsal root ganglion, and nose; hs1321 in multiple cranial motor nerves and forebrain) and 741 

identify additional putative enhancers surrounding Isl1.  742 

b. The number of normalized regulatory connections for each rank ordered gene. Isl1 ranks in the 743 

top 1% of all genes with at least one regulatory connection. The inflection point of the plotted 744 

function is demarcated with a dotted line. 745 

c. Per-cell Domain of Regulatory Chromatin (DORC) scores for Isl1 gene. DORC scores are 746 

significantly higher for cells from motor neuron clusters relative to non-motor neuron clusters 747 

(p-value < 1 x 10
-15

, ANOVA). 748 

d. (Left) Lateral whole mount In vivo reporter assay testing CREST1 (VISTA enhancer hs1419) 749 

enhancer activity. CREST1 drives expression in cranial nerves 3, 4, and 7 (black lines; there is also 750 

expression in trigeminal motor nerve). (Right) Single cell ATAC profiles and imputed gene 751 

expression for a subset of corresponding clusters. CREST1 accessibility and Isl1 gene expression 752 

are positively correlated with in vivo expression patterns. 753 

e. Boxplot depicting normalized accessibility levels for enhancers CREST1, CREST3, mm933, and 754 

hs1321 within nine scATAC clusters corresponding to distinct anatomic regions. Manually scored 755 

enhancer activity (“enhancement”) is significantly correlated with normalized accessibility (p-756 

value = 0.011, Wald test). Center line: median; box limits: upper and lower quartiles; whiskers – 757 

1.5 x interquartile range. 758 

 759 

Figure 5. An integrated coding/non-coding candidate allelic series for EBF3. 760 

a. Window depicting the terminal arm of chr10q (top). Large de novo deletions in two trios 761 

(middle, bottom) with simplex syndromic DRS (S233, S131) overlap multiple coding genes 762 

including EBF3 (boxed), an exceptionally conserved gene at the coding and non-coding level. 763 
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b. Nominated coding and non-coding SNVs and indels connected to EBF3. For each variant, the 764 

subject’s WGS ID code, CCDD phenotype (and if isolated or syndromic), the variant coordinate in 765 

NG_030038.1 (and if coding or noncoding and if familial or de novo) is indicated. Variants 5 and 766 

8 are reported previously in DECIPHER and elsewhere
92,95

. Peak-to-gene links containing variants 767 

connected to EBF3 are depicted by curved lines. EBF3 contains highly conserved non-coding 768 

intronic elements, including ultra-conserved element UCE 318 in intron 6, whose sequence 769 

drives strong expression in the embryonic hindbrain (VISTA enhancer hs232, see (e) below). 770 

c. Imputed gene expression profiles for Ebf3. Ebf3 is broadly expressed among the cMNs. 771 

d. EBF3 is exceptionally intolerant to loss-of-function, gene dosage, and missense variation. 772 

Density plots depict genome-wide distribution of loss-of-function constraint (“loeuf”, “pLI”)
82,125

, 773 

probability of haploinsufficiency (“pHaplo”)
101

, and missense constraint (“z-score”)
126

. 774 

Respective scores exceeding thresholds of 0.35, 0.9, 0.84, and 2.0 are colored red. EBF3 (dotted 775 

lines) ranks as the 563
rd

, 861
st
, 3

rd
, and 508

th
 most constrained gene in the genome, respectively. 776 

Distributions are rescaled for consistent sign and ease of visualization. 777 

e. Lateral view of in vivo reporter assay testing UCE 318 (VISTA enhancer hs232), a putative EBF3 778 

enhancer (peak-to-gene r = 0.42, FDR = 6.72 x 10
-22

). Strong reporter expression is observed in 779 

the embryonic hindbrain (arrow).  780 

 781 

Figure 6. MN1 enhancer deletions across multiple CCDD pedigrees. 782 

a. IGV screenshot depicting 3.6 kb non-coding deletions in two probands with DRS from separate 783 

consanguineous pedigrees (S190, S238). 784 

b. ddPCR copy number estimates of deletions. For each pedigree, the affected proband is 785 

homozygous recessive for the deletion with one heterozygous allele inherited from each parent. 786 

Error bars denote 95% confidence intervals. 787 

c. Genomic context of the non-coding deletions. The deletions (red bar below chr 22 ideogram) fall 788 

within extended runs of homozygosity (grey bars above ideogram, 19.5 Mb, 18.8 Mb, 789 

respectively, of which 16 kb surrounding the deletion is shared between the probands) and 790 

eliminates putative enhancer hs2757 (green bar below ideogram) located 307 kb from nearest 791 

gene MN1.  792 

d. hs2757 chromatin accessibility (left) and Mn1 imputed gene expression (right) profiles in the 793 

cMNs and surrounding cell types. Mn1 is widely expressed across multiple midbrain/hindbrain 794 

cell types, and hs2757 is accessible across multiple cell types, including cMN6. 795 
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e. Density plots depicting genome-wide distribution of loss-of-function constraint (“loeuf”, 796 

“pLI”)
82,125

, and probability of haploinsufficiency (“pHaplo”)
101

 metrics. Respective scores 797 

exceeding thresholds of 0.35, 0.9, 0.84, and 2.0 are colored red. MN1 (dotted lines) ranks as the 798 

131
rd

, 605
th

, and 402
nd

 most constrained gene in the genome, respectively. Distributions are 799 

rescaled for consistent sign and ease of visualization. 800 

f. In vivo reporter assay testing hs2757 enhancer activity (humanized sequence). Lateral (left) and 801 

dorsal (right) whole mount lacZ staining reveals hs2757 consistently drives expression in 802 

midbrain and hindbrain tissue, including the anatomic territory of cMN6. 803 

 804 

Figure 7. scATAC-trained convolutional neural network accurately predicts cell type specific 805 

accessibility status and human mutation effects in a transiently developing cell type. 806 

a. Neural net predicted chromatin accessibility profiles (red) compared to actual scATAC 807 

sequencing coverage (black) for a region of mouse chromosome 6 in three cell types (cMN7 808 

e10.5, cMN7 e11.5, and cMN12 e11.5). The grey box highlights a transient 678 bp peak (cRE2) 809 

that is accessible in cMN7 e10.5, but not cMN7 e11.5 or cMN12 e11.5.  SNVs within the human 810 

orthologous peak cRE2 cause congenital facial weakness, a disorder of cMN7. 811 

b. Neural net-trained in silico saturation mutagenesis predictions for specific nucleotide changes in 812 

human cRE2 for cMN7 e10.5, cMN7 e11.5, and cMN12 e11.5. Predicted loss-of-function 813 

nucleotide changes are colored in blue and gain-of-function in red. Predictions for four known 814 

loss-of-function pathogenic variants (chr3:128178260 G>C, chr3:128178261 G>A, 815 

chr3:128178262 T>C, chr3:128178262 T>G) are boxed. All four pathogenic variants are 816 

predicted loss-of-function for cMN7 e10.5, but not cMN7 e11.5 or cMN12 e11.5. 817 

c. Pseudobulk accessibility profiles of cRE2 (red box) CN7 e10.5 for wildtype and two CRISPR-818 

mutagenized mouse lines (cRE2
Fam4/Fam4

 and cRE2
Fam5/Fam5

) show a qualitative reduction in cRE2 819 

scATAC sequencing coverage, consistent with in silico saturation mutagenesis predictions. Each 820 

pseudobulk profile represents normalized sequencing coverage across two biological replicates. 821 

d. Locus-specific footprinting evidence overlapping cRE2. A 792 bp window showing sequencing 822 

coverage for cMN7 e10.5 after correcting for Tn5 insertion bias. The NR2F1 transcription factor 823 

binding site is mutated in individuals with HCFP1-CFP and overlaps a local minimum in scATAC 824 

coverage. TOBIAS footprinting scores for cRE2 wildtype, cRE2
Fam4/Fam4

, and cRE2
 Fam5/Fam5

 are 825 

depicted in solid, dashed, and dotted lines, respectively. Wildtype footprinting scores are higher 826 

than mutant scores. 827 
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e. Stacked barplot depicting wildtype versus mutant scATAC read counts over a 7.7 kb window for 828 

cMN7 e10.5 in cRE2
WT/Fam5

 heterozygote embryos. cRE2 mutant alleles are consistently depleted 829 

across two biological replicates (countsWT / countsMUTANT = 4.21; p-value = 2.4 x 10
-14

, binomial 830 

test).  831 
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Extended Data Figure 1. Per-cell and -sample quality metrics for scATAC data. 832 

a. Representative FACS gating strategy for WT GFP-positive and GFP-negative cMN7 at e10.5. Left: 833 

Forward scatter area (FSC-A) and side scatter area (SSC-A), corresponding to cell size and 834 

granularity/complexity, are used to enrich for intact cells and exclude debris. Middle: forward 835 

scatter width (FSC-W) and FSC-A are used to exclude doublets. Right: Green fluorescent protein 836 

area (GFP-A) and 633 nm-excitation (APC-A) are used to enrich for GFP-positive and GFP-837 

negative cells. GFP-negative gates are calibrated by dissociated limb buds prior to collection as a 838 

negative control. All samples are fresh, live cells without fixative or nuclear staining. 839 

b. Representative TapeStation trace showing tagmented DNA fragment sizes prior to library 840 

preparation. 841 

c. Representative histogram of per-cell scATAC reads in a single sample. Read cutoff is shown by a 842 

dotted line and determined heuristically for each sample. 843 

d. Insert size distributions (top) and transcriptional start site (TSS) enrichment (bottom) for all 844 

samples and replicates. Insert sizes consistently show a characteristic nucleosome banding 845 

pattern (~147 bp wavelength). Samples IDs are shown in Supplementary Table 2.  846 

e. Correlation matrix depicting all possible pairwise sample correlations (Spearman’s rho) for 847 

scATAC coverage in all rank-ordered peaks. Scatterplots for selected sample pairs from the four 848 

highlighted boxes within the matrix are shown on the right. Correlations decrease with 849 

increasing biological distance (top to bottom).  850 

f. Representative clade diagram depicting the relative accessibility (red is positive, blue is 851 

negative) of 5kb genomic windows (rows) across individual cells within a given sample 852 

(columns). Distinct clades (colored bars) were determined heuristically for each sample for 853 

downstream peak calling. The number of clades per sample were selected to maximize 854 

representation of common and rare cell types. 855 

g. Ridgeplot depicting density of per-cell fraction of reads in peaks (FRiP) for each dissected sample 856 

and replicate at e10.5 (red) and e11.5 (blue). Samples IDs are shown in Supplementary Table 2. 857 

Mean FRiP values are consistently higher for e11.5 samples (p-value = 4 x 10
-5

, binomial test). 858 

h. Distribution of FRiP values for GFP-positive motor neurons (green) versus GFP-negative 859 

surrounding brain tissue (pink). GFP-negative cells display significantly greater dispersion 860 

compared to GFP-positive cells, particularly at e10.5. (p-value = 1.1x10
-286

, Brown-Forsythe Test). 861 

See Supplementary Note 1 for additional information. 862 

 863 
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Extended Data Figure 2. Comparing and contrasting bulk versus single cell ATAC profiles. 864 

a. Fluorescence microscopy image illustrating cMN3 and cMN4 microdissection strategies. For 865 

scATAC experiments, cMN3 and cMN4 were microdissected en bloc (yellow box). For bulk ATAC 866 

microdissections, only cMN3 was excised (red box). All other cMN microdissection strategies 867 

were identical across bulk and scATAC. 868 

b. Heatmap depicting enrichment of sample-specific bulk ATAC versus scATAC peaks. Color scale 869 

represents hypergeometric test p-values using the peakAnnoEnrichment() function in ArchR. 870 

Samples marked with “neg” are GFP-negative cells surrounding the motor neurons of interest. 871 

All other samples are GFP-positive motor neurons. 872 

c. Stacked barplot depicting relative proportions of different classes of accessible chromatin 873 

(“distal”, “exonic”, “intronic”, and “promoter”). scATAC peaks are enriched for total number of 874 

peaks, total number of unique peaks, and cell type-specific peak annotations (distal and 875 

intronic). 876 

d. Heatmap depicting enrichment of overlapping peaks for bulk cMN3 dissections versus ad hoc 877 

clusters (C1-C20) generated from scATAC cMN3/4 dissections only. Color scale represents 878 

hypergeometric test p-values. Ad hoc clusters C18 and C20 with the highest peak enrichment for 879 

bulk cMN3 are outlined by dashed red lines. 880 

e. In silico microdissection of scATAC cMN3/4 clusters corroborates physical microdissections. Left 881 

to right, UMAP embeddings of scATAC cMN3/4 dissections colored by i) dissected sample; ii) ad 882 

hoc clusters; and gene scores for iii) cMN3 marker gene Otx2
126

; and iv) cMN4 marker gene 883 

Rgs4
127

. Putative cMN3 (C18 and C20) and cMN4 (C19) clusters inferred from dissection origin, 884 

marker genes, and GFP status are denoted by dashed and solid red lines, respectively. 885 

 886 

Extended Data Figure 3. Cranial motor neuron scATAC peaks are underrepresented in regional bulk 887 

datasets. 888 

a. (Left) Heatmap depicting correlation coefficients (Spearman’s ρ) between scATAC peaks from 889 

cMN microdissections versus bulk ATAC peaks from ENCODE e10.5 and e11.5 mouse developing 890 

forebrain (FB), midbrain (MB), and hindbrain (HB) dissections. Anatomically concordant bulk 891 

brain regions are more highly correlated with scATAC non-motor neuron samples (‘-neg’) than 892 

scATAC cranial motor neuron samples. (Right) Scatterplots depicting rank-ordered per-peak 893 

sequencing coverage for bulk vs. scATAC samples.  894 
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b. Bubble chart depicting ENCODE bulk ATAC coverage in scATAC cMN peaks from a subset of 895 

samples, stratified by cell type specificity scores (‘High’ vs. ‘Low’). Colors reflect mean peak 896 

coverage (with lighter color reflecting higher coverage), while area reflects standard deviation. 897 

Bulk tissues tend to have higher coverage in low specificity peaks when compared to highly cell 898 

type specific peaks. 899 

c. Density plots depicting distribution of ENCODE bulk peak coverage within cMN3/4 scATAC peaks 900 

from (b), stratified by specificity scores. High specificity scATAC peaks (blue) have consistently 901 

lower bulk coverage compared to low specificity peaks (red). 902 

 903 

Extended Data Figure 4. scATAC cluster purity across major clusters and subclusters. 904 

a. Heatmaps depicting purity of the 23 major scATAC clusters, stratified by i) sample and ii) 905 

embryonic age. cMN7 cells migrate past cMN6, are in close spatial proximity at these 906 

developmental ages, and are commonly co-dissected. Samples are GFP-positive unless 907 

otherwise marked (‘neg’). Clusters with higher membership from GFP-positive samples have 908 

higher purity than clusters with higher membership from GFP-negative samples. Most clusters 909 

feature cells from both e10.5 and e11.5 dissections, consistent with ongoing cell birth and 910 

proliferation. Homogeneity/completeness metrics calculated for GFP-positive versus GFP-911 

negative samples are shown. 912 

b. Heatmaps depicting purity of the 132 scATAC subclusters, stratified by i) sample and ii) 913 

embryonic age. As observed with the major clusters in (a), subclusters with high GFP-positive 914 

membership have greater purity than high GFP-negative subclusters. In contrast to the major 915 

clusters, a greater proportion of subclusters have skewed temporal membership (e10.5 vs. 916 

e11.5), potentially reflecting transient cell states. 917 

c. Stacked barplots depicting proportion of GFP-positive and -negative cells within each i) cluster 918 

and ii) subcluster. Most clusters and subclusters are skewed towards pure (i.e., > 90%) GFP-919 

positive or -negative membership.  Here Cluster/subcluster IDs are not shown for ease of 920 

visualization. Detailed cluster annotations are available in Supplementary Table 3.  921 

d. Correlation matrix depicting pairwise correlations between all biological replicates among i) 922 

major clusters and ii) subclusters. Cluster/subcluster membership is highly correlated across 923 

biological replicates from different batches, particularly for subclusters. 924 

 925 

Extended Data Figure 5. Single cell multiome reproducibility and quality control. 926 
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a. Chromatin fragment length distribution (left), transcription start site (TSS) enrichment (middle), 927 

and joint UMAP embedding (right) comparing scMultiome biological replicates (red and blue). 928 

Replicates are highly concordant. 929 

b. Histogram (left) and UMAP embedding (right) depicting distribution of scMultiome prediction ID 930 

scores of annotations transferred from the scATAC reference set to the scMultiome query set 931 

using the TransferData() function in Seurat
128

. The distribution is heavily skewed towards higher 932 

scores. 933 

c. scMultiome annotations based on prediction IDs. Most predicted annotations correspond to 934 

Isl1
MN

:GFP-positive cell types, consistent with scMultiome dissection strategy.  935 

d. Direct comparison of peak-to-gene links from scATAC versus scMultiome for motor neuron 936 

master regulator Isl1. scATAC peak-to-gene links are generated from imputed gene expression 937 

values (“GeneIntegrationMatrix”) whereas scMultiome links are generated from direct gene 938 

expression measurements (“GeneExpressionMatrix”). Ground truth enhancer CREST1 is highly 939 

accessible in Isl1-positive clusters with strong peak-to-gene links across both modalities. 940 

 941 

Extended Data Figure 6. Toggling input data for Activity-by-Contact enhancer prediction. 942 

a. Whole mount in vivo enhancer reporter expression for the seven VISTA Enhancers that are 943 

annotated for cranial nerve (CN) expression, inspected for and have CN7 expression, and have 944 

positive Activity-by-Contact (ABC) enhancer predictions for CN7 at e11.5. Peak-to-gene 945 

predictions match ABC predictions in all cases (7/7). Replacing CN7 e11.5 H3K27Ac or ATAC data 946 

with these data from a distantly related cell type (mouse embryonic limb e11.5) results in either 947 

a matching or a non-matching cognate gene prediction. Substituting cMN7 e11.5 histone 948 

modification data with “Limb H3K27Ac” histone modification data alters predictions for 3 out of 949 

7 enhancers. Substituting cMN7 scATAC data with “Limb ATAC” data alters predictions for 6 out 950 

of 7 enhancers. Neither substituted input correctly identifies the CREST1 enhancer (VISTA 951 

enhancer hs1419). Positive evidence of CN7 enhancement is depicted by arrows. 952 

b. Stacked barplot summarizing consequences of toggled input data. 953 

 954 

Extended Data Figure 7. Compound heterozygous non-coding candidate variants in an ISL1 enhancer. 955 

a. An affected trio with isolated congenital facial palsy, a CCDD affecting cMN7 (left), in which the 956 

affected offspring harbors compound heterozygous non-coding candidate SNVs (depicted by 957 

blue and red bars) affecting highly conserved nucleotides in enhancer hs2757 (right). The 958 
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enhancer is predicted to regulate Isl1 (peak-to-gene r = 0.744, ABC power law = 0.024). Variant 959 

coordinates are in NG_023040.1. 960 

b. In vivo reporter assay testing hs2757 enhancer activity. Enhancement is present in cranial nerve 961 

7 (arrows), an Isl1 positive cell type. Reporter expression views are shown as lateral (left) and 962 

dorsal through the 4
th

 ventricle (right). 963 

 964 

Extended Data Figure 8. Quality metrics for Basenji convolutional neural network accessibility 965 

predictions. 966 

a. Precision-recall (PRC, left) and receiver-operating characteristic (ROC, right) curves measuring 967 

favorable performance (as measured by positive predictive value, sensitivity, true positive rate, 968 

and false positive rate) of Basenji accessibility predictions for cMN7 e10.5. AU denotes area 969 

under curve. Dotted lines represent the baseline classification rate. 970 

b. Scatterplot depicting Basenji accessibility predictions vs. true scATAC sequencing coverage for 971 

cMN7 e10.5. Each point represents a 128 bp test bin whose sequence was excluded from 972 

training. Measured and predicted coverage are positively correlated (Pearson’s R = 0.833). 973 

c. Boxplot summarizing area under PRC (AUPRC) and ROC (AUROC), and Pearson’s R for all samples 974 

and replicates. Quality metrics are consistent across samples. Data points depicted in (a) and (b) 975 

are highlighted in red. Centre line – median; box limits – upper and lower quartiles; whiskers – 976 

1.5 x interquartile range. 977 

 978 

Extended Data Figure 9. Cell type-aware candidate variants alter reporter expression in vivo. 979 

a. Representative whole mount in vivo enhancer reporter expression for (top) hs2777 wildtype and 980 

(bottom) hs2777-mut enhancer constructs. For each reporter insertion, dosage is labelled 981 

(“single”, “tandem”). Reporter expression views are shown as lateral (left) and dorsal through 982 

the 4
th

 ventricle (right). Cranial nerve 7 (white arrows) and surrounding hindbrain tissue (dashed 983 

lines) show visible gain of reporter expression. 984 

b. Additional replicates as in (a), matched by injection batch (top and bottom). hs2777-mut 985 

constructs reproducibly show increased reporter expression across midbrain, hindbrain, and 986 

neural tube. Random insertions are denoted by an asterisk. 987 

c. hs2777 chromatin accessibility profiles in the cranial motor neurons and surrounding cell types. 988 

The wildtype element is accessible across multiple cMNs and surrounding cells. 989 
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d. UCSC screenshot depicting location of hs2777-mut variants: “Variant A” (chr17:48003393G>A, 990 

off-target), “Variant B” (chr17:48003557C>G, Moebius), “Variant C” (chr17:48003752A>C, DRS), 991 

and “Variant D” (chr17:48003826C>T, Moebius). hs2777-mut overlaps conserved non-coding 992 

sequence, particularly for Variants C and D. 993 

e. Neural net-trained in silico saturation mutagenesis predictions for all possible nucleotide 994 

changes in hs2777 for selected samples cMN6 e11.5, cMN6neg e11.5, cMN7 e11.5, and 995 

cMN7neg e11.5. Predicted loss-of-function nucleotide changes are colored in blue and gain-of-996 

function in red. Specific nucleotide changes corresponding to in vivo Variants C and D are boxed. 997 

Samples marked with “neg” are GFP-negative cells surrounding the motor neurons of interest. 998 

All other samples are GFP-positive motor neurons. Variants C and D are predicted to increase 999 

accessibility in relevant samples consistent with their corresponding phenotypes; DRS alters 1000 

cMN6 but not cMN7 development (Variant C), while MBS alters both (Variant D).   1001 
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 1351 

METHODS 1352 

Mouse husbandry, dissection, dissociation, FACS 1353 

We performed husbandry, dissection, dissociation, and fluorescence-activated cell sorting (FACS) as 1354 

described previously
128

. Briefly, we crossed C57BL/6 (JAX # 000664) female mice with either 1355 

129S1/C57BL/6J Isl
MN

:GFP (JAX # 017952
35

) or Hb9:GFP (JAX # 005029
128

) male mice and separated them 1356 

following one night of breeding. Pregnant females were sacrificed at 10.5 or 11.5 days post-conception 1357 

and whole embryos were grossly dissected in chilled 1x PBS (ThermoFisher) then immediately placed in 1358 

1x B27 supplement (Gibco 17504044) in Hibernate E (Fisher NC0285514). Next, GFP-positive cranial 1359 

motor neurons, GFP-positive spinal motor neurons, and GFP-negative surrounding cells were 1360 

microdissected in pre-chilled HBSS (ThermoFisher) and placed in 1x B-27 supplement, 1x Glutamax 1361 

(ThermoFisher 35050061), and 100 U/mL Penicillin-Streptomycin (PenStrep, ThermoFisher 15140122) in 1362 

Hibernate E (medium 2). Microdissected tissues were dissociated using papain and ovomucoid solutions 1363 

prepared from Papain Dissociation System (Worthington Biochemical LK003150). Tissues were 1364 

resuspended in papain solution. Samples were then incubated at 37°C for 30 minutes and agitated every 1365 

10 minutes to ensure complete dissociation. Following incubation, samples were spun down at 300 rcf 1366 

for 5 minutes, the supernatant was removed, and dissociated tissues were resuspended in 500 uL of 1367 

ovomucoid solution (plus or minus 100 μL depending on quantity of tissue). Tissues were again spun 1368 

down at 300 rcf for 5 minutes and resuspended in 500 μL of medium 2 (plus or minus 100 μL depending 1369 

on quantity of tissue) and transferred to a 5mL polystyrene round bottom tube on ice. Live GFP-positive 1370 

singlets were separated from GFP-negative cells (GFP-negative limb buds from embryos used as 1371 

negative control to set gates) using an ARIA-561 FACS machine at the Immunology Research Core at 1372 
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Harvard Medical School (for ATAC-seq samples), and an BD FACS Aria II at the Jimmy Fund Core at the 1373 

Dana-Farber Cancer Institute (for bulk and single cell RNA-seq samples).  GFP-positive cells were 1374 

collected either into 200 uL of media containing 1x Glutamax, 100 U/mL PenStrep, and 2% 2-1375 

Mercaptoethanol (Gibco 21985023) in Neurobasal-A Medium (ThermoFisher 10888022) for ATAC-seq, 1376 

or into 96 well fully-skirted Eppendorf plates containing a starting volume of 5 ul/well of Hibernate E for 1377 

single cell RNAseq, or directly into 1.5 ml tubes containing Qiagen RNeasy Lysis buffer/Buffer RLT 1378 

(Qiagen 79216) for the bulk RNAseq. Embryos were not selected based on sex. Embryos were excluded if 1379 

they did not match expected developmental stage as estimated from morphological features. 1380 

Single cell ATAC-seq: Nuclei Isolation, tagmentation, and sequencing 1381 

We performed fluorescence-assisted microdissection to collect samples cMN3/4, cMN7, and sMN from 1382 

Isl1
MN

:GFP mice and likewise to collect samples of cMN6, cMN12, and sMN from Hb9:GFP mice, each at 1383 

both e10.5 and e11.5. We performed FACS-purification as described above to collect GFP-positive motor 1384 

neurons, as well as GFP-negative cells surrounding the motor neurons to better distinguish between 1385 

motor neuron versus non motor neuron regulatory elements (for a total of 20 sample types, 9 with 1386 

biological replicates and 2 with technical replicates for 32 samples in all). Nuclei were isolated in 1387 

accordance with Low Cell Input Nuclei Isolation guidelines provided by ‘Demonstrated Protocol – Nuclei 1388 

Isolation for Single Cell ATAC Sequencing Rev A’ from 10x Genomics. Cell suspensions were spun down 1389 

at 300 rcf for 5 min at 4°C in a fixed angle centrifuge, the supernatant was removed, and the pellet was 1390 

resuspended in 50 uL of 0.04% BSA in PBS. The cell solution was then transferred to 0.2 mL tube and 1391 

centrifuged at 300 rcf for 5 minutes at 4 °C in a swinging bucket centrifuge. Without contacting the 1392 

bottom of the tube, 45 uL of supernatant was removed, and the cell pellet was resuspended in 45 uL of 1393 

chilled Lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% Nonidet 1394 

P40 Substitute, 0.01% Digitonin, 1% BSA, in nuclease-free water). Nuclei suspensions were incubated on 1395 

ice for 3 minutes and 50 uL of wash buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 1396 

0.1% Tween-20, in nuclease free water) was added to the suspensions without mixing. Nuclei 1397 

suspensions were then spun down in a swinging bucket centrifuge at 500 rcf for 5 minutes at 4 °C, 95 uL 1398 

of supernatant was removed, and 45 uL of nuclei buffer was added. Samples were again spun down in a 1399 

swinging bucket centrifuge at 500 rcf for 5 minutes at 4 °C, all supernatant was removed without 1400 

contacting the bottom of the tube, and nuclei were resuspended in 7 uL of nuclei buffer. 2 uL of this 1401 

final nuclei suspension was added to 3 uL of nuclease-free water, and 5 uL of trypan blue, and cell 1402 

viability was inspected using the Countess II FL Automated Cell Counter (Thermo Fisher Scientific 1403 
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AMQAF1000). We performed scATAC transposition, droplet formation, and library construction as 1404 

described in protocol CG000168 using v1 reagents (10x Genomics). scATAC libraries were sequenced on 1405 

the Illumina NextSeq 500 system using standard Illumina chemistry. Paired inserts were minimum 2 x 34 1406 

bp in length excluding indices, and libraries were distributed to achieve an estimated coverage of ≥ 1407 

25,000 read pairs per cell in accordance with 10x Genomics guidelines (actual mean coverage was 1408 

48,772 reads per cell). Samples failing quality control were excluded (e.g., failed TapeStation output). 1409 

scATAC preprocessing, peak calling, dimensionality reduction, and cluster analysis 1410 

We performed a modified workflow based on Cusanovich et al.
129

. Briefly, we generated fastq files from 1411 

bcl using cellranger mkfastq. We initially included all single cell ATAC barcodes perfectly matching an 1412 

allowlist provided by 10x Genomics. We also included fixed barcodes if they had a maximum Hamming 1413 

distance of 1 and if they were present in the top 2% of barcode counts. As a final check, we manually 1414 

inspected the distribution of fixed barcodes in reduced dimension space to ensure a roughly even 1415 

distribution across all cells. We aligned individual samples to the mm10 reference genome using 1416 

Bowtie2
129

, generated sample level .bam files, filtered reads with MAPQ < 10, and performed PCR 1417 

deduplication. We established heuristic coverage per cell thresholds for each sample separately. To 1418 

generate cell counts, we performed hard filtering based on log10[nfrags/barcode] for each sample 1419 

separately. 1420 

We performed LSI-based clustering to generate sample-level clades as described previously
130

. In order 1421 

to enrich peak representation from rare neuronal populations, we manually assigned between 3-7 1422 

clades to each sample and then performed peak calling on each clade using MACS2
130

. We first 1423 

performed cell QC based on heuristic filters (low FRiP and accessible peaks-per-cell outliers), then peak 1424 

QC (filtering peaks in a low proportion of remaining cells per clade). All post-QC cells and peaks were 1425 

then combined to generate a master peak-by-cell callset. Samples failing any stage of QC were excluded 1426 

(e.g., inadequate read coverage). 1427 

We performed LSI-based dimensionality reduction (log-scaled TF-IDF transformation followed by 1428 

singular value decomposition) on our binarized peak-by-cell matrix as based on previously described 1429 

methods
130

. We used umap() (https://github.com/lmcinnes/umap) to further reduce the dimensionality 1430 

of our data to 3-dimensional UMAP coordinates. We then performed cluster analysis using Seurat’s 1431 

SNN-graph approach. Once the major clusters were defined, we repeated our dimensionality reduction 1432 

and cluster analysis on each major cluster to generate subclusters.  1433 
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Cluster homogeneity, completeness, and purity 1434 

In order to formalize the agreement between our dissection/FACS labels (“class”) and our 1435 

cluster/subcluster labels (“cluster”), we calculated homogeneity h, completeness c, and Vmeasure Vβ, 1436 

using the sabre package
131

: 1437 
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Where C is the set of dissection/FACS class labels; K is the set of clusters or subclusters; ack is the 1443 

number of single cells belonging to class c and cluster or subcluster k; N is the total number of single 1444 

cells; and β is the ratio of weights attributed to c and h (Vβ is the weighted harmonic mean of c and h). 1445 

As β becomes very large or very small, Vβ approaches c and h, respectively. Here we set β to 1.  1446 

We also generated a per-cluster purity metric, p to quantify the maximum cellular representation of 1447 

each cluster/subcluster: 1448 
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Homogeneity, completeness, and Vmeasure calculations across varying conditions of C and K are 1449 

summarized in Supplementary Table 4. 1450 

Motif Enrichment and aggregated footprinting analysis 1451 

 1452 

We used the mouse motifs from the cisBP database from the chromVARmotifs database to compute 1453 

cluster and sample specific motif footprinting and enrichments (mouse_pwms_v2). For each motif, we 1454 

identified all sites in peaks where a motif was present. Clusters 3, 4, 5, and 9 were excluded from 1455 

footprint analysis. We next identified differentially accessible peaks for each group of interest using 1456 

ArchR’s getMarkerFeatures() function, normalizing for differences across groups with transcriptional 1457 

start site (TSS) Enrichment and log10(nFrags). We selected peaks for each group that met an FDR 1458 

threshold of below 0.01 and a LogF2C of >=1. Aggregated footprint plots were generated for select 1459 

motifs using plotFootprints(), by first normalizing the Tn5 bias by subtracting it from the footprinting 1460 

signal. For site-specific footprints, we used TOBIAS to generate Tn5-bias corrected bigwigs and footprint 1461 

scores across the genome for each cell type
131

. For bias estimation and correction we excluded ENCODE 1462 

denylist regions from mm10-blacklist.v2.bed (https://github.com/Boyle-Lab/).  1463 

In vivo lacZ enhancer validation 1464 

We selected 25 putative wildtype enhancers for downstream experimental validation based on the 1465 

following criteria. First, we selected elements with significant cell type specificity scores
51

. Next, we 1466 

excluded any elements that did not lift over to the human genome (hg19). We then identified elements 1467 

with evidence of H3K27Ac marks in the ENCODE portal
131

 and no existing experimental data in the VISTA 1468 

enhancer browser
132

 (freeze September 2019). Finally, we performed manual curation in order to select 1469 

for elements with high conservation, against elements in repetitive regions, and ensured representation 1470 

of elements from cMNs 3, 4, 6, 7, 12, and sMNs. 1471 

We performed in vivo enhancer testing using the enSERT transgenesis method described by Osterwalder 1472 

et al.
133

. Briefly, the orthologous human sequence each candidate enhancer was cloned into a pCR4-1473 

Shh::lacZ-H11 vector (Addgene plasmid # 139098) containing the mouse Shh minimal promoter, lacZ 1474 

reporter gene, and H11 safe harbor locus homology arms. The cloned construct, Cas9 protein, and H11-1475 

sgRNAs were delivered via mouse embryonic pronuclear injection (mouse FVB/NJ JAX #001800) and 1476 

transferred to female hosts. Embryos were collected at e11.5, stained with X-gal, and evaluated for 1477 

reporter activity. 1478 
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For candidate variant testing, we generated enhancer clones bearing the human reference or variant 1479 

allele as described above. In the case of compound heterozygous variants, we cloned both variants into 1480 

the same construct in cis. In the case of full enhancer deletion candidates, we cloned only the wildtype 1481 

enhancer. 1482 

Bulk ATAC-seq 1483 

We performed bulk ATAC-seq as described previously
127

 for FACS-purified cells from six 1484 

anatomic/temporal regions: Isl
MN

:GFP-positive cMN3 at e10.5 and e11.5, cMN7 at e10.5, sMN e10.5 and 1485 

e11.5, and Isl
MN

:GFP-negative hindbrain at e11.5. We processed the bulk ATAC sequencing data by 1486 

running the .fastq files through the Encode ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-1487 

seq-pipeline) using default parameters. To analyze peaks for each bulk sample, we used Irreproducible 1488 

Discovery Rate (IDR) optimal peaks, generated between pseudoreplicates or biological replicates when 1489 

appropriate. After generating peaksets for each bulk sample, we created a bulk master peakset by 1490 

concatenating all the individual peaksets and merging with bedtools merge. We further generated bulk 1491 

peaksets specific to each sample using bedtools subtract, allowing for ≤ 50% overlap between peaks. 1492 

Single Cell RNA-seq 1493 

Husbandry and collection strategy was identical to the scATAC strategy described above, except that we 1494 

combined GFP-positive and -negative cells from the same dissections. We performed single cell RNA-seq 1495 

for FACS-purified eGFP-positive motor neurons from 6 anatomic/temporal regions: cMN3+4 and cMN7 1496 

from Isl1
MN

:GFP mice and cMN6 from Hb9:GFP mice, all at both e10.5 and e11.5 (for total of 10 1497 

samples). In most samples we spiked in 10% surrounding eGFP-negative hindbrain cells as an internal 1498 

control for comparison to non-motor neurons. Samples were submitted to the Klarman Cell 1499 

Observatory/Regev Lab at the Broad Institute of MIT and Harvard for processing on a 10X Genomics 1500 

Chromium platform. The 10X Genomics Chromium Single Cell 3’ Reagent Kit (using v2 single index 1501 

chemistry, CG00052) was used for mRNA capture and library preparation. Samples were multiplexed for 1502 

a read-depth goal of 50,000 reads/cell (actual mean coverage was 94,829 reads/cell). Sequencing was 1503 

performed on a HiSeq 4000 by Broad Genomic Services using standard Illumina chemistry. The data was 1504 

then aligned in the Engle lab using Cell Ranger v2.1.1 against the ENSEMBL Mus musculus genomic 1505 

reference build GRCm38.87 (modified to include eGFP and tdTomato sequences). Quality control was 1506 

performed in Seurat to remove doublets and low-read cells. Analysis was done in Seurat where samples 1507 
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were integrated with Canonical Correlation Analysis (CCA)
134

. Motor neurons were identified from eGFP, 1508 

Isl1 and expression of other motor neuron markers (eGFP was regressed out to avoid affecting clusters),  1509 

Bulk RNA-seq 1510 

We performed bulk RNA-seq for FACS-purified eGFP+ cells from 7 anatomic/temporal regions: cMN3, 1511 

cMN4, cMN6, cMN7 at each corresponding brainstem level, at both e10.5 and e11.5 (except for cMN6 1512 

that was only collected at e11.5 due to cell number limitations at e10.5; with two biological replicates 1513 

from all times/regions and 1 additional technical replicate of cMN6, for a total of 15 samples). Samples 1514 

from multiple litters were merged to reach a threshold for appropriate cell number and sent to Rutgers 1515 

RUCDR for library preparation and sequencing. For the e11.5 samples, 200 ng/sample of RNA was 1516 

isolated with Oligo-dT beads, enriching for mRNA. Depletion of beta globin mRNA and ribosomal RNA 1517 

was performed. For the e10.5 samples and the e11.5 cMN6 samples, due to the lower total RNA from 1518 

fewer starting cells in these nuclei at these ages, whole-transcriptome Nugen Amplification was 1519 

performed. Samples were sequenced with a 100 bp paired-end strategy to sequence full-length 1520 

transcripts on an Illumina HiSeq2500 for an approximate read-depth of 60 million paired-end 1521 

reads/sample. This generated R1 and R2 reads for each of 2 lanes of data/sample that were 1522 

subsequently concatenated. STAR (Spliced Transcripts Alignment to a Reference)
134

, a splice-aware tool,  1523 

was used to align reads to ENSEMBL Mus musculus genomic reference build GRCm38.87, and RSEM 1524 

(RNA-Seq by Expectation Maximization)
135

 was used to generate the count files. We then used DESeq2
136

 1525 

to make comparisons. 1526 

 1527 

Generating peak-to-gene links 1528 

 1529 

For our original RNA inputs for peak-to-gene links, we performed scRNA-seq on cMN3+4, cMN6, and 1530 

cMN7 dissections (GFP-positive and -negative) at e10.5 and e11.5. Our husbandry and collection 1531 

strategy was identical to the scATAC strategy described above, except that we combined GFP-positive 1532 

and -negative cells from the same dissections. We performed scRNA seq as described in protocol 1533 

CG000168 using v2 single index chemistry and sequenced on the Illumina HiSeq 4000. To benchmark our 1534 

scRNAseq results, we also performed bulk RNAseq on cMN3, cMN6, and cMN7. 1535 

 1536 

We integrated multiple scRNA-seq datasets from GFP-positive and -negative cells from cMN3/4, 6, and 7 1537 

dissections at e10.5 and e11.5 into a single Seurat object using Seurat’s integration framework
76,135

. We 1538 
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excluded cells with more than 5% of reads aligning to the mitochondrial genome. After examining the 1539 

distribution of the number of unique features and number of unique reads per cell for each sample, we 1540 

manually filtered cells with low feature counts. Finally, we normalized each sample using the 1541 

NormalizeData() function, identified the top 10,000 variable features per sample, and scaled each 1542 

sample using the ScaleData() function.  1543 

  1544 

Next, we excluded scATAC clusters (clusters 3, 4, 5, and 9) with high proportions of GFP-positive sMN 1545 

and cMN12 dissected cells, as those samples are not represented in our scRNA dataset. We then 1546 

performed unconstrained scATAC-RNA integration on all remaining cells using 1547 

addGeneIntegrationMatrix() in ArchR
135

. 1548 

 1549 

We then evaluated the projected gene expression values from our scATAC-RNA integration for three 1550 

high-confidence scATAC clusters (cMN3/4.10, cMN6.6, and cMN7.2). We selected these clusters due to 1551 

unambiguous sample membership based on microdissection origin (purity), FACS labels (corresponding 1552 

to cMN7, cMN6, and cMN3/4, respectively), and known marker locus accessibility/expression. We 1553 

compared imputed gene expression from these clusters to corresponding bulk RNAseq samples that 1554 

were independently dissected and FACS purified. Specifically, we performed differential expression 1555 

analysis on bulk RNAseq data (DEseq v1.34.0
136

) and on imputed gene expression on scATACseq data 1556 

(using getMarkerFeatures() function in ArchR). We fit a linear model of the log2[fold-change] expression 1557 

for all combinations of bulk samples and single cell clusters, and confirmed a significant positive 1558 

correlation between projected gene expression for marker genes in each cluster against its 1559 

corresponding bulk counterpart. 1560 

 1561 

We calculated peak-to-gene correlations using ArchR’s addPeak2GeneLinks() function, with 1562 

reducedDims = “IterativeLSI_ArchR''. We included all high confidence links (FDR < 0.0001) with a 1563 

minimum correlation coefficient of ≥ 0.1, within +/- 500 kb of a given gene, which we reasoned would 1564 

include the vast majority of putative enhancers
76,137

, including those active in only a subset of cells. 1565 

 1566 

We then benchmarked this cMN peak-to-gene set against two alternative scATAC-RNA integrations 1567 

using subsetted scRNAseq data from the Mouse Organogenesis Cell Atlas (MOCA)
137

. First we created a 1568 

neuronal dataset set by integrating our oversampled cMN scATAC profiles with more uniformly sampled 1569 

sci-RNA neuronal clusters from MOCA (annotated as “Cholinergic Neurons”, “Excitatory Neurons”, 1570 
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“Inhibitory Neurons”, “Neural Progenitor Cells”, “Postmitotic Premature Neurons”, “Primitive Erythroid 1571 

Lineage”, and “Stromal Cells”). We removed any cells that were not collected at e10.5 and e11.5 to age-1572 

match our scATAC set. We also performed an scATAC-RNA integration using a more distantly related cell 1573 

type with minimal sampling overlap, (sci-RNA MOCA Cluster 34 annotated as “Cardiac Muscle Lineage”) 1574 

and included non-age-matched cells for this integration. We then generated peak-to-gene links as 1575 

described above and quantified the total number of links across different RNA integrations. 1576 

 1577 

To quantify and compare the distribution of peak-to-gene links across different genes, we tabulated 1578 

significant peak-to-gene links (r > 0.1 and FDR < 10
-4

) +/- 50 kb of each gene’s TSS. In the case of peaks 1579 

connected to multiple genes, we selected the link with the lowest FDR value. Next, we generated 1580 

modified Domain of Regulatory Chromatin (DORC) scores first described by Ma et al.
138

 by normalizing 1581 

all reads in our peak-by-cell matrix by unique fragment count. We then summed these normalized 1582 

values for all peak-to-gene connections within +/- 500 kb of each gene TSS for every cell. 1583 

 1584 

Single cell Multiome (scMultiome) 1585 

 1586 

We performed timed matings, microdissections, dissociation, and FACS to collect GFP-positive cMN3/4, 1587 

cMN7, cMN12, and sMN cells at e11.5 as described above. Instead of generating separate reactions for 1588 

each cell type, we pooled these cells prior to dissociation, selected GFP-positive cells via FACS, and 1589 

performed Low Cell Input Nuclei Isolation (10x Genomics CG000365) and Single Cell Multiome ATAC + 1590 

Gene Expression assay (10x Genomics CG000338) on a total of two pooled replicates. We performed 1591 

sequencing on a NextSeq 500 for Multiome ATAC and Gene Expression libraries separately, using a 1592 

custom sequencing recipe for ATAC provided by Illumina. We performed QC, dimensionality reduction, 1593 

and generated peak-to-gene links as described above using functionality in Signac and ArchR
70,139

. In 1594 

order to facilitate direct comparison across modalities, we calculated scMultiome fragment depth 1595 

against our high confidence scATAC peakset. We calculated multimodal weights for each cell using a 1596 

weighted nearest neighbour approach
140

 and performed ab initio graph-based clustering on our 1597 

scMultiome cell set. In order to annotate these clusters, we generated cell-cell anchors by defining 1598 

scMultiome clusters as the query set and our well-annotated scATAC clusters as the reference set. 1599 

Because each multiome cluster was typically dominated by a single predicted scATAC cluster, we 1600 

annotated each multiome cluster based on its maximum predicted scATAC membership. 1601 
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Single cell CUT&Tag 1602 

We collected cranial motor neurons (GFP-positive cMN3+cMN4 e11.5, cMN6 e11.5, cMN7 e10.5, and 1603 

cMN7 e11.5) as described above and performed a modified scCUT&Tag protocol74,125. Briefly, we 1604 

collected GFP-positive cells directly into fresh antibody buffer (20`mM HEPES pH`7.5, 150`mM NaCl, 1605 

0.5`mM spermidine, 1x protease inhibitor (Sigma 11873580001), 2 mM EDTA, 0.05% digitonin, 0.01 % 1606 

NP-40, 1× protease inhibitors and 2% filtered BSA). We centrifuged samples at 450 rcf for 5 minutes, 1607 

washed in 200 uL antibody buffer, centrifuged at 600 rcf for 3 minutes, resuspended in 1:50 H3K27Ac 1608 

primary antibody (monoclonal Rabbit anti-mouse, Abcam ab177178), and incubated overnight at 4°C 1609 

with gentle rotation. Nuclei were centrifuged at 600 rcf for 3 minutes, washed in 200 uL Dig-Wash-BSA 1610 

buffer (20`mM HEPES pH`7.5, 150`mM NaCl, 0.5`mM spermidine, 1x protease inhibitor, 0.05% 1611 

digitonin, 0.01 % NP-40, 1x protease inhibitor and 2% filtered BSA), centrifuged at 600 rcf for 3 minutes, 1612 

resuspended in 1:50 IgG secondary antibody (guinea pig anti-rabbit Novus Biologicals, NBP1-72763), and 1613 

incubated 1 hour at room temperature with gentle rotation. Nuclei were then centrifuged at 600 rcf for 1614 

3 minutes, washed 3x in Dig300-Wash-BSA (20`mM HEPES pH`7.5, 300 mM NaCl, 0.5`mM spermidine, 1615 

1x protease inhibitor, 0.05% digitonin, 0.01% NP-40, 1x protease inhibitors and 2% filtered BSA), 1616 

resuspended in 1:20 pAG-Tn5 (EpiCypher 15-1017), and incubated 1 hour at room temperature with 1617 

gentle rotation. Nuclei were centrifuged at 450 rcf for 3 minutes, washed 3x in Dig300-Wash-BSA, 1618 

resuspended in 200 uL tagmentation buffer (20`mM HEPES pH`7.5, 300`mM NaCl, 0.5`mM spermidine, 1619 

1x protease inhibitor, 0.05% digitonin, 0.01 % NP-40, 1x protease inhibitor, 2% filtered BSA, and 10 mM 1620 

MgCl2), incubated 1 hour at 37°C with agitation every 15 minutes. Tagmentation was halted with Stop 1621 

buffer (20`mM HEPES pH`7.5, 300 mM NaCl, 0.5`mM spermidine, 1x protease inhibitor, 0.05% 1622 

digitonin, 0.01% NP-40, 1x protease inhibitors, 2% filtered BSA, and 25 mM EDTA), centrifuged at 450 rcf 1623 

for 3 minutes, washed in diluted nuclei buffer (1x ATAC Nuclei Buffer (10x Genomics, PN-2000207) and 1624 

2% filtered BSA), centrifuged at 450 rcf for 3 minutes, and resuspended in diluted nuclei buffer. Intact 1625 

nuclei were stained with DAPI and were visualized and counted under fluorescent microscopy. 70 uL of 1626 

ATAC master mix (8 μL tagmented nuclei, 7 μL ATAC Buffer B (10x Genomics, PN-2000193), 56.5 μL 1627 

Barcoding Reagent B (10x Genomics, PN-2000194), 1.5 μL Reducing Agent B (10x Genomics, PN-1628 

2000087), 2 μL Barcoding Enzyme (10x Genomics, PN-2000139) was loaded for GEM generation 1629 

according to the 10x Genomics scATAC v1.1 protocol. Nuclei were diluted if necessary (up to a maximum 1630 

of 25,000 total nuclei per reaction). Subsequent GEM generation and cleanup steps were performed 1631 

according to the 10x Genomics scATAC v1.1 protocol. Library prep was also performed using the 1632 
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standard protocol, except that total PCR cycles were increased to 16. All centrifugation steps were 1633 

performed using a swing-bucket rotor. 1634 

Activity-by-contact (ABC) enhancer predictions 1635 

We generated enhancer predictions for four cell types, GFP-positive cMN3+4 e11.5, cMN6 e11.5, cMN7 1636 

e10.5, and cMN7 at e11.5, adapting the Activity-By-Contact (ABC) model v0.2 described previously
139,140

. 1637 

We defined potential enhancer regions by merging scATAC peaksets for each sample. We provided 1638 

sample-specific H3K27Ac read counts from scCUT&Tag experiments described above. We also provided 1639 

imputed RNA expression tables for each cell type from the scATAC-scRNA integration described above. 1640 

We estimated contact frequencies based on the ABC power law function. We evaluated our enhancer 1641 

predictions against 67 VISTA enhancers classified as positive for “cranial nerve”, of which 12 had ABC 1642 

enhancer predictions. Importantly, our ABC predictions also correctly identify the peak and cognate 1643 

gene for the CREST1 enhancer (VISTA enhancer hs1419), for which both the enhancer locus and cognate 1644 

gene are known
140

. 1645 

 1646 

Participant whole genome sequencing, reprocessing, SNV/indel calling and quality control.  1647 

Research participants were enrolled into the long-term genetic study of CCDDs at Boston Children’s 1648 

Hospital (BCH; clinicaltrials.gov identifier NCT03059420). The Institutional Review Board at BCH 1649 

approved the study. Informed consent was obtained from each participant or legal guardian. Individual-1650 

level data was de-identified and studies were performed in compliance with US 45.CFR.46 and the 1651 

Declaration of Helsinki.  WGS was performed at Baylor Human Genome Sequencing Center through the 1652 

Gabriella Miller Kids First Pediatric Research Program (dbGaP Study Accession: phs001247). Joint variant 1653 

calling for all samples was performed at the Broad Institute. We uploaded raw 30X coverage PCR-free 1654 

WGS data to the Broad Institute’s secure Google Cloud server and reprocessed these data through the 1655 

Broad Institute’s production pipeline. We realigned raw read data to the GRCh38 human reference 1656 

sequence using BWA-MEM and reprocessed using the Broad’s Picard Toolkit. We then performed 1657 

variant calling on the resultant BAM files using the Genome Analysis Toolkit (GATK 4.0 HaplotypeCaller). 1658 

In the final step of variant calling, we jointly genotyped each site in the genome alongside a collection of 1659 

over 20,000 reference genomes assembled by the Broad Institute. Joint variant calling provides two 1660 

crucial advantages over individual or batched genotyping
141

. First, it dramatically improves variant calling 1661 

accuracy due to i) clearer distinction between homozygous sites versus missing data; ii) greater 1662 
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sensitivity to detect rare variants, and iii) greater specificity against spurious variants. Second, joint 1663 

calling by its design generates a well-calibrated estimate of allele frequency within our cohort against 1664 

the large gnomAD database. Assuming that the allele frequency of a bona fide Mendelian disease-1665 

causing variant is lower than its disease prevalence, this information allows us to exclude variants with 1666 

implausibly high allele frequencies
141,142

. Finally, we performed variant filtering using GATK’s Variant 1667 

Quality Score Recalibrator and applied custom hard filters as required. 1668 

We performed rigorous QC at multiple stages of variant calling, performed filtering based on standard 1669 

sequencing quality metrics (e.g., uniformity of coverage, transition/transversion ratio, indel length 1670 

profiles, etc.), and compared them to our internal database of reference genomes. We used 1671 

heterozygosity of common variants on chrX and coverage of sites on chrY to confirm reported gender 1672 

and to identify sex chromosome aneuploidy. We also extracted variant calls from 12,000 well-covered 1673 

variant sites and used these variants for principal component analysis together with a large reference 1674 

panel to infer the geographical ancestry of samples, to infer pairwise relatedness of the samples, to 1675 

identify unexpected duplicates, and to determine cryptic relatedness and unexpected patterns of 1676 

relatedness within reported families. The data/analyses presented in the current publication have been 1677 

deposited in and are available from the dbGaP database under dbGaP accession phs001247.v1.p1. Adult 1678 

participants and guardians of children provided written informed consent for participation. No 1679 

participant compensation was provided. 1680 

Structural Variants 1681 

 1682 

We generated an SV callset using the ensemble GATK-SV pipeline as described previously 1683 

(https://github.com/broadinstitute/gatk-sv)
142–146

. Briefly, we performed joint genotyping and 1684 

harmonized SV calls from multiple detection tools (Manta, Wham, MELT, GATK-gCNV, and cn.MOPS
143–

1685 

147
), as well as manual read inspection using IGV

148
, and estimated SV allele frequencies against gnomAD 1686 

SV v2.1. We first excluded any SVs with cohort AF ≥ 0.005, irrespective of coding or non-coding status. 1687 

When evaluating for de novo and inherited SV candidates, we restricted our callset to 45 and 49 curated 1688 

pedigrees, respectively. One SV (deletion chr22:27493955-27497536) was identified through manual 1689 

curation. These SVs were subsequently used for downstream analysis incorporating pedigree non-coding 1690 

element information. 1691 

 1692 
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We also performed a separate bespoke analysis for genome-wide transposon insertions (L1, Alu, and 1693 

SVA) profiling on the GMKF WGS dataset using xTea
149

. Raw transposon insertions with different 1694 

features and confidence levels were annotated and processed to generate both rare and de novo 1695 

insertion lists for further variant interpretation. Beyond basic feature annotations (transposon family, 1696 

breakpoint, and gene annotations), all insertions were annotated with 1) population allele frequencies 1697 

(AFs) derived from the 1000 genomes project, gnomAD SV, euL1db, and other polymorphic insertion 1698 

collections from the literature
81,150–152

; 2) overlapping repeats annotated by RepeatMasker and 1699 

homopolymers; 3) other gene annotations such as pLI score, OMIM disease-causing genes, and potential 1700 

CCDD-related genes. For putative pathogenic rare insertions, we first applied population AF threshold of 1701 

0.01 to remove common polymorphic insertions. We then filtered nested insertions–where a putative 1702 

insertion landed in an existing insertion from the same transposon family–as they are error-prone in 1703 

short read sequencing platforms. Finally, we filtered for all high confidence annotations 1704 

(“two_side_tprt_both” and “two_side_tprt”) in affected samples for downstream genetic analysis. For 1705 

de novo insertions, raw calls of transposon insertions were examined and only those present in the 1706 

affected proband but fully absent in both parents (i.e., without a single supporting read) were retained. 1707 

Trio families with any member bearing abnormal high number of transposon calls were filtered, as these 1708 

outlier samples carried excessive noisy signals (clipped and discordant reads) and consequently false 1709 

positive calls could affect de novo insertion calling. We then removed insertions that have been reported 1710 

in populational datasets and known polymorphic insertion collections in the literature. We also filtered 1711 

out error-prone nested insertions. Finally, high-confidence insertions (feature = “two_side_tprt_both”) 1712 

in affected participants were reported as the de novo insertions for further genetic interpretation 1713 

(Supplementary Table 15).  1714 

 1715 

Applying cell-type aware filters for human non-coding mutations 1716 

 1717 

Our original WGS callset contained 49,824,956 variant calls for 899 individuals across 270 distinct 1718 

families with CCDDs. We loaded these unfiltered variant calls in .vcf format into Hail 1719 

(https://github.com/hail-is/hail) as a MatrixTable. Multi-allelic variants were split so that all variants are 1720 

represented in a bi-allelic format. In splitting multi-allelic variants, spanning deletions were not kept. 1721 

This resulted in 54,804,014 bi-allelic variants. These variants were annotated with TOPMed allele 1722 

frequencies, gnomAD genomes allele frequencies and allele counts, GERP scores and ClinVar variant 1723 

pathogenicity labels. Using native and custom Hail functions, we generated scripts to filter the 1724 
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MatrixTable’s variant calls based on custom specifications for variant annotations, variant locus, and call 1725 

quality filters. 1726 

  1727 

We set the following hard filters for all searches: 1728 

 1729 

gnomAD AF
152

 ( < 1 x 10
-3

 for dominant/de novo; < 1 x 10
-2

 for recessive) 1730 

TopMED AF
153

 ( < 1 x 10
-3

 for dominant/de novo; < 1 x 10
-2

 for recessive) 1731 

GERP
154

 > 2  1732 

Only return variants that pass all quality filters in the VCF 1733 

Genotype Quality: > 20 1734 

Allele Balance: > 0.15 (heterozygous calls) 1735 

 1736 

To generate a list of cell type specific genomic regions of interest for each disease group, we used data 1737 

from single cell ATAC-seq experiments performed on mouse cranial motor neurons at e10.5 and e11.5. 1738 

From here we implicitly assume that: i) we have correctly mapped each disease-relevant cell type (at the 1739 

appropriate timepoint) to its appropriate cognate phenotype; ii) biologically active cREs are accessible; 1740 

and iii) patterns of chromatin accessibility are correlated across species
148

. Peaks called on each cMN 1741 

sample were lifted over from mm10 to hg38, and the converted intervals were concatenated into a 1742 

single file and overlapping peaks were combined using bedtools merge. For disease types with > 1 cMN 1743 

of interest, the master list of intervals for each cranial nerve were again merged using bedtools merge to 1744 

create a list of intervals defining regions accessible in one or both cMNs. This final master list of intervals 1745 

was used to narrow the total genomic search space for each disease group, with only variants contained 1746 

in the regions specific to the cMN(s) of interest being retained.  1747 

 1748 

Modes of Inheritance 1749 

 1750 

In order to leverage pedigree information, we first stratified our 270 pedigrees into 7 major disease 1751 

categories that shared cell type specific aetiology (CFEOM, FNP, DRS, CFP, Moebius, Ptosis, 1752 

Ptosis/MGJWS). We further stratified these pedigree groups into subgroups based on 4 1753 

inheritance/phenotype patterns (familial/syndromic; familial/isolated; trio/syndromic; trio/isolated). We 1754 

incorporated inheritance by only retaining variants that matched appropriate mode(s) of inheritance in 1755 

at least one family in a given subgroup. For example, for trios we searched variants obeying de novo, 1756 
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dominant (if either parent was affected), compound heterozygous, and/or homozygous recessive modes 1757 

of inheritance. For de novo variants, we used Hail’s likelihood-based caller 1758 

(https://github.com/ksamocha/de_novo_scripts). For familial cases, we manually inspected each 1759 

pedigree structure and specified custom variant searches based on plausible modes of inheritance, 1760 

including de novo, dominant, compound heterozygous, homozygous recessive, and dominant with 1761 

incomplete penetrance. In the case of compound heterozygous variant configurations affecting non-1762 

coding elements, we defined each scATAC peak as our unit of heredity. Within this framework, one 1763 

variant in a peak had to be inherited from an unaffected father, and a different variant in the same peak 1764 

had to be inherited from an unaffected mother. Finally, we performed cohort-level filtering by 1765 

eliminating any rare candidate variants that were also present in any unaffected individuals in the 1766 

cohort (for dominant / de novo searches) or that were present in a homozygous state in any unaffected 1767 

individual (for recessive searches). We removed one outlier pedigree which had an excessive number of 1768 

candidate variant calls. 1769 

 1770 

For SV genetic interpretation, we performed inheritance based searches for dominant/de novo modes of 1771 

inheritance in the appropriate pedigrees, using the same custom search parameters as described for the 1772 

SNV/indel framework. We identified all de novo and inherited variants overlapping disease-relevant 1773 

peaks for each eligible pedigree using the findOverlapPairs() function from the GenomicRanges package. 1774 

 1775 

For TE genetic interpretation, we imported the list of TEs called with xTEA
149

 into Hail as a MatrixTable. 1776 

We performed inheritance-based searches for dominant/de novo modes of inheritance, again using the 1777 

same custom search parameters as described for the SNV/indel framework. We converted the TE 1778 

MatrixTable from hg19 coordinates to hg38, and filtered out calls with invalid/unknown contigs, and 1779 

only included highest confidence calls (Feature info = “two_side_tprt_both”). We applied estimated 1780 

gnomAD AF thresholds of 0.01 and 0 for dominant inherited and de novo alleles, respectively. We used 1781 

the same cell type-specific peak interval/disease group combination described above but added +/- 1782 

15bp padding to each peak to account for uncertainty in the insertion point.  1783 

 1784 

To identify multi-hit peaks, we aggregated candidate variant results within each cell type/disease pairing 1785 

by peak and selected for any peaks with SNVs/indels and/or SVs present in ≥ 2 families. For multi-hit 1786 

tabulation, we excluded any SVs > 100 kb or with clear coding etiology. Variants within multi-hit peaks 1787 

were required to obey the same broad mode of inheritance (i.e., dominant or recessive). In addition, 1788 
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dominant and recessive multi-hit variants could not be present in any unaffected individual across the 1789 

cohort in the heterozygous and homozygous configuration, respectively. Candidate variants in any 1790 

previously solved pedigrees were excluded from final tabulation
19,21,22,27,34,87,88,90,92,155–161

. 1791 

 1792 

Permutation testing 1793 

 1794 

To assess the statistical significance of the results that lie within the regions drawn from scATAC 1795 

sequencing of developing cranial motor neurons, we performed permutation tests to determine 1796 

whether the regions corresponding to specific cranial motor neurons were enriched for variants. We 1797 

analyzed dominant inherited and de novo variants separately. 1798 

  1799 

First, we performed a search to find variants using the same thresholds for frequency, conservation, 1800 

quality, and inheritance, but without limiting the search space to only genomic intervals defined in the 1801 

scATAC peaks. We then split these results by disease group based on the phenotype of the family to 1802 

create the genome-wide distribution of candidate variants for each disease group. After examining the 1803 

distribution of the number of genome-wide de novo variants per individual after filtering for thresholds, 1804 

we removed four individuals from the results due to existing significantly outside of the distribution 1805 

(with the threshold drawn at >75 de novos per individual). 1806 

  1807 

We then conducted permutation tests on each disease group, using regioneR.
162

 We used the original 1808 

set of genomic locations from the cranial motor neuron(s) scATAC data to randomly generate a new list 1809 

of peaks. The new list of randomly generated peaks was restricted to the same peak sizes and number of 1810 

peaks as the original list, and could not overlap. We used the hg38 masked genome from BSGenomes in 1811 

order to restrict the locations where the randomized peaks could be located. We then counted the 1812 

number of variants within these new regions. This process was repeated for 5000 iterations for each 1813 

disease group for both de novo and dominant inherited variants. 1814 

 1815 

ddPCR copy number validation 1816 

 1817 

We performed ddPCR droplet generation and droplet reading using the QX200 droplet digital PCR 1818 

system with Biorad ddPCR Supermix for Probes (Bio-Rad #186-3010). We performed copy number 1819 

genotyping for non-coding element hs2757 in pedigrees S190 and S138 using ddPCR Copy Number Assay 1820 
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(Bio-Rad dHsaCNS845311073) and TaqMan Copy Number Reference Assay, human, TERT (Life Tech 1821 

4403315) as an internal control. We used the following thermocycler protocol: 1 x [95°C for 10 min]; 40 1822 

x [94°C for 30s, 60°C for 1 min]; 1 x [98°C for 10 min], 1 x [4°C hold]. Genotyping was performed in 1823 

duplicate for all samples.  1824 

 1825 

Convolutional neural network training and prediction 1826 

 1827 

We generated accessibility predictions using Basenji
110,162

 after training the network with mouse motor 1828 

neuron scATAC-seq data. We generated separate predictions for each biological replicate (32 replicates 1829 

total). To preprocess scATAC-seq data before training the neural network, we first generated bigwigs 1830 

from the scATAC-seq bam files using mm10 as the reference FASTA. We clipped bigwig coverage at 150 1831 

to trim outliers. We generated training, validation, and test sequences with a split of 80% training 1832 

sequences, 10% validation, and 10% test. We identified regions that should not be included in training 1833 

sequences with a bed file containing regions that were hard masked in the mm10 fasta file combined 1834 

with the Encode denylist. The mm10 FASTA file was filtered to only include chromosomes 1-19, X, and Y. 1835 

  1836 

We trained the network retaining the model architecture from the original Basenji manuscript, with 1837 

seven dilated layers. For this work, the dense output layer contained 32 units (one for each sample). 1838 

Training was stopped when the correlation coefficient for validation predictions vs. validation 1839 

experimental data failed to improve after 12 iterations (patience = 12), and the weights from the best 1840 

iteration were saved as the final model. The complete architecture and list of hyperparameters can be 1841 

found at https://github.com/arthurlee617/noncoding-mendel under params.json. 1842 

  1843 

Using this trained network, we generated SNP activity difference (SAD) scores for each human candidate 1844 

variant by calculating the total difference in predicted reference vs. alternate coverage over a 131,072 1845 

bp window centered about each variant site (hg38). Here we made the implicit assumption that a 1846 

network trained on mouse accessibility data was portable across species within the same cell type
110,163

. 1847 

We also included four solved CFP pathogenic variants as truth data. For ease of interpretation, we 1848 

converted all SNV predictions from raw counts differences to Z-scores, which fit a normal distribution. 1849 

To calculate Z-scores for individual candidate indels, we used the SNV derived scores for our null 1850 

distribution. 1851 

 1852 
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Non-coding CRISPR mice and binomial ATAC 1853 

 1854 

We performed scATAC-seq for GFP-positive cMN7 e10.5 from two CRISPR-mutagenized mouse lines 1855 

(cRE2
Fam4/Fam4

 and cRE2
Fam5/Fam5

) corresponding to human non-coding pathogenic variants described 1856 

previously. cRE2
Fam5/Fam5

 is reported previously, corresponding to the pathogenic SNV 1857 

(chr6:88224892A>G) mouse line
163

. cRE2
Fam4/Fam4

 (chr6:88224893C>T) was mutated on a C57Bl6 1858 

background via CRISPR-Cas9 homology directed repair at the Boston Children’s Hospital Gene 1859 

Manipulation & Genome Editing Core and subsequently crossed onto the mixed Isl
MN

:GFP line described 1860 

above. For each mutant line, we generated two biological replicates (4 replicates total) on embryos from 1861 

[homozygous mutant x homozygous mutant] timed matings and compared to our wildtype cMN7 e10.5 1862 

replicates. For ad hoc comparison across these samples, we performed iterative LSI dimensionality 1863 

reduction and batch correction using Harmony
164

 and normalised coverage by log10(nfrags). We note 1864 

that cRE2
Fam4/Fam4

 also harbours an off-target C>T variant 54bp downstream from the target site (i.e., in 1865 

addition to the on-target variant). This off-target nucleotide is not mutated in any affected samples. 1866 

However, we do not explicitly exclude the possibility that this off-target variant contributes to the 1867 

difference in cRE2
Fam4/Fam4

 accessibility relative to wildtype. For binomial ATAC, we performed [wildtype 1868 

x homozygous mutant] timed matings for GFP-positive cMN7 from the e10.5 cRE2
Fam5/Fam5

 line, again 1869 

across two biological replicates.  1870 

 1871 

To test the cis effects of the mutant allele on accessibility, we tabulated reference versus mutant allele 1872 

counts and performed a two-sided exact binomial test: 1873 

 1874 

p  = # Pr 	& � �

 

 = � '�


()₀
	1 � )₀�



 
 1875 

 1876 

i ∈ {i: Pr(X = i) ≤ Pr(X = k) } 1877 

 1878 

where the number of trials, n corresponds to sequencing coverage, the number of successes, k 1879 

corresponds to reference allele count, and the expected probability of success, π0 corresponds to the 1880 

expected sampling probability of the reference allele under the null hypothesis H0: π = 0.5. 1881 

 1882 

Data availability 1883 
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All data generated in this work are available through the Gene Expression Omnibus accession number 1884 

GSExxxxxx. 1885 

 1886 

Code availability 1887 

Custom code to perform analyses from this work is available at 1888 

https://github.com/arthurlee617/noncoding-mendel.  1889 

 1890 

 1891 
   1892 
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CFEOM S25 AD chr10:129794079 TTGAG>T D EBF3 EBF3
† 

(Y-DRS)
 

170 hs2776 0.24 2.90E-07 8.37E-05 LoF -11.77 0.15 1.00 1.00 3.10 

MGJW S176 AD chr10:129884231 C>A I EBF3 EBF3
† 

(Y-DRS)
 

- hs2775 0.29 3.89E-10 4.88E-05 GoF 0.11 0.15 1.00 1.00 3.74 

Ptosis S95 AD chr10:129944464 G>C I EBF3 EBF3
† 

(Y-DRS)
 

- hs2774 0.21 7.76E-06 - GoF 0.98 0.15 1.00 1.00 5.14 

DRS S12 ar(h) chr11:72394626 C>G I CLPB PHOX2A (Y-CFEOM) 156 - 0.26 1.09E-08 1.41E-03 GoF 0.18 0.80 0.76 0.98 2.32 

Ptosis S32 AD chr2:175005662 C>T
††

 P CHN1 CHN1 (Y-DRS) - - 0.48 1.31E-28 1.39E-04 LoF -0.38 0.57 0.41 0.72 2.59 

CFEOM/ 

DRS 
S251 AD chr2:175006051 GCTT>G

††
 P CHN1 CHN1 (Y-DRS) - - 0.48 1.31E-28 - GoF 2.29 0.57 0.41 0.72 2.08 

DRS S230 AD chr20:40866929-40945626
†††

 D TOP1 MAFB (Y-DRS) 256 
hs2769 

hs2770 
0.23* 1.19E-05* - - - 0.40 0.94 1.00 2.19* 

CFP S205 ar(ch) chr5:51172762 T>A D ISL1 ISL1 221 hs1321 0.74 1.36E-86 2.26E-03 LoF -0.41 0.23 0.95 0.85 -2.28 

CFP S205 ar(ch) chr5:51172961 T>G D ISL1 ISL1 221 hs1321 0.74 1.36E-86 2.33E-03 LoF -0.12 0.23 0.95 0.85 -2.28 

DRS 
S190, 

S238 
ar(h) chr22:27493955-27497536

††,†††
 D MN1 MN1 307 hs2757 - - 1.38E-04 - - 0.48 0.99 0.92 0.29* 

DRS S191 ar(ch) chr17:1455690 G>A
††

 I CRK CRK - - - - - GoF 0.44 0.34 0.97 1.00 0.30 

DRS S191 ar(ch) chr17:1456361 G>A
††

 P CRK CRK - - - - 1.51E-03 LoF -1.24 0.34 0.97 1.00 - 

DRS S211 ar(ch) chr17:1455565 C>T
††

 I CRK CRK - - - - 1.19E-04 GoF 0.49 0.34 0.97 1.00 0.30 

DRS S211 ar(ch) chr17:1456436G C>G
††

 P CRK CRK - - - - 3.77E-04 LoF -12.28 0.34 0.97 1.00 - 

DRS S211 ar(ch) chr17:1456438 G>A
††

 P CRK CRK - - - - 3.77E-04 LoF -2.06 0.34 0.97 1.00 - 

DRS WL AD chr17:48003752 A>C
††

 D CDK5RAP3 CDK5RAP3 22 hs2777 0.57 8.04E-43 - GoF 4.31 0.97 0.24 0.54 1.94 

MBS S174 ar(ch) chr17:48003557 C>G
††

 D CDK5RAP3 CDK5RAP3 22 hs2777 0.57 8.04E-43 4.04E-03 LoF -0.15 0.97 0.24 0.54 1.94 

MBS S174 ar(ch) chr17:48003826 C>T
††

 D CDK5RAP3 CDK5RAP3 22 hs2777 0.57 8.04E-43 9.42E-04 GoF 1.69 0.97 0.24 0.54 1.94 

CFP S156 AD chr3:128459417G>C
††

 D DNAJB8 GATA2 7 - 0.28 6.08E-10 - LoF -4.88 0.34 0.98 0.87 - 

CFP S180 AD chr3:128459454A>G
††

 D DNAJB8 GATA2 7 - 0.28 6.08E-10 3.95E-05 GoF 2.88 0.34 0.98 0.87 - 

CFP S194 AD chr3:128459455G>A
††

 D DNAJB8 GATA2 7 - 0.28 6.08E-10 - GoF 11.40 0.34 0.98 0.87 - 

Table 1. Non-coding candidate variants and putative target genes. 1Coding loss-of-function intolerance - https://doi.org/10.1038/s41586-020-2308-7; 
2
Coding dosage sensitivity - 

https://doi.org/10.1016/j.cell.2022.06.036; 
3
Non-coding mutational constraint (1 kb windows) - https://doi.org/10.1101/2022.03.20.485034; 

†
Multi-hit gene; 

††
Multi-hit peak; 

†††
non-coding 

deletion; *mean value across deleted interval; (Y) denotes established CCDD gene for stated phenotype; AD: autosomal dominant/de novo, ar(h): autosomal recessive homozygous, ar(ch): 

autosomal recessive compound heterozygous, I: intronic, P: promoter, D: distal, LoF: loss-of-function, GoF: gain-of-function. 
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Figure 1. Integrating Mendelian pedigrees with single cell epigenomic data.

De novo / dominant

Recessive Incomplete penetrance WGS
Variant Calling

Variant QC

Microdissection
Dissociation

FACS-purification

Single cell ATAC-seq

270 CCDD Pedigrees (899 Individuals)

51,411,500 bp 51,411,600 bp 51,411,700 bp 51,411,800 bp 51,411,900 bp 51,412,000 bp 51,412,100 bp 51,412,200 bp 51,412,300 bp 51,412,400 bp 51,412,500 bp

941 bp

Cell type A

Cell type B

Cell type C

Disease X
Disease Y
Disease Z

Ep
ig

en
om

ic
 

an
no

ta
tio

ns
Pa

tie
nt

 W
G

S
va

ria
nt

s

Cell type-aware non-coding variant interpretation

RNA integration
Cognate gene links

Peak-centric aggregation
Gene-centric aggregation

Functional effect prediction

In vivo functional validation

Variant filters
Conservation

Mendelian segregation

Alignment
Peak calling, QC

clustering, annotation
liftOver

a

by GFP by cluster

ii

i iii

2

0

1

3

12

10

9

1318

20 65
1521

4
11

8

19

14

7
16

22
17

UMAP1

UMAP2

UM
AP

3
UMAP1

UMAP2

UM
AP

3

Cluster 2 /
cMN7 e10.5

Technical replicate
Technical replicate
Biological replicate

UMAP1

UMAP2

U
M

AP
3

c

d

5 15 4 17 910 19 11 2 8 713 22 2118120 014 1612 6 3

sa
m

pl
e

cMN6
cMN7
cMN12
sMN
cMN3/4neg
cMN6neg
cMN7neg
cMN12neg
sMNneg

cMN3/4

cluster

GFP-negative
homogeneityGFP-neg = 0.16
completenessGFP-neg = 0.17

GFP-positive
homogeneityGFP-pos = 0.84
completenessGFP-pos = 0.51

% cells
0 100

e10.5/e11.5

b

cMN3: CFEOM, CP cMN4: FNP
cMN6: DRS, MBS cMN7: CFP, MBS

L
R

Brainstem Midline

cMN3
cMN4

cMN6
cMN7

cMN12

by sample

UMAP1

UMAP2

U
M

AP
3

lacZhuman cRE

lacZhuman cRE 

wildtype

mutant

cMN3/4.e10.5

cMN12neg.e10.5
cMN12neg.e11.5

cMN12.e10.5

cMN12.e11.5

cMN6.e11.5
cMN6.e.10.5

cMN3/4neg.e11.5

cMN3/4.e11.5

cMN3/4neg.e10.5
sMNneg.e10.5
sMNneg.e11.5

sMN.e10.5
sMN.e11.5

cMN7neg.e11.5
cMN7neg.e10.5

cMN7.e10.5
cMN7.e11.5

cMN6neg.e11.5
cMN6neg.e10.5

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2023. ; https://doi.org/10.1101/2023.12.22.23300468doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.22.23300468
http://creativecommons.org/licenses/by/4.0/


Distance to motif center (bp)

Figure 2. Motif enrichment and aggregate footprint analysis distinguishes cell type specific TF binding motifs.
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Figure 3. E�ects of RNA input data on peak-to-gene accuracy
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Figure 5. An integrated coding/non-coding candidate allelic series for EBF3.
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Extended Data Figure 2. Comparing and contrasting bulk versus single cell ATAC pro�les
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Extended Data Figure 3. Cranial motor neuron scATAC peaks are underrepresented in regional bulk datasets.
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Extended Data Figure 5. Single cell multiome reproducibility and quality control.
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Extended Data Figure 6. Toggling input data for Activity-by-Contact enhancer prediction.
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Extended Data Figure 7. Compound heterozygous non-coding candidate variants in an ISL1 enhancer. 
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Extended Data Figure 8. Quality metrics for Basenji convolutional neural network accessibility predictions.
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Extended Data Figure 9. Cell type-aware candidate variants alter reporter expression in vivo.
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