Skip to main content
. 2024 Jan 17;14:1539. doi: 10.1038/s41598-023-50063-x

Table 3.

Methods information comparisons [MB: megabyte; M: million; S: seconds per image (A6000 GPU time)].

Datasets Depth Size (MB) Parameters (M) Training time (S) Inference time (S)
GoogleNet24 22 27 5.631 0.0643 0.0433
VGG1625 16 528 134.310 0.0857 0.0500
ResNet5026 50 96 23.004 0.0700 0.0450
DenseNet20127 201 77 20.037 0.0986 0.0550
Inceptionv328 48 89 24.377 0.8038 0.0513
Xception29 71 85 37.916 0.0957 0.0517
InceptionResnetV230 164 209 54.325 0.1029 0.0533
NasnetLarge31 533 332 84.769 1.7736 0.4317
EfficientNetB732 438 256 63.818 2.7429 0.5083
Vision transformer17 225 327.366 85.817M 0.1271 0.0817
CONVT33 208 327.226 85.780 0.0950 0.0667
Beit_large34 369 1354.662 304.662 7.7307 2.2033
RVT 340 74.965 19.626 4.3943 0.9200

The inference time includes both validation and test datasets). Note that parameters are trainable parameters using our dataset, and they will be different from the number of parameters in the original model.