Table 3.
Performance comparison of different ML models on the evaluation dataset.
Model | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
SVM | 0.91 | 0.82 | 0.94 | 0.88 |
Logistic Regression | 0.86 | 0.83 | 0.88 | 0.85 |
KNN | 0.83 | 0.86 | 0.82 | 0.84 |
AdaBoost (Decision Tree) | 0.79 | 0.9 | 0.76 | 0.83 |
Naive Bayes | 0.77 | 0.9 | 0.73 | 0.81 |
Bagging (Decision Tree) | 0.77 | 0.89 | 0.72 | 0.81 |
Random Forest | 0.76 | 0.92 | 0.71 | 0.82 |
Decision Tree | 0.71 | 0.92 | 0.65 | 0.78 |