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Abstract

Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found 

in association with bee nests and comprises both saprophytic and entomopathogenic species. To 

date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a 

genomic understanding of how pathogenesis evolved more broadly in the genus. To address this 

gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three 

commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison 

of the assembled genomes was carried out, including the previously published genome of A. 
apis. To identify candidate virulence genes in the pathogenic species, we performed secondary 

metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we 

captured single copy orthologs to infer their phylogeny and created codon-aware alignments to 

determine orthologs under selective pressure in our pathogenic species. Our results show several 

shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related 

genes present in the bee pathogens and commensals. Genes involved in metabolism and protein 

processing exhibit signatures of enrichment and positive selection under a fitted branch-site 

model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, 

supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, 

we discuss the importance of such genes in other fungal pathogens, suggesting a common route to 

evolution of pathogenicity in Ascosphaera.
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Introduction

Ascosphaera is a diverse genus of fungi that only associates with bee nests and comprises 

species that can range from commensals to pathogens (Anderson et al. 1998). Its type 

species, A. apis, causes chalkbrood disease in Apis mellifera honey bees, while another 

known pathogen in the genus, A. aggregata, infects the alfalfa leaf-cutting bee Megachile 
rotundata. The infection starts after the ingestion of ascospores and subsequent germination 

in the insect midgut. The pathogen then penetrates the gut epithelium and invades the 

hemocoel with subsequent systemic mycosis (Aronstein and Murray 2010). However, the 

mechanisms of pathogenicity are yet to be fully elucidated (Boomsma et al. 2014). Genomic 

and transcriptomic studies have heavily emphasized A. apis, showing the role of secondary 

metabolites, transcription factors, mating loci and even basal metabolism genes in its 

virulence (Cornman et al. 2012; Getachew et al. 2020, 2018), but little-to-no genomic 

information exists for other Ascosphaera species. Nonetheless, it has been proposed that 

some these species originally thought to occupy a commensal niche may be considered 

opportunistic pathogens (Klinger et al. 2013), although the majority of Ascosphaera species 

have been reported in saprophytic associations (Aronstein and Murray 2010; Pitts-Singer 

and Cane 2011; Bissett et al. 1996; James and Skinner 2005).

Generally, genes emphasized in pathogenicity for A. apis are related to sexual reproduction 

(Aronstein and Colby 2015) or penetration of the pathogen through the peritrophic 

membrane in the bees’ midgut. However, once the fungus has reached the hemocoel, 

overcoming the host’s innate immune system is also key to a successful infection (Aronstein 

and Holloway 2013; Valero-Jiménez et al. 2016). These mechanisms of avoiding or 

suppressing immune responses are well characterized in several fungal pathogens and 

represent important virulence factors for entomopathogenic fungi (Avulova and Rosengaus 

2011; Xu et al. 2017; Zhong et al. 2017). Other fundamental factors for the infection rely 

on how the pathogen’s metabolism interacts with the host to acquire nutrients and growth 

factors necessary for its development (DaFu et al. 2017). For instance, reactive oxygen 

species (ROS) defense responses and modulation of the oxidative stress in the midgut of 

infected bees seem to play a major role in the pathogenesis of A. apis to honey bees (Li 

et al. 2020). However, virulence factors in A. aggregata remain largely unclear and the role 

the commensal species play in bee health is opaque. Therefore, a comparative genomics 

approach is important to understanding the transitions and intermediate forms along the 

symbiotic spectrum from commensal to pathogen.

Previous phylogenies of Ascosphaera species were built on analysis of only a few gene 

regions (Klinger et al. 2013). While this multi locus approach improved the understanding of 

Ascosphaera evolution in comparison to prior analyses (Anderson et al. 1998) that included 

only ITS regions, we wanted to test for robustness of the phylogenetic relationships with 
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genomic scale data. Therefore, in this study, we aimed to unravel the genomic diversity 

underlying Ascosphaera species with different lifestyles and characterize potential genes 

related to the evolution of pathogenicity. This study represents the first effort to sequence 

the whole genomes of four Ascosphaera species. We then annotated and compared the 

genomes of five species of Ascosphaera, including two species that are known pathogens 

(A. apis, A. aggregata) and three that are considered saprophytic (A. pollinicola, A. atra, 
A. acerosa). We expected that the evolution of pathogenicity would leave signatures of 

enrichment and natural selection in genes that contribute to virulence. Specifically, we 

predicted that biosynthetic and secondary metabolite genes will be present or altered in only 

the pathogenic species and not the commensal species.

Results

Genome assembly

Genome quality statistics and BUSCOs completeness scores are summarized in depth in 

Table 1. In brief, our genome completeness ranged from 24.4%-73.8%, N50 from 2,504 - 

482,601, and L50 from 13 - 3,523 (Table 1). The coverage ranged from 57.9-99x, the GC 

content from 47.12-61.64, the heterozygosity from 0.18-3.17 and the repeat content from 

3.90-32.20 (Table 1).

A gene set enrichment analysis of MEROPS and CAZYme families did not reveal any 

significant hits.

Phylogeny and single copy orthologs under positive selection for pathogens

To further characterize genes within these families and how they are tied to the evolutionary 

history of the genus Ascosphaera, we assessed the selective pressure in different branches 

of their phylogeny. Across all five species, we detected 1,602 single copy orthologs. When 

we excluded A. atra we detected 3,058 single copy orthologs. Our resulting species tree 

revealed that A. apis and A. pollenicola were most closely related to each other, forming 

a pair of sister taxa (Fig. 1A). Ascosphaera aggregata was sister to the A. apis and A. 
pollenicola pair, followed by A. acerosa and most distantly A. atra (Fig. 1A). After intensive 

quality control measures about 20% (n = 279 for all 5 species, n= 616 when A. atra 
excluded) of the single copy orthologs analyzed were converted to nucleotide alignments 

and used in CodeML analyses to detect signatures of positive selection in the pathogens. 

After manually inspecting each result from CodeML and removing cryptic paralogs to 

eliminate false positives, we had a total of 18 genes with significantly elevated DN/DS ratios 

in the pathogens (FDR < 5%, Fig. 1B, supplementary table S1). The two most abundant 

classes of genes were related to primary metabolism and protein processing based on gene 

ontology (GO) terms. Broadly, 7 of these genes relate to amino acid, carbohydrate and 

inorganic ion transport and metabolism, 6 are involved in RNA processing, translation 

and post translational modification, 2 in secondary metabolite biosynthesis, transport and 

catabolism and 2 in energy production and signaling (Fig. 1B, supplementary table S1).
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Shared and unique biosynthetic gene clusters between species

In order to investigate what positively selected genes may be involved in biosynthetic 

pathways, we screened for BGCs that would provide clues to the virulence of the pathogenic 

Ascosphaera species. For this, we predicted and compared secondary metabolite genes 

in the newly assembled genomes to our new annotation of the A. apis genome (Fig. 

2). Ascosphaera aggregata displayed the most BGCs in common with the honeybee 

pathogen (A. apis). Similarities included the terpene oxidosqualene lanosterol cyclase 

(87.64% identity with A. apis from BLASTp). In A. apis, this cluster included the 

translation initiation factor 4B, SGT1 and CS domain protein, and 54S ribosomal protein 

L2 mitochondrial genes. Ascosphaera aggregata displayed genes for DNA damage repair 

protein Rad9 and 60S ribosomal protein L2 with 66.77% and 71.76% identity to A. apis, 

respectively (supplementary table S2). The meiotic recombination protein spo11 is also 

present in the cluster of both species (Fig. 2C). Another cluster shared by the two pathogen 

species was a non-reducing type 1 polyketide synthase (T1PKS), classified by SMCOG as 

a beta-ketoacyl synthase (Score: 206.9; E-value: 8.9e-63 in A. apis, fig. 2D). The cluster 

has genes encoding for conidial pigment biosynthesis scytalone dehydratase Arp1, Zn(2)-C6 

fungal-type DNA-binding domain protein and bZIP-1 transcription factor in both pathogens. 

Unlike the pathogen species, A. pollenicola exhibited 100% similarity in the T1PKS cluster 

with the 1,3,6,8-tetrahydroxynaphthalene biosynthetic gene cluster from Nodulisporium 
sp. ATCC74245 (supplementary table S2). A nonribosomal polyketide synthase cluster 

containing genes encoding nucleotide oxidoreductases and leptomycin resistance proteins 

were also shared among the two pathogens (Fig. 2A). This cluster’s primary biosynthetic 

enzyme, which encodes an amino acid adenylation domain, is similar to a copy found 

in A. acerosa, with approximately 50% of identity (Fig. 2A). Ascosphaera apis was the 

only species to contain a fungal ribosomally synthesized and post-translationally modified 

peptides (F-RiPP) cluster (supplementary table S2).

No clusters shared by or exclusive to the commensal species were found, although A. 
acerosa displayed one exclusive cluster containing a AMP-dependent synthetase and ligase, 

with 55.75% identity to Hydroxamate-type ferrichrome siderophore peptide synthetase 

from Penicillium digitatum Pd1 (supplementary table S2). Additionally, all of the species 

presented one Nonribosomal peptides (NRPS) cluster with an AMP-dependent synthetase 

and ligase gene (Fig. 2B) that varied between 40% and 60% identity with D-alanine-

poly(phosphoribitol) ligase subunit 1 from Paracoccidioides lutzii Pb01. The exception 

was A. acerosa, to which the BLASTp search returned N-(5-amino-5-carboxypentanoyl)-L-

cysteinyl-D-valine synthase from Coccidioides immitis with 81% identity. A. aggregata 
harbored, in this cluster, another AMP-dependent synthetase and ligase gene that returned 

44% identity with enterobactin synthetase component F from Coccidioides immitis RMSCC 

2394, but did not align with the other genes (supplementary table S2). Another gene found 

in this cluster for all species was a cysteine synthase that showed 83.68% identity with 

a cystathionine beta-synthase gene from A. apis. Finally, and also present in all species, 

an NRPS-like cluster containing AMP-dependent synthetase and ligase as its main gene, 

returned matches from BLASTp ranging from 58% to 100% identity with Male sterility, 

NAD-binding protein from A. apis. A second copy of this NRPS-like cluster existed in all 
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species, with the same BLASTp hit in A. apis and A. polenicola for the primary biosynthetic 

gene, but with different secondary genes (supplementary table S2).

Discussion

Natural selection on carbohydrate metabolism and protein processing genes may be the most 

important process underlying evolution of pathogenicity in the genus Ascosphaera. In this 

paper, we describe the genomes of four Ascosphaera species and provide, for the first time, 

a thorough gene content analysis and comparative genomics of these species along with the 

previously published A. apis genome. Assessment of the quality of the genome assemblies 

indicate they were not as complete as preferred for comparative genomics. This could be due 

to the repeat content because our GC content, heterozygosity and DNA extractions do not 

appear problematic (Table 1, supplementary figure S1). Nevertheless, this makes our results 

more conservative because they represent only a subset of the possible genes. Although 

BUSCO scores indicate that some genes may be absent due to the incomplete nature of 

the genomes, our analysis identifies important metabolic and virulence genes for the new 

genomes of A. aggregata, A. acerosa, A pollenicola and A. atra.

Glycoside Hydrolases may represent a novel potential for characterization of commensalism 

in these fungi. The GH2 family includes β-galactosidases, β-glucuronidases, β-

mannosidases, which are mainly involved in the hydrolysis of sucrose, maltose and trehalose 

and have been associated with saprophytic niches of pollen colonization (Gilliam et al., 

1989). Such enzymes were also reported in Ascosphaera, being proposed as potential 

markers for the identification of A. apis causing the chalkbrood disease in bee colonies 

(Gilliam and Lorenz, 1993). This, coupled with the fact that Glycoside Hydrolases are 

observed in this study being under positive selection in A. apis, suggests that this gene 

likely derived from those homologs present in commensal species and that its functions are 

advantageous to the pathogenic niche, thereby being fixated in its populations. Whether this 

is due to paralogy and exactly what functions are involved in these different niches, however, 

still needs to be elucidated by further studies.

Primary metabolic flexibility has also been shown to play a key role in virulence for 

several pathogenic fungi (Ene et al. 2014). Many of the orthologous genes that have 

signatures of positive selection in our study perform primary metabolic functions with an 

emphasis on carbohydrate transport and metabolism. This is consistent with other studies 

where the highest percentage of enriched pathways in A. apis during infection had to 

do with metabolism related genes (Getachew et al. 2020). Similarly, metabolic flexibility 

has been demonstrated in the human pathogenic yeast Candida albicans in its ability to 

express glycolytic, gluconeogenic and glyoxylate cycle enzymes simultaneously allowing 

for assimilation of several carbon sources at once (Sandai et al. 2012). Furthermore, 

virulence was reduced when any of the three mentioned cycles were disrupted in Ca. 
albicans as well as in Cryptococcus neoformans mutants with glycolytic defects (Barelle 

et al. 2006; Price et al. 2011). In fact, in Cr. neoformans the intimate role of metabolism 

regulation in virulence is well documented (Kronstad et al. 2012). Still, researchers were 

surprised to find that A. apis could grow well on several different tested substrates besides 

cellulose indicating that metabolic flexibility may be key to its success as well (Shang et al. 
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2016). These findings are consistent with our results showing that the abundance of genes 

coding for carbohydrate active enzymes seem to be driving the evolution pathogenicity in 

A. apis and A. aggregata. One of the specific enzymes under positive selection in both 

pathogens was fructose-bisphosphate aldolase 1 (FBA1), which has been shown to be better 

at hexose synthesis through the gluconeogenic pathway (Marsh and Lebherz 1992). Hence, 

it might prove important for the Ascosphaera pathogens to utilize different sugar metabolic 

pathways. This specific enzyme, FBA1, is a key virulence factor in Mycobacterium 
tuberculosis, Toxoplasma gondii, and Francisella novicida (Puckett et al. 2014; Blume et 

al. 2015; Ziveri et al. 2017). It is, therefore, tempting to speculate that such enzymes may 

play a similar role in utilizing alternative carbon sources in entomopathogenic Ascosphaera 
species. Another carbohydrate metabolism enzyme showing signatures of positive selection 

in our Ascosphaera pathogens was D-arabitinol dehydrogenase. It was first described in 

the context of pathogenicity in plants (Hallborn et al. 1995), then subsequently found 

in the plant pathogen Uromyces fabae with high titers of D-arabitinol dehydrogenase in 

the haustorium of the fungus, one of its pathogenic structures, used to penetrate the cell 

wall and infect the plant (Link et al. 2005). Additionally, this enzyme has a detoxifying 

activity for reactive oxygen species (ROS) produced by the host as a defense mechanism 

against the fungus (Link et al. 2005). Furthermore, D-arabitinol dehydrogenase was found 

to be the most highly down-regulated gene in a transcriptomic analysis of A. apis in 

vivo-versus in vitro (Cornman et al. 2012). These two lines of evidence - transcription and 

positive selection - strongly suggest that D-arabitinol dehydrogenase is an important gene 

for Ascosphaera pathogenicity. This has interesting implications for the role this enzyme 

might play not only for the metabolism, but also for the pathogenicity of entomopathogenic 

fungi in general, especially considering studies that have demonstrated that filamentous 

endophytic insect pathogenic fungi such as Metarhizium spp. and Beauveria spp., use very 

similar mechanisms to infect their hosts. In fact, the same gene appears to be involved in the 

processes of virulence in insects and in plant colonization (Branine et al. 2019).

Secondary metabolite genes also seem to be involved in pathogenicity and are in 

general observed more in the clade comprising both bee pathogens and A. pollenicola. 

For example, A. apis presented an exclusive fungal ribosomally synthesized and post-

translationally modified peptides (F-RiPP) biosynthetic cluster, comprising the cytochrome 

P450 gene. Molecular characterization of this enzyme family in the entomopathogenic 

fungus B. bassiana revealed that cytochrome P450 is involved in the degradation of 

hydrocarbons in the outermost layer of insects’ epicuticle (Pedrini et al. 2010). As 

previously mentioned, most filamentous entomopathogenic fungi penetrate the exoskeleton 

to infect insect hosts. However, Ascosphaera spp. spores infect bees after being ingested, 

and thus need to overcome the peritrophic membrane (PM) barrier to cause disease. 

Although hydrocarbons haven’t yet been described in the PM, its composition is mostly of 

chitin, glycosaminoglycans, as well as proteins and proteoglycans (Hegedus et al. 2009). N-

acetyltransferase O1 and gamma-glutamyl transpeptidase, present in the F-RiPP biosynthetic 

cluster may be involved in the adhesion and degradation of the PM by this pathogen. 

A class of acetyltransferase also showed signatures of significant positive selection in A. 
apis, once again highlighting the potential arsenal of carbohydrate active enzymes on the 

capacity of the genus to infect its hosts. Similar mechanisms of chitin degradation enabling 
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active PM invasion have been reported for other bee pathogens, such as that of the bacteria 

Paenibacillus larvae (Garcia-Gonzalez and Genersch 2013).

The presence of this gene cluster is especially interesting to consider in light of our 

other positively selected genes in the pathogen clade being implicated in post translational 

modifications, as they could be potentially playing ubiquitin-like roles (Getachew et al. 

2020). Post translational modification might be especially useful inside a host or between 

different lifestyles as in opportunistic pathogens (Lorenz 2013). In Cr. neoformans, upon 

temperature shifts associated with entry into a host, the mRNA encoding ribosomal proteins 

are rapidly degraded (Bloom et al. 2019). This transcriptional and translational rewiring 

has been suggested to be a key mechanism for Cryptococci to withstand stress and 

evade the innate immune system (Bloom et al. 2019). Similarly, our positively selected 

gene dihydrodipicolinate synthase, present in a T1PKS biosynthetic cluster in A. apis 
and A. aggregata, was shown to be important in stress tolerance, vegetative growth and 

pathogenesis in Fusarium asiaticum (Ren et al. 2018).

Infections caused by A. apis and A. aggregata are known to be temperature sensitive (Bailey 

1968, Xu and James 2012). Interestingly, Apis mellifera (A. apis host) can recognize A. apis 
infections and induce a “social fever” to heat up the brood cells and kill the fungi before 

infection progresses too far (Starks et al. 2000). In the alfalfa leafcutting bee (Megachile 
rotundata), both high and low temperatures appear to induce an immune response before 

infection can take hold (Xu and James 2012). Temperature stress on Ascosphaera is 

especially interesting because heat shock proteins present in biosynthetic clusters for A. 
apis and A. pollenicola show signatures of positive selection in A. apis. Such proteins have 

been implicated in virulence in several other pathogenic fungi. For instance in Metarhizium 
robertsii (a widely distributed insect pathogen used for insect pest control) when genes 

responsible for heat tolerance were knocked out, the expression of five different heat shock 

proteins were eliminated and virulence was highly reduced in the Galleria mellonella host 

(Xie et al. 2019). Similarly, Aspergillus fumigatus demonstrated an inability to grow in 

vitro and a loss of virulence in a murine model when HSP90 was repressed (Lamoth et al. 

2014), demonstrating the importance of chaperone-like functions in the virulence of other 

Eurotiales and possibly in the genus Ascosphaera.

In regard to the ribosomal proteins under positive selection, there are several “extra 

ribosomal” functions notably implicated in immune signaling and disease (Zhou et al. 

2015). For instance, some of these ribosomal proteins are found in the terpene lanosterol 

synthase (oxidosqualene cyclase) cluster, showing their involvement in the biosynthesis of 

terpenes. This BGC is present only in the bee pathogens A. apis and A. aggregata and in 

A. pollenicola. Lanosterol synthase catalyzes the conversion of (3S)-2,3-oxidosqualene to 

lanosterol in the biosynthetic pathway of sterols and triterpenes (Abe 2007; Shang et al. 

2010). The lanosterol backbone can be, then, modified to a variety of different structures. 

A similar lanosterol cyclase cluster has been proven to be upregulated in Metarhizium 
anisopliae during the early stages of infection in the tick Rhipicephalus microplus, which 

indicates an involvement with the pathogenic process in this fungus (Sbaraini et al. 2016) 

and quite possibly in the pathogenesis to both honeybees and leaf-cutting bees as well.
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We demonstrate that several genes playing classic entomopathogenic roles in ascomycete 

fungi are also present in Ascosphaera species previously thought to be commensal. For 

example, A. acerosa presented an exclusive BGC containing only a hydroxamate-type 

ferrichrome siderophore peptide synthetase gene, which is a common type of siderophore 

produced by hypocrealean fungi (Liu et al. 2017) suggesting a possible virulent activity for 

the species. Additionally, a biosynthetic cluster similar to D-alanine-poly (phosphoribitol) 

ligase was found in all species, except in A. acerosa. This cluster displayed high similarity 

to N-(5-amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase. To date, there is no 

comprehensive characterization of this ligase in fungi, but there is very robust evidence that 

it is necessary for the avoidance of insect cationic antimicrobial peptides by the modification 

of teichoic acids in the cell wall. In the entomopathogenic bacteria Bacillus thurigiensis and 

B. cereus (Wu et al. 2019), the mechanism involves positively charging the cell surface thus 

repelling these AMPs and resisting the host’s immune response. Ascosphaera aggregata 
displayed a second gene in this biosynthetic cluster with high amino acid identity to 

the enterobactin synthetase component F, a homolog of the catecholate-like siderophore 

produced by Enterobacteriaceae and other Eurotiomycetes (Haas et al. 2003). Furthermore, 

an NRPS cluster in A. apis, A. aggregata and A. acerosa contained a pmd1 gene, responsible 

for resistance to the potent antifungal Leptomycin B. This is, to our knowledge, the first 

report of antifungal resistance genes in Ascosphaera spp. The biosynthetic cluster has 

highly similar genes to the siderophore dimethylcoprogen produced by the citrus pathogen 

Alternaria alternata (Chen et al. 2013), which has also been previously identified in 

entomopathogenic fungi (Krasnoff et al. 2020; Molnár et al. 2010). Taken together, our 

findings agree with the previous hypothesis that additional Ascosphaera species besides A. 
apis and A. aggregata, have the potential to be opportunistic pathogens of bees (Bissett et al. 

1996; Klinger et al. 2013; Skou and Hackett 1979), implicating that entomopathogenicity is 

a characteristic that most likely evolved from a saprophyte or commensal niche.

Concluding remarks

Overall, our study provides a genomic and evolutionary landscape for the under-studied 

virulence factors of bee infections in the fungal genus Ascosphaera. Ribosomal genes that 

play a role in both primary and secondary metabolism may be important in these interactions 

by regulating genes involved in sensing temperature, nutrient availability, and hypoxia. 

Additionally, secondary metabolism genes involved in fungicide resistance, iron scavenging 

and polyketide synthases seem promising as candidate virulence factors. More experimental 

work is needed to understand the function of such factors and how/if they relate directly to 

virulence in the bee hosts by entomopathogenic and opportunistic Ascosphaera. Co-genomic 

approaches that take into account the host genome are needed to understand whether the 

genes under positive selection in our study are a consequence of coevolution or other 

environmental pressures. Lastly, additional work should be directed toward understanding 

where each species falls on the symbiotic spectrum, because we demonstrate that species 

thought to be ‘commensal’ may be beneficial or opportunistic pathogens. This information is 

necessary before we can further understand the evolution of pathogenicity in the group.
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Materials and Methods

Fungal strains and growth conditions

Cultures for A. pollenicola (strain ATCC 62712) and A. acerosa (strain ATCC 201316) were 

obtained from American Type Culture Collection (ATCC; Manassas, VA). The culture for 

A. atra (ARSEF 5147) was obtained from the ARS Collection of Entomopathogenic Fungal 

Cultures (ARSEF; Ithaca NY). These fungi were plated on aseptic Sabouraud Dextrose 

Agar (SDA) and Potato Dextrose Agar (PDA), both formulations obtained from Difco (BD 

companies, Franklin Lakes, NJ) and the resultant growth was used for DNA extraction. 

Ascosphaera aggregata (strain wild2) culture was grown from a single spore isolated 

from a diseased Megachile rotundata cadaver collected in Logan, UT by the Pollinating 

Insect Biology Management and Systematics Unit (USDA-ARS PIMBSR, Logan, Utah). 

The cadaver was confirmed as infected with a single A. aggregata infection through the 

use of the species-specific forward (5’-GCACTCCCACCCTTGTCTA-3’) and reverse (5’-

CTCGTCGAGGGTCTTTTCC-3’) primers modified from James and Skinner (2005) for 

qPCR (Klinger et al. 2015). Spore isolation and resulting A. aggregata hyphal growth used 

for DNA extraction were performed on V-8 media (James and Buckner 2004). All strain and 

growth condition information is summarized in Table 2.

DNA extraction and Sequencing

DNA was extracted for all species, using the CTAB DNA extraction procedure outlined 

in Carter-House et al. 2020. Libraries were prepared at the Genomics Core Facility in 

the Institute for Integrative Genome Biology of the University of California, Riverside, 

using the SeqOnce RhinoSeq protocol (SeqOnce Biosciences, Pasadena, CA). This protocol 

includes random enzymatic fragmentation resulting in fragments of 100-1000 base pairs. 

After adapter ligation and PCR amplification, these libraries were then dual size-selected for 

200-600 base pair reads using AMPure XP beads. These were then sent to UC San Francisco 

and sequenced on the Novaseq 6000 using the NovaSeq 6000 S4 Reagent Kit v1.5 (300 

cycles) with 2x150 paired-end reads.

Genome Assembly and Annotation

The heterozygosity of the genomes was inferred in GenomeScope (Vurture et al., 2017) 

using forward and reverse raw reads, after counting k-mers of length 21, using a hash size 

of 100M and exporting its histogram in jellyfish (Marcais and Kingsford, 2011). Genome 

assembly was performed by the Automatic Assembly For The Fungi - AAFTF v 0.2.4 

(Stajich and Palmer 2018). This tool combines Trimmomatic v0.4 (Bolger et al. 2014) to 

clip Illumina adapters and low quality sequences (Q < 3) as well as SPAdes (Prjibelski et al. 

2020) and BBTools (Bushnell B., BBMap, sourceforge.net/projects/bbmap/, May 20, 2020) 

for assembling the reads, NCBI-BLAST to search and trim vector and contamination, and 

polish contigs for accurate base pair identification with Pilon (Walker et al. 2014).

Genome annotations for A. acerosa, A. aggregata, A. atra, A. pollenicola as well as for 

the complete A. apis genome (accession: GCA_001636715.1) (Qin et al. 2006; Shang et 

al. 2016) were performed in the Funannotate v1.7.2 pipeline (Palmer and Stajich 2019). 

We used RepeatModeler v1.0.11 (Hubley et al. 2016) to build a species-specific library 
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of repetitive elements followed by RepeatMasker v4.0.6 (Smit et al. 2015) to find and 

mask transposable elements, interspersed repeats and low complexity DNA sequences. The 

masked genome was used for ab initio prediction of the gene models in Augustus v3.3.3 

(Stanke and Morgenstern 2005) with default parameters. It was trained based on initial 

Aspergillus nidulans seed species, along with protein evidence provided by the UniProt/

SwissProt database (v2019_11) to EVidence Modeler (Haas et al. 2008) and GeneMark-

ES (Borodovsky and Lomsadze 2011) using Funannotate default evidence weights along 

with ‘--optimize_augustus’ and ‘--keep_no_stops’ arguments to refine training and avoid 

losing valid models, with a minimum number of 150 models for the training. Evidence 

was also provided by BUSCO 2.0 (Simão et al. 2015), using default parameters, based 

on the conservation of 4,046 universal single-copy orthologs in the eurotiomycetes_odb9 

dataset (creation date: 02/13/2016, https://busco-archive.ezlab.org/v2/), which was also used 

to assess the completeness of the genomes.

Functional annotations for the predicted proteins were obtained using Diamond (Buchfink 

et al. 2015) to search the UniProt/SwissProt protein database (v2019_11) using all default 

parameters provided by the pipeline. Putative protein function was assigned by sequence 

similarity to InterProScan v5.48-83.0 (Jones et al. 2014), EggNog v1.0.3 (Huerta-Cepas 

et al. 2019), dbCAN and CAZyme 9.0 (Lombard et al. 2014), as well as Pfam (Mistry 

et al. 2020) and MEROPS v12.0 (Rawlings et al. 2014) databases. Gene ontology terms 

were assigned by InterPro, using default parameters. The secretome was predicted using 

SignalP v5.0 (Nielsen 2017; Almagro Armenteros et al. 2019) and Phobius v1.01 (Käll et al. 

2007), identifying proteins carrying a signal peptide. Assembly statistics were generated in 

AAFTF v0.2.4 and QUAST v4.6.3 (Gurevich et al., 2013). A gene-set enrichment analysis 

was performed on the putative CAZYme and MEROPS peptidase content using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al., 2016) collection of the 

Molecular Signatures Database (MSigDB; Liberzon et al., 2011) in the software GSEA 

(Subramanian et al., 2005), with adjusted settings for limited number of gene sets, as 

follows, and otherwise default parameters: Number of permutations = 1000, Collapse to 
gene symbols = No_collapse, Permutation type = Gene_set, Metric for ranking genes = 
Ratio_of_classes, Max size = 500, Min size = 0.

Prediction of Secondary Metabolites

To mine the secondary metabolite genes in Ascosphaera spp., we employed the antibiotics 

and Secondary Metabolites Analyses Shell (antiSMASH) (Blin et al. 2019) pipeline v.5.1.1 

for biosynthetic gene cluster (BGCs) predictions, using relaxed strictness parameters of 

profile hidden Markov Models (pHMM). All non-annotated genes of the new assemblies 

were submitted to BLASTp searches against the Non-Redundant (NR) NCBI database. The 

details are displayed in supplementary table S2, along with the most significant hits and 

the SMCOGS references when applicable. In order to investigate the relationships between 

BGCs of different species, we summarized antiSMASH results in a distance metric fashion 

with the Biosynthetic Genes Similarity Clustering and Prospecting Engine (BiG-SCAPE), 

which uses a combination of the Jaccard of domain types, Domain Sequence Similarity and 

Adjacency indices (Navarro-Muñoz et al. 2020). Clusters grouped together in BiG-SCAPE 

that displayed similar BLASTp hits were submitted to further global alignments and synteny 
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comparisons using the Clinker pipeline and visualized in clustermap.js (Gilchrist and Chooi 

2020).

Detection of single copy orthologs under positive selection

We used Orthofinder (v 2.3.12) to identify single copy orthologs and infer a species tree 

(Emms and Kelly 2019), using predicted amino acid sequences for the species. We specified 

multiple sequence alignment and BLAST as the sequence search program. The species tree 

was generated from concatenated alignments of the single copy orthogroups generated with 

STAG (Emms and Kelly 2018). We used FastTree as the tree inference program, using a 

maximum likelihood model (Emms and Kelly 2017). We performed codon aware alignments 

with the nucleotide and amino acid sequences corresponding to the identified single copy 

orthologs (SCOs) with ete3 (v 2.0.3) mixed mode alignment (Huerta-Cepas et al, 2010). We 

used the “ete3 build” command to convert amino acids to nucleotides if the average protein 

similarity was higher than 90%.

To detect signatures of positive selection, we used the “ete3 (v 2.0.3) evol” function to 

run a branch-site model on nucleotide alignments of the SCOs (Huerta-Cepas et al, 2010). 

We marked the tree by setting each pathogen alone as the foreground against the other 

four species as the background to determine genes specific to each pathogen under positive 

selection. We repeated these steps after excluding A. atra (a commensal) due to the relative 

incompleteness of its genome compared to others. This allowed us to pull even more high-

quality single copy orthologs under significant positive selection between the two pathogens. 

The results from the five species versus four species (no A. atra) comparison are delineated 

in Supplemental Table 1.

Quality Control

After only pulling out single copy orthologs that showed signatures of significant positive 

selection (p < 0.05) for each model, we then went through each alignment by hand to rule 

out false positives due to missing pieces or misalignments. To account for multiple tests 

we used the qvalue package (version 2.22.0) in R (version 4.0.3) to convert p-values from 

the CodeML output to q-values (Dabney et al. 2010). We removed any genes with false 

discovery rates (FDR) greater than 5% (or q-value > 0.05). To remove cryptic paralogs, we 

used Notung which is a gene-tree species tree reconciliation software (Chen et al. 2000). 

We generated pairwise predictions for orthology versus paralogy in each gene across all 5 

species. Genes were only kept if no paralogs were present in the resulting gene homology 

table. We then designated any alignments with average Ks values above three as saturated 

and removed them (De La Torre et al. 2017). For the branch-site model, saturation does 

not increase the rate of false positives, rather a high dS is more of a concern for a loss of 

power (false negatives) (Gharib and Robinson-Rechavi 2013). With that in mind, we provide 

conservative estimates of genes under positive selection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance Statement

Identification of the genes involved in pathogenicity is a necessary initial step for 

therapeutic development and obviating the evolution of novel pathogens. We found 

genomic signatures that suggest that protein processing and metabolism are important 

processes for the evolution of pathogenicity in bee-associated fungi in the genus 

Ascosphaera. By using whole genomes to differentiate pathogens from non-pathogens 

at a gene level we found that rapid, efficient replication may be the most important 

characteristic of pathogenic Ascosphaera species.
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Figure 1: 
Natural selection on carbohydrate metabolism and transport may be the most important 

process underlying evolution of pathogenicity in the genus Ascosphaera. A) Species tree 

generated in Orthofinder (v 2.3.12) by pulling single copy orthologs (Emms D.M. & Kelly 

S. 2019; Emms D.M. & Kelly S. 2017; Emms D.M. & Kelly S. 2018) and visualized 

with FigTreev1.4.4. Red lines indicate the known pathogen lineages. Bootstrap supports 

100% for all nodes, branch lengths represent nucleotide evolution. B) Out of 1,602 single 

copy orthologs for the 5 species analysis and 3,058 when excluding A. atra, 128 showed 

signatures of significant positive selection (FDRP < 0.055%). The x-axis represents which 

species were marked as the foreground for CodeML analysis before running branch-site 

models. The group “5 species” represents the analysis including A. apis, A. pollenicola, A. 
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aggregata, A. atra, and A. acerosa. The “4 species” is the same but excludes A. atra. The 

facet on the right side represents the GO terms for the predicted genes on the left.
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Figure 2: 
Alignment and synteny of homologous Biosynthetic Gene Clusters (BGCs) in Ascosphaera 
spp. The shading of the bars connecting aligned regions represents the percent identity 

between shared genes as indicated in the scale bar. A) Non-ribosomal peptide synthase 

cluster 1, B) Non-ribosomal peptide synthase cluster 2, C) Terpene cluster, D) Type 1 

polyketide synthase cluster.
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Table 1:

Genome assembly and contig statistics

Ascosphaera
Species

acerosa aggregata pollenicola atra apis

Accession Numbers JAGYHY000000000 JAGYHZ000000000 JAGYIB000000000 JAGYIA000000000 GCA_001636715.1

Depth of Coverage 97.8X 60.1X 99X 57.9X -

Scaffold count 5020 4503 5538 12891 82

Total Length 18611625 19806921 19988041 29072572 20313079

Min 500 500 500 996 1075

Max length (bp) 38,273 41,254 31,524 19,378 159,2427

Median contig length 
(bp)

2089 2780 2153 1741 129110

Mean contig length 
(bp)

3707.5 4398.61 3609.25 2255.26 247720.48

L50 822 797 925 3523 13

L90 3123 2735 3265 10268 37

N50 6542 7511 6319 2504 482601

N90 1529 2048 1624 1228 168129

GC content 61.64% 47.12% 50.22% 51.41% 47.66%

Heterozygosity 0.41% 0.19% 0.18% 3.17% -

Repeat content 8.01% 5.59% 3.55% 9.26% -

BUSCO Completeness 
Score

44.6% 59.4% 53.5% 24.4% 73.8%

Single Copy 1782 (44%) 2401 (59.3%) 2139 (52.9%) 885 (21.9%) 2981 (73.7%)

Duplicated 23 (0.6%) 5 (0.1%) 26 (0.6%) 100 (2.5%) 5 (0.1%)
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Table 2:

Fungal isolate source table. Sources, culture media and extraction methods for fungal species used in this 

study.

Ascosphaera
species Straina Isolation Sourceb

DNA Extraction
method

aggregata
USDA-ARS 

PIBMSR wild2
Single spore isolate from Megachile rotundata: Logan, UT; Cultured in 

lab on V-8 media PureGene Salty

atra ARSEF 5147
Isolated from honey in Apis mellifera colony: Waroona, Western 

Australia; Cultured in lab on SDA PureGene Salty

pollenicola ATCC 62712
Isolated from pollen stores of Megachile rotundata: Western Canada; 

Cultured in lab on PDA PureGene Salty

acerosa ATCC 201316
Isolated from Megachile rotundata: Lethbridge, Alberta; Cultured in lab 

on SDA
MoBio Ultra Clean Plant 

DNA Kit

a
ARSEF: Agricultural Research Service Collection of Entomopathogenic Fungi, Ithaca, New York; ATCC: American Type Culture Collection, 

Manassas, Virginia; USDA-ARS PIBMSR: Pollinating Insect-Biology, Management, Systematics Research: Logan, Utah.

b
SDA: Saborard Dextrose Agar; PDA: Potato Dextrose Agar; V8: Modified V8 agar (James and Buckner 2004)
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