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Kawasaki disease (KD) is a pediatric vasculitis caused by an unknown trigger in genetically 

susceptible children. The incidence varies widely across genetically diverse populations. Several 

associations with HLA Class I alleles have been reported in single cohort studies. Using a genetic 

approach, from the nine single nucleotide variants (SNVs) associated with KD susceptibility in 

children of European descent, we identified SNVs near the HLA-C (rs6906846) and HLA-B genes 

(rs2254556) whose association was replicated in a Japanese descent cohort (rs6906846 p=0.01, 

rs2254556 p=0.005). The risk allele (A at rs6906846) was also associated with HLA-C*07:02 

and HLA-C*04:01 in both US multi-ethnic and Japanese cohorts and HLA-C*12:02 only in 

the Japanese cohort. The risk A-allele was associated with eight non-conservative amino acid 

substitutions (amino acid positions); Asp or Ser (9), Arg (14), Ala (49), Ala (73), Ala (90), Arg 

(97), Phe or Ser (99), and Phe or Ser(116) in the HLA-C peptide binding groove that binds 

peptides for presentation to cytotoxic T cells (CTL). This raises the possibility of increased affinity 

to a “KD peptide” that contributes to the vasculitis of KD in genetically susceptible children.
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Introduction

HLA class I molecules present peptide to CD8+ cytotoxic T-cells (CTL) that screen 

damaged cells and play a central role in vascular pathology in Kawasaki disease (KD), 

an acute pediatric vasculitis [1, 2]. Each HLA type has specific amino acid sequences 

in the peptide binding groove and single amino acid substitutions at critical positions for 

peptides and/or T cell receptors are known to influence disease susceptibility and response 

to antigens [3–5]. CTL infiltrate the arterial wall in KD vasculitis and may recognize 

peptides derived from the disease “trigger”. Therefore, finding specific HLA types that are 

associated with KD susceptibility and that share single amino acid substitutions at critical 

positions in the peptide-binding groove may contribute to defining the trigger for KD.

Although association of single nucleotide variants (SNVs) in the HLA region with KD 

susceptibility has been reported [6–12], only a SNV in the HLA class II region (rs2857151) 

discovered by a Japanese genome-wide association study (GWAS) [9] was successfully 

replicated in both Chinese and European descent cohorts [10, 13]. We previously performed 

a pathway analysis using European descent GWAS data and reported several genetic variants 

associated with KD susceptibility in the HLA class I region [14]. In the current study, we 

focused on the subset of KD risk-associated SNVs that were also validated in a Japanese 

cohort. We postulated that risk-associated SNVs are associated with certain HLA types that 

share amino acid substitutions in the peptide binding domain resulting in preferential peptide 

binding to the antigen trigger of KD.
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Materials and Methods

Patient enrollment and sample collection

The patient cohorts are described in the study flow diagram (Fig.1). Diagnosis of KD 

was made according to American Heart Association criteria as previously reported [15]. 

Detailed information of the subjects for European descent Cohort for GWAS was previously 

described [16]. Multi-ethnic Cohort 1 (n=78, enrolled during 2002–2014) was enrolled at 

UCSD and enriched for carriers of the risk allele at rs6906846 (HLA-C) and/or rs2254556 

(HLA-B) in order to analyze the relationship between SNVs, high-resolution HLA typing 

results, and HLA amino acid variation. Cohort 2 contained Japanese KD subjects (n=275) 

who were a subset of the published Japanese GWAS [9] and were typed for HLA Class I 

at high resolution. Demographic, clinical, and laboratory data were summarized for Cohort 

1 (Supplementary Table 1) but were not available for Japanese Cohort 2. The Institutional 

Review Boards of the participating centers (UCSD and RIKEN) reviewed and approved 

this study and parental consent and assent as appropriate were obtained from parents and 

participants.

Genotyping

For Cohort 1, DNA was collected from either whole blood or mouthwash samples as 

previously described [16] and genotyping for rs6906846 (HLA-C) and rs2254556 (HLA-
B) was performed using TaqMan SNP genotype assays following the manufacturer’s 

instructions (Life Technologies, USA).

Pathway analysis and gene stability selection

The pathway analysis followed by gene stability selection to find the responsible SNVs/

genes driving the pathway association using European descent GWAS data (405 KD subjects 

and 6252 controls) [16] was previously reported [14]. From this analysis, 116 SNVs in 26 

genes were selected as drivers of the top 100 pathways associated with KD (Fig 1). In the 

current study, we focused on the nine SNVs in the HLA class I region. Since no other 

European descent GWAS dataset was available for replication, each SNV was evaluated for 

association with KD susceptibility (t-test, p<0.05) in a published Japanese GWAS dataset 

(428 KD subjects and 3379 controls) [9]. Meta-analysis was performed with PLINK.

High-resolution HLA typing and evaluation of amino acid variation

High-resolution typing for HLA-B and C was performed on Cohort 1 (mixed ethnicity). The 

sequence-specific oligonucleotide probe (SSO) method, sequence-specific primer method, 

and/or Sanger sequence-based typing methods were used. HLA-B and HLA-C high 

resolution typing for Japanese Cohort 2 was conducted by the SSO method using the 

WAKFlow (R) HLA Typing kit (Wakunaga Pharmaceutical) according to the manufacturer’s 

instructions.

Linkage between SNVs and HLA high-resolution types or amino acid sequence was 

identified in KD subjects who were homozygous for each SNV. The amino acid sequence 

encoded by HLA class I genes was aligned using the IMGT/HLA database (http://

www.ebi.ac.uk/ipd/imgt/hla/).
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Association between SNVs (rs6906846 (HLA-C) and rs2254556 (HLA-B)) and high 
resolution HLA types and amino acid sequence

Linkage between SNVs and HLA high-resolution types or amino acid sequences was 

restricted to KD subjects who were homozygous for each SNV since we were unable 

to assign SNV alleles and HLA sequences to the same chromosome. The amino acid 

sequence encoded by HLA class I genes was aligned using the IMGT/HLA database (http://

www.ebi.ac.uk/ipd/imgt/hla/). For Cohorts 1 and 2, association between alleles and each 

HLA-type or amino acid sequence was calculated using the Chi-square test.

Statistical analysis:

Association between genetic variants and clinical parameters was performed using non-

parametric tests due to the non-normal distribution. P-values were calculated by Mann–

Whitney U test for continuous variables and Chi square test or Fisher’s exact test for 

categorical variables. For the comparison of ≥ 3 variants, the Kruskal–Wallis test was used.

Results

Identification of KD-associated SNVs in the HLA region

Of the 116 SNVs in 26 genes recently published as potential drivers of the top 100 pathways 

associated with KD susceptibility in a European GWAS dataset [14] (Fig 1), nine SNVs 

were located within a 100 kb stretch in the HLA class I region (6p21.33) (association 

p<0.05, Supplementary Fig 1). Five SNVs clustered upstream or downstream of the HLA-C 
gene, while the other four SNVs clustered upstream of the HLA-B gene. Since there was no 

European GWAS data with which to validate these results, we used a previously published 

Japanese GWAS dataset [9] to test the association with KD susceptibility. Association of 

two of the nine SNVs (rs6906846 and rs2254556, Linkage disequilibrium (LD): r2<0.2) was 

replicated (428 KD subjects and 3,379 controls; p=1.1xE-02 for rs6906846 and p=4.9xE-03 

for rs2254556) (Table 1 and Supplementary Table 2). Meta-analysis confirmed significant 

association for these SNVs (p=7.5xE-05 and OR 1.2 for rs6906846; p=3.0xE-04 and OR1.3 

for rs2254556). Risk allele frequencies of these SNVs in different populations were as 

follows: rs6906846 (A allele): Hispanic 0.32, Asian 0.26, and European 0.31 and rs2254556 

(T allele): Hispanic 0.08, Asian 0.07, and European 0.16. Although two additional alleles 

(rs2596551 and rs2523535) were significantly associated in the meta-analysis, genotyping of 

the 78 individuals at these loci yielded only three homozygotes. Therefore, we confined our 

further analysis to the alleles that were individually associated in each cohort at p<0.05.

Association of SNVs with HLA-B and C alleles

The antigen presenting site of the HLA class I molecule is on the α1 and α2 domains 

and is comprised of ~180 amino acids [17]. Amino acid variation in HLA molecules 

that affects peptide binding affinity influences the peptide repertoire presented to T cells 

and the immunogenicity of the HLA-peptide complex [4, 18, 19]. We postulated that the 

risk-associated SNVs (rs2254556 and rs690846) could influence the polymorphic class I 

HLA amino acid sequences in the peptide binding groove, which, in turn, affects CTL 

recognition. Therefore, we first studied the association between the two SNVs (rs6906846 
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and rs2254556) and high-resolution HLA-B and HLA-C types, using only homozygous 

subjects in U.S. Cohort 1 (rs6906846: AA n=24, GG n=29 and rs2254556: AA n=4, GG 

n=54) since we did not have the sequence for each chromatid.

The A-allele (risk) of rs6906846 was associated with certain HLA types, including HLA-

C*07:02 (p=2.8E-10) and HLA-C*04:01 (p=8.6E-09) in the US multi-ethnic cohort (Table 2 

and Supplementary Table 3). This same association was replicated using only homozygous 

subjects in the Japanese cohort (rs6906846: AA n=23, GG n=125). Again, HLA-C*07:02 

(p=1.9E-17, US and Japanese combined p=2.8E-30) and HLA-C*04:01 (p=7.5E-05, US and 

Japanese combined p=1.1E-17) were associated with the A-allele (risk) of rs6906846 (Table 

2 and Supplementary Table 3). HLA-C*12:02, which was not found in the US multi-ethnic 

Cohort 1, was strongly associated with the A-allele (risk) of rs6906846 in Japanese Cohort 2 

(p=1.9E-18).

The frequency of HLA-C*04:01, C*07:02, and C*12:02 (associated with A-allele at 

rs6906846) in all subjects in Cohort 2 (Japanese n=275, 550 chromatids) was compared 

with published Japanese data [20]. HLA-C*12:02 was over-represented in Japanese KD 

subjects compared to the Japanese population at large (HLA-C*12:02: 15.3% vs.11.2%, p= 

3.5 E-03) (Table 3). This analysis could not be performed for multiethnic Cohort 1 that was 

intentionally enriched for subjects carrying the A-allele (rs6906846).

We also explored the potential relationships between the risk alleles in the HLA-B region 

and high resolution HLA types. The T-allele (risk) of rs2254556 (HLA-B) was not 

associated with HLA-C high-resolution types (data not shown). For association with HLA-B 

high-resolution types, the A-allele of rs6906846 and the T-allele of rs2254556 showed only 

weak association with HLA-B*07:02 (p=8.1E-05 and p=3.5E-07, respectively).

Association of SNVs with HLA-B and C amino acid variants

Next, we analyzed the association between the SNVs and the amino acid sequence for 181 

positions in the antigen presenting site of HLA-C and HLA-B using individuals homozygous 

for rs6906846 both in the U.S. (AA n=24, GG n=29; Cohort 1) and Japanese cohorts (AA 

n=23, GG n=125; Cohort 2). In both cohorts, we found highly significant associations 

(nominal p<1.0E-06) of certain amino acids with the risk allele of rs6906846 in eight 

positions in the peptide binding groove (α1 and α2 domain). The amino acids and their 

position in parentheses were as follows: Asp or Ser (9), Arg (14), Ala (49), Ala (73), Ala 

(90), Arg (97), Phe or Ser (99), and Phe or Ser (116) (Table 4). The association between 

these eight amino acid positions and rs6906846 was replicated in Japanese Cohort 2 with the 

strongest p value at amino acid position 73 (U.S. and Japanese combined p=7.7E-68) (Table 

4).

Based on crystallography [21], amino acid residues in five (position 9, 73, 97, 99 and 116) 

of the eight positions in the α−1 and 2 domains are predicted to point toward the peptide 

binding groove (Fig 2), and thus would be expected to interact with the peptide. None of the 

positions were at the sites that directly interact with the T-cell receptor.
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Association between rs2254556 and certain amino acids was evaluated using only 

homozygotes in U.S. Cohort 1 (TT n=4, CC n=54). The T-allele (risk) was not associated 

with amino acids in the antigen presenting site of HLA-B or HLA-C, although the number 

of subjects was limited. No association was detected between amino acids at position 77–80 

(critical position for binding to NK cells) and the risk alelles at rs6906846 and rs2254556.

Discussion

Using a genetic approach, we identified two intergenic variants, rs6906846 (HLA-C) and 

rs2254556 (HLA-B) associated with KD susceptibility in both European descent and 

Japanese subjects. High-resolution HLA typing and amino acid sequence analysis in U.S. 

multi-ethnic and Japanese cohorts demonstrated that genetic variation at rs6906846 was 

associated with amino acids at position 9, 14, 49, 73, 90, 97, 99 and 116 in the peptide-

binding groove of the subjects’ HLA-C molecule that defines the allele-specific peptide 

repertoire presented to CTL [22].

Other studies of the HLA-B and -C locus and KD pathogenesis have focused on allele 

associations in a Korean population, HLA/KIR relationships in an Italian KD population, 

and an analysis of the imputed HLA locus with HLA types in a European descent cohort. 

Our risk alleles were not in linkage disequilibrium with any of the risk alleles or associated 

with any HLA types reported in these studies [7, 11, 12, 23].

We propose a mechanism by which the risk alleles described here are linked to HLA-C 

types and amino acid substitutions that lead to preferential binding of KD antigen-derived 

peptides, which may lead to increased activation and expansion of CTL (Fig 3). As an 

alternative hypothesis, we need to consider that the amino acid substitutions associated with 

the rs6906846 (HLA-C) risk allele could have lower affinity for KD–associated peptides and 

therefore reduced presentation of relevant peptides to CTL, leading to reduced responses and 

delayed clearing of the inciting agent. Both hypotheses underscore the importance of antigen 

presentation to CTL in KD pathogenesis [1, 2].

Amino acid variation in HLA-C

Single amino acid substitutions at critical positions in the peptide-binding groove are known 

to influence disease susceptibility and response to pathogens [3–5]. As an example, of the 

five positions that were oriented toward the peptide binding site (position 9, 73, 97, 99 and 

116, Fig 2), certain amino acids at positions 97, 99 and 116 have been linked to ankylosing 

spondylitis and graft versus host disease (GVHD) [24–26].

The strongest combined p-value was observed at position 73, which is located on the 

alpha 1-domain alpha helix at the edge of the antigen-binding groove. Amino acid changes 

that alter charge or hydrophobicity (Table 4) change the peptide-binding repertoire [4]. At 

position 73, the A allele (risk) of rs6906846 (HLA-C) is associated with the hydrophobic 

amino acid alanine (A) but the G allele (protective) is associated with the hydrophilic amino 

acid threonine (T) in both US and Japanese cohorts. At position 9, the A allele (risk) 

of rs6906846 (HLA-C) is associated with the negatively charged, hydrophilic amino acid, 

aspartic acid (D), but the G allele (protective) is associated with the neutral, hydrophobic 
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amino acids phenylalanine (F) and tyrosine (Y) in both US and Japanese cohorts. These 

important amino acid changes would be expected to have a significant effect on peptide 

binding.

KD risk alleles and HLA-C peptide-binding specificities

The A (risk) allele at rs6906846 (HLA-C) was strongly linked to HLA-C*07:02, C*04:01, 

and C*12:02. The HLA type C*12:02 is not represented in US multi-ethnic populations 

and the frequency of this HLA type among the Japanese KD subjects was 15.3% compared 

to 11.2% among the Japanese population at large (p=3.5E-03). This is intriguing given 

the 12-fold higher rate of KD in children of Japanese descent compared to the rate in a 

mixed ethnic KD cohort from the U.S. [27]. Because the peptide repertoire is restricted 

by HLA type-specific amino acid variation in the peptide-binding grove, amino acid 

differences between the A (risk)-associated and G (protection)-associated HLA-C types 

may be helpful in identifying KD-specific antigens. Peptide binding affinity between 

candidate peptides (8–14-mers) and HLA-C types of interest can be calculated. (http://

www.cbs.dtu.dk/services/NetMHC) [28] (Fig 4). In addition, a published analysis using the 

transmission disequilibrium test on 12 informative KD families showed over-transmission of 

HLA-C*15, which tagged with leucine in position 116 that is located in the middle of the 

peptide binding groove of the HLA-C molecule [11]. The environmental or infectious trigger 

for KD may contain peptides with configurations that are preferentially presented by these 

KD-associated HLA-C types.

Strengths and limitations

A genetic pathway approach allowed us to discover HLA class I intergenic SNVs associated 

with KD susceptibility in both European descent and Japanese subjects. Because there 

were no available European GWAS datasets on which to perform replication, we used a 

Japanese GWAS to test for the association between SNVs and KD. Differences in LD 

structure between the two populations may have prevented us from replicating additional 

HLA variants identified through the pathway and gene stability analyses. Since association 

of these intergenic SNVs was discovered in ethnically diverse populations, we did not adjust 

for the population structure in subsequent analysis of tagged amino acids. Also, the minor 

allele frequency of rs2254556 was low, so it was difficult to assess whether the associations 

were lacking due to the small sample size, the low number of polymorphic alleles, or a 

true lack of association. Two SNVs (rs2596551 and 2523535) in HLA-B did not make 

the statistical cut-off of p<0.05 in Japanese cohort. However, there was a similar trend of 

association in both European descent cohort 1 and Japanese cohort 2. Future analysis of 

association between these SNVs and HLA-type is needed. An additional limitation of our 

study was the small sample size, which precluded a meaningful analysis of genotype vs. 

disease outcome (coronary artery status and response to treatment). High-resolution HLA 

typing was available for only a small number of our KD subjects. Enrichment of our mixed 

ethnicity Cohort 1 for individuals homozygous for the risk allele precluded a comparison 

to population frequencies of the associated HLA types in each individual ethnic group. 

Although interactions between HLA A, B and C and KIR genes have been reported in 

association with KD susceptibility, the KIR loci and HLA/KIR epistasis were not explored 

in the current study [23, 29].
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Conclusion

Association of KD susceptibility with two SNVs in the HLA class I in European 

and Japanese GWAS datasets highlights the importance of HLA-C-mediated antigen 

presentation in KD pathogenesis. These SNVs were associated with specific high-resolution 

HLA-C types suggesting an influence on peptide binding. These risk SNVs may mediate 

the preferential binding of “KD-associated peptides” derived from the environmental trigger, 

which are presented to CTL and/or are involved in NK cell regulation. Future studies should 

focus on HLA class I pathway genes in existing KD GWAS databases and high-resolution 

class I HLA typing in KD populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Study design
Summary of workflow including GWAS (Khor 2011 and Onouchi 2012), pathway analysis, 

gene stability selection (Shimizu 2016), and high-resolution HLA typing. GWAS: Genome-

wide association study, SNV: single nucleotide variant, HLA: Human leukocyte antigen, 

Shadowed box: previously published analysis, Open box: analysis in this study.
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Fig 2. HLA-C amino acid position in the peptide binding groove associated with rs6906846 A/G 
(risk/protective)
A schematic view of the peptide binding groove and amino acid positions (Adapted from 

van Deutekom & Keşmir 2015) (A). Residues pointing toward the peptide binding site can 

interact with the peptide and are colored in green. Residues pointing up from the peptide 

binding site can interact with the T cell receptor and are colored in red. The remaining 

residues are shown in black. The 3D structure of the HLA-C molecule (PDB id: 5VGE) 

and amino acid positions from the Protein Data Bank (PDB: http://www.rcsb.org/3d-view/

5VGE) (B). Amino acid positions that are associated with rs6906846 A/G (risk/protective) 

and pointing towards the peptide binding groove are circled in green (A) and in black filled 

circles (B).
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Fig 3. Hypothesis for effect of risk alleles in HLA-C on KD pathogenesis
We propose distinct mechanisms by which the risk alleles described here may affect KD 

susceptibility due to preferential binding of KD pathogen-derived peptides in the HLA-C 

antigen binding groove. The amino acids associated with the HLA-C risk allele may 

preferentially bind to KD antigen-derived peptides leading to T cell activation and arterial 

wall infiltration of CD8+ cytotoxic T cells. ER: endoplasmic reticulum
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Fig 4. Amino acid sequence of peptide nonamers that preferentially bind to HLA-C*04:01, 
C*07:02 and C*12:02.
http://www.cbs.dtu.dk/services/NetMHC (4.0 server)
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