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SUMMARY
In animal cells, molecular pathways often comprise families of variant components, such as ligands or recep-
tors. These pathway components are differentially expressed by different cell types, potentially tailoring
pathway function to cell context. However, it has remained unclear how pathway expression profiles are
distributed across cell types and whether similar profiles can occur in dissimilar cell types. Here, using sin-
gle-cell gene expression datasets, we identified pathway expression motifs, defined as recurrent expression
profiles that are broadly distributed across diverse cell types. Motifs appeared in core pathways, including
TGF-b, Notch, Wnt, and the SRSF splice factors, and involved combinatorial co-expression of multiple com-
ponents. Motif usage was weakly correlated between pathways in adult cell types and during dynamic devel-
opmental transitions. Together, these results suggest a mosaic view of cell type organization, in which
different cell types operate many of the same pathways in distinct modes.
INTRODUCTION

In metazoans, a handful of core cell-cell communication path-

ways such as TGF-b, Notch, Eph-ephrin, and Wnt play critical

roles in diverse developmental and physiological processes.1–4

Each of these pathways includes multiple, partly redundant, re-

ceptor variants that are expressed in distinct combinations in

different cell types and interact in a many-to-many, or promiscu-

ous, manner with corresponding sets of ligand variants (Fig-

ure 1A).5–10 Within a given cell, the function of the pathway—

which ligands it responds to or which intracellular targets it acti-

vates—in general depends on which combination of compo-

nents a cell expresses.11

For example, the TGF-b pathway, which plays pivotal roles in

diverse developmental and physiological processes,12 com-

prises seven type I and five type II receptor subunits that

combine to form heterotetrameric receptors composed of two

type I and two type II subunits.13 Cell types with distinct receptor

expression profiles preferentially respond to distinct combina-

tions of BMP ligands,14,15 suggesting that different receptor

combinations could provide distinct ligand specificities. Simi-

larly, in mice, the Wnt pathway comprises a set of 10 Frizzled re-

ceptor variants that interact with two different LRP co-receptors,

all of which are expressed in different combinations, and collec-

tively control the cell’s response to combinations of Wnt ligand

variants.16–18 The theme continues in the juxtacrine Notch and

Eph-ephrin pathways where different membrane-bound ligand

and receptor variants are expressed in diverse combinations
This is an open access article und
and interact promiscuously to control which cells can signal to

which others.19–24 Similar families of gene variants are also found

in non-signaling pathways as well. Despite the prevalence of

thesemany-to-many architectures, it has generally remained un-

clear what expression profiles exist for a given pathway within an

organism and how those profiles are distributed across cell

types and tissues.

In principle, pathway expression profiles could be distributed

across cell types in three qualitatively different ways. At one

extreme, each cell type could express its own, completely

unique, profile of pathway components (Figure 1B, left). In this

case, one would observe as many distinct pathway profiles as

cell types. Alternatively, sets of closely related (transcriptionally

similar) cell types could share the same pathway expression pro-

file (Figure 1B, center). This would result in fewer pathway pro-

files than cell types and a correlation between the similarity of

pathway profiles and the similarity of the overall transcriptomes

of the cells in which they appear. Finally, a limited number of

recurrent pathway profiles could exist (as in the second case)

but with individual profiles dispersed across multiple, distantly

related cell types, rather than confined to sets of closely related

cell types (Figure 1B, right). In this regime, otherwise similar cell

types could exhibit divergent profiles for the pathway of interest,

while, conversely, more distantly related cell types would

converge on similar pathway profiles. In this regime, a limited

repertoire of profiles, which we term ‘‘pathway expression mo-

tifs,’’ are re-used in diverse cell contexts. Assuming that differ-

ences in pathway profile confer corresponding differences in
Cell Genomics 4, 100463, January 10, 2024 ª 2023 The Authors. 1
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Figure 1. Pathway expression profiles could be distributed across cell types in different ways (schematic)
(A) Cell-cell signaling pathways comprise multiple variants of key components such as receptors (cartoons, Rn). These variants can be expressed in different

combinations in different cell types. Colored dots identify receptor profiles for comparison with (B).

(B) Cell types can be arranged hierarchically based on similarities among their global (genome-wide) gene expression profiles (dendrogram). A hypothetical

signaling pathway profile for each cell type is indicated by the gray intensity in the corresponding row of squares. In principle, each cell type could have a unique

signaling pathway profile (unique, left); exhibit a smaller set of recurrent profiles, each used by a set of related cell types (recurrent and clustered, middle); or

exhibit signaling pathway profiles that recur even among otherwise distantly related cell types (recurrent and dispersed, right). These possibilities are not

exclusive, and it is possible that some pathways or subsets of cell types might operate in different regimes.
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ligand responsiveness or other properties, each of these regimes

implies something different about the number and distribution of

functionally distinct signaling modes for a pathway of interest.

Previously, a lack of data precluded researchers from system-

atically distinguishing among these three behavior classes.

Recently, however, single-cell RNA sequencing (scRNA-seq)

cell atlases have begun to provide comprehensive gene expres-

sion profiles across most or all cell types in embryos and adult

organisms. For example, one of the first efforts, the Tabula Muris

project, provided expression profiles for �100,000 cells across

20 organs in adult mice.25 This dataset was later augmented

with studies of mice at additional ages.26 In parallel, scRNA-

seq studies of embryonic development have similarly provided

transcriptional profiles for the cell states in the early embryo27

and specific organs later in organogenesis.28 Collectively, these

data provide an opportunity to determine the combinatorial

expression structure of many individual pathways.

Here, we introduce a statistical framework to identify pathway

expression profiles and characterize their distribution across cell

types in an aggregated dataset spanning multiple atlases. This

approach allowed us to identify the pathway expression motifs

described above (Figure 1B, right) as well as ‘‘private’’ profiles

that are limited to sets of closely related cell types (Figure 1B,

middle) in core communication pathways including TGF-b,

Notch, and Wnt, as well as other pathways, such as the SRSF

(serine/arginine-rich splicing factor) family of splice regulators.

This analysis revealed that each pathway can operate in a hand-

ful of distinct ‘‘modes.’’ Further, the mode used by one pathway

appears to be independent of those used by other signaling
2 Cell Genomics 4, 100463, January 10, 2024
pathways. Dynamically, pathway modes can remain remarkably

stable or change suddenly as cells progressively differentiate

during development. Together, these results provide a combina-

torial view of signaling pathway states and suggest that many of

the most central pathways can exist in a handful of different

modes, which, in the future, may be studied independently of

the cell types in which they appear.

RESULTS

Integration of cell atlas datasets
To analyze pathway expression profiles across a broad diversity

of cell types, we first compiled data frommultiple adult and devel-

opmental cell atlas datasets (Figure 2A; Table S1). These included

the 10x 3’ Tabula Muris cell atlas,25 which comprises 45,000 cells

distributed across 18 organs from a 3-month-old mouse, as well

as 10x 3’ Tabula Senis,26 which augmented these data with

�200,000 additional cells from mice aged 1, 18, 21, 24, and

30 months. We also included three early developmental whole-

embryo atlases from embryonic day (E)5.5 and E6.5 to

E8.527,29,30 as well as two organogenesis datasets, a whole-em-

bryo31 and a forelimb atlas,28 that together span developmental

days E9.5 to E15. Each of these datasets contained a cell type

annotation for each cell based on expression of known markers.

Altogether, the aggregated dataset included expression profiles

and cell type annotations for �700,000 individual cells.

To allow a unified analysis of these data, we clustered the global

transcriptional profiles fromeachdataset independently. This pro-

cedure resulted in 1,206 clusters, spanning 917 unique cell type
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Figure 2. Integration of scRNA-seq atlas data reveals widespread expression of signaling pathway components

(A) We integrated seven published developmental and adult scRNA-seq datasets spanning 14 different stages in the mouse lifespan from embryonic devel-

opment to old age. These datasets differ in their representation of organs and cell type classes (colors). The name of the dataset indicates the developmental

stage and the first author’s name. For the Tabula Muris and Tabula Muris Senis datasets, we used the abbreviations TM and TS, accordingly.

(B) To generate an integrated cell state atlas, we first independently clustered each scRNA-seq dataset, treating distinct time points in each dataset separately

(UMAPs, left; STAR Methods). We then averaged expression over all cells in each cluster to yield a ‘‘cell state’’ profile for that cluster, and we represented each

cluster by a single dot in an integrated cell state atlas dataset (UMAP, right). Colors are consistent with the legend in (A).

(C) Components of core signaling pathways are broadly expressed. Black or gray dots show clusters whose pathway components are expressed above or below

threshold, respectively.
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annotations (e.g., ‘‘Organ: Lung, cell type:endothelial, age: 3m’’),

providing a unified dataset for further analysis (Figure 2B, STAR

Methods). For simplicity, in this work, we will refer to each global

gene expression cluster as a ‘‘cell state’’ and not distinguish be-

tween formal ‘‘cell types’’ and other levels of variation. This clus-

tering procedure and the cell states recovered from each dataset

matched previous published analyses (Figure S1A).

To focus on expression differences between cell states, to

reduce the complexity of the dataset, and tominimize the impact
of measurement noise, we computed the average transcriptome

profile of each one of the 1,206 clusters (STAR Methods), similar

to other recent integration approaches.32 A uniform manifold

approximation and projection (UMAP) displays the variety of

cell classes comprising the integrated atlas (Figure 2B, right).

We note that cluster averaging potentially eliminates biologically

meaningful gene expression variability within a cluster. However,

pairs of genes that were highly expressed within a cluster

average also showed significant co-expression in single cells
Cell Genomics 4, 100463, January 10, 2024 3
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Global distribution of pathway profiles

Figure 3. TGF-b receptors exhibit recurrent and dispersed pathway expression profiles

(A) The silhouette score identifies the approximate number of unique TGF-b receptor expression profiles. We computed the silhouette score across expression

values of the pathway genes (black), as well as for 100 random gene sets (gray) where pathway gene expression was independently scrambled for each gene.We

then computed the Z score (blue), defined as the silhouette score for pathway genes normalized to the silhouette score for randomized gene sets. We defined the

optimal number of receptor profiles kopt as the number of clusters that produced the peak Z score value, in this case, approximately 30 TGF-b receptor expression

profiles (dashed line).

(B) Heatmap indicates gene expression of TGF-b receptor components in the 622 cell types expressing the pathway (Figure 2C). The identified �30 TGF-b

receptor expression profiles are indicated as color-labeled groups of rows. Colored stars indicate examples of dispersed profiles highlighted on the global cell

(legend continued on next page)
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(p < 0.001, ** heatmap entries; Figure S1C). The integrated, clus-

ter-averaged dataset provides a basis for analyzing systematic

changes in pathway gene expression between cell states in em-

bryonic and adult contexts.

TGF-b receptors exhibit recurrent expression profiles
TGF-b is among the most important and pleiotropic pathways in

multicellular organisms, making it an ideal target for motif anal-

ysis.33 A functional TGF-b pathway requires expression of at

least one type I and one type II receptor subunit. Across the

1,206 cell states, approximately half met this criterion, express-

ing at least one receptor of each type above a minimum

threshold (Figure 2C, STAR Methods). This criterion excluded

some cell types—notably blood and immune cells—that func-

tionally respond to TGF-b signaling but exhibit lower mRNA

expression levels for receptors compared tomost cell types (Fig-

ure S2A). Among the cell types that passed the filter criterion, the

most prevalent receptors, Bmpr1a and Acvr2a, were expressed

in�10 timesmore cell types than the least prevalent, Acvr1c and

Bmpr1b (Figure S2B). Nearly every receptor subunit was co-ex-

pressed with each other receptor subunit in at least some cell

types (Figure S2D). Even Acvrl1 and Bmpr1a, which were mainly

expressed in endothelial and epithelial cells, respectively, were

also co-expressed in mesenchymal cells (Table S2). Exceptions

included Bmpr1b and Acvr1c, which were less prevalent overall

and were co-expressed with a more limited set of other subunits

(Figure S2D). Overall, these results provided TGF-b transcrip-

tional expression profiles across cell types and revealed that

they were strongly combinatorial.

To test whether certain receptor profiles recurred across cell

types (Figure 1B, middle and right panels), we clustered cell

states based only on their TGF-b pathway expression profiles.

To detect recurrent profiles, we computed the silhouette score,

which compares the separation of points between clusters to

the proximity of points within a cluster and penalizes for both

over- and under-clustering (Figure S2E).34 The silhouette score

provides a metric to quantify the approximate number of distinct

clusters in a dataset. However, any set of random variables can

be clustered.We therefore compared the silhouette scores of the

real data (Figure 3A, black line) to those obtained from random-

ized control datasets. More specifically, we constructed a set of

randomized datasets, in each of which we randomly permuted

the expression levels of each gene across all cell types, main-

taining the distribution of expression values for each gene while

eliminating gene-gene correlations. We note that this procedure

exactly preserves the quantitative distributions of each gene and

therefore is preferred over an indiscriminate randomization over

the whole matrix. We then performed silhouette analysis on each

randomized dataset to obtain a null distribution of silhouette

scores (Figure 3A, gray lines). Finally, we computed a silhouette

Z score that compares the silhouette score of the real data
fate dendrogram in (C). Colored shaded boxes indicate private profiles, also show

gene is standardized to a range of 0–1 across all cell types (grayscale) as descri

(C) Distribution of TGF-b receptor expression profiles across cell types. The globa

the integrated transcriptome dataset in a 20-component principal-component an

indicate featured TGF-b profiles that are broadly dispersed across cell types, while

not express TGF-b receptors have no color (white). Colors match those in (B). No
against the distribution of scores obtained from randomized da-

tasets (Figure 3A, blue line). Using this Z score, we selected an

optimal number of clusters, kopt, defined as the largest value of

k that reached at least 90% of the maximum Z score (Figure 3A,

dashed line; STAR Methods). To normalize for the number of

genes in the pathway, we also defined a recurrence score for

the pathway as r = kopt=Ng, where Ng denotes the number of

genes included in the pathway definition. Altogether, this

analysis revealed that 622 cell states expressing TGF-b recep-

tors collectively exhibit only about �30 distinct, recurrent

pathway expression profiles, generating a recurrence score of

r = 30=11 = 2:7 (Figure 3B). Critically, every receptor subunit

was expressed in at least one of these profiles, consistent with

a combinatorial view of receptor utilization.

TGF-b pathway expression motifs appeared in diverse
cell types
Having identified recurrent pathway expression profiles, we next

asked how theyweredistributed across cell types, as in Figure 1B.

To answer this question, we first visualized TGF-b pathway

expression profiles on the dendrogram of global cell types (Fig-

ure 3C; Data S1). We color-coded each profile in Figure 3B and

then annotated each cell state on the global dendrogram with

the color corresponding to its TGF-b profile (Figure 3C). Strikingly,

manyprofileswerebroadly distributed over diverse cell types (Fig-

ure 3C, colored stars). For example, profile 10 (mint green) ap-

peared in adult macrophages and leukocytes as well as mesen-

chymal adipose stem cells. On the other hand, a smaller number

of pathway profiles showed the opposite behavior. They were

restricted exclusively to a particular clade of closely related cell

states (Figure 3C, colored shaded boxes). These results suggest

that TGF-b could exhibit both pathwaymotifs and private profiles.

Tomore systematically and quantitatively characterize the dis-

tribution of each pathway profile across cell types, we defined

the ‘‘dispersion’’ of a given TGF-b profile as the mean value of

the pairwise Euclidean transcriptome distances among all cell

types that express that profile, computed in the space of the

100 most significant principal components (Figure 4A). We

compared each profile’s dispersion to two hypothetical limiting

cases: a low dispersion limit, in which individual profiles were

restricted to sets of closely related cell types (Figure 4C, gray

line), and a high dispersion limit, in which the profile was

randomly assigned to different cell types (Figure 4C, black

line). For the lower limit, we applied a threshold on the dendro-

gram of global transcriptome similarity (Figure 3C) to obtain the

same number of clusters as the pathway. We then computed

the distribution of mean pairwise distances in principal compo-

nent space among the cluster-averaged global expression pro-

files (Figure 4C, gray line). For the upper limit, we randomly reas-

signed pathway profiles to cell types and then computed the

resulting dispersion distribution (Figure 4C, black line).
n in (C). Dendrogram at left represents similarity among different profiles. Each

bed in the STAR Methods.

l cell type dendrogram was computed using a cosine distance metric applied to

alysis (PCA) space constructed from 4,000 highly variable genes (HVGs). Stars

colored shaded boxes indicate examples of private profiles. Cell types that do

te that blood cell types are relatively lacking in expression of TGF-b receptors.
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Figure 4. TGF-b expression motifs are dispersed across cell types and organs

(A) We defined the dispersion of a receptor expression profile to be the within-class pairwise distance computed in a 100-dimensional PCA space constructed

from the top 4,000 highly variable genes (HVGs) (left). Dispersed profiles (black) show high cell type diversity, whereas non-dispersed profiles (gray) are closer

together in PCA space.

(B) The dispersion of actual TGF-b expression profiles. Dashed lines indicate the expected range (25th and 75th percentiles, respectively) of dispersions obtained

by clustering similar cell types using the whole transcriptome. Note the large number of profiles with larger dispersions than expected in similar cell types.

(legend continued on next page)
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This analysis revealed that many profiles were broadly

dispersed. �44% of TGF-b profiles were predominantly

observed in specific sets of closely related cell types (Figure 4B,

points below the lower-limit distribution’s 75th percentile, top

dashed line). By contrast, 56% of TGF-b profiles were dispersed

more broadly, often spanning distantly related cell types (Fig-

ure 4B, points above the 75th percentile). In fact, among this

subset of TGF-b profiles, dispersion levels approached those

produced by random reassignment (Figure 4C, turquois line

and shaded region). For example, profile 16was observed in car-

diomyocytes, kidney podocytes, and keratinocytes from the

tongue. Similarly, profile 8 was observed in bladder endothelial

cells, type II pneumocytes, and epithelial cells from the mam-

mary gland. Based on this analysis, we defined pathway expres-

sion motifs as profiles whose mean cell type dispersion ex-

ceeded the 90th percentile of the lower bound distribution

(Figure 4C; STAR Methods).

We note that this definition of motifs is sensitive to an arbitrary

percentile cutoff and could be biased by over-representation of

cell types due to integration of overlapping datasets or under-

representation due to missing cell types. Further, alternative

dispersion metrics could be used, although these produced

broadly similar motif sets (Figure S3A).

TGF-b pathway motifs exhibited several interesting features.

First, they were enriched for expression of the type I receptors

Bmpr1a and Acvr1, as well as the type II receptor Acvr2a. In

fact, almost all motifs co-expressed all three of these receptor

subunits (Figure 4D). On the other hand, Bmpr1b, Acvrl1, and

Acvr1c were the least represented receptor subunits, appearing

in only three, three, or four of the motifs, respectively. The most

prevalent motif, 8, was expressed in nine different mouse organs

and is similar to the profile of NMuMG mammary epithelial cells,

which were shown to compute complex responses to ligand

combinations15,35 (Figure 4D, rows). Motif 8 included the type

1 subunits Bmpr1a, Acvr1, and Tgfbr1, as well as the type II sub-

units Acvr2a, and Tgfbr2. Motif 15, which is similar to motif 8 but

with more Bmpr1b, was shown to exhibit reduced complexity of

combinatorial ligand responsiveness,35 suggesting that even a

change in a single receptor between profiles could be function-

ally significant.

We also examined expression correlations among individual

TGF-b receptors. Among cell states expressing pathway motifs,

almost half of the receptor pairs (25/55) showed no significant

correlation, with the remaining pairs exhibiting a mix of positive

and negative pairwise correlations (Figure S3B, middle). For

example, Bmpr1a was positively correlated with Acvr1 and

Acvr2a, while Acvrl1 and Tgfbr2 were strongly correlated, with
(C) Empirical cumulative distribution functions of TGF-b profile dispersion. The o

type-specific profiles (gray) and profiles obtained by randomizing cell type distanc

defined as being in at least the 90th percentile of the related cell type dispersion

(D) We identified 14 TGF-b motifs, arranged by gene expression similarity. For

histogram at right.

(E) TGF-b motifs (rows) are broadly distributed across different tissues and orga

indicated tissue or organ expressing the corresponding motif. Note that most m

contain multiple motifs.

(F) Key cell type classes, including epithelial, macrophage, fibroblast, and endothe

ordering in (D) and (E). Each cell classmapped tomultiple distinct pathwaymotifs y

spectrum of 11 distinct motifs, whereas macrophages and endothelial cells are p
Acvrl1 expressed in a subset of cell types that expressed Tgfbr2.

Acvrl1 and Tgfbr2, which were previously shown to mediate

signaling by BMP9, could also function together as a module in

this context.36

Motifs were broadly distributed across the organism, with

some appearing in as many as 10 different mouse organs (Fig-

ure 4E, rows). Conversely, multiple motifs appeared in the

same organ. For example, the adult kidney included cell states

with nine different TGF-b receptor expression motifs (Figure 4E,

columns). These results underscore the breadth of the disper-

sion of the pathway motifs.

Cell types can be grouped into more general, higher-level clas-

ses such as macrophages, fibroblasts, epithelial, or endothelial

cells, each of which comprises a diverse set of cell types across

multiple organs. In principle, a motif could be restricted to a single

cell type class and still be dispersed across transcriptome states.

Alternatively, it could recur in multiple cell type classes. To gain

insight into the distribution of motifs across cell type classes, we

tabulated the distribution of TGF-b profiles across cell type clas-

ses, based on cell type annotations in the atlas (Figure S3C). We

then constructed a Sankey diagram to visualize the relationship

between motifs and cell type classes (Figure 4F). Each cell type

class included multiple motifs, with different degrees of diversity,

ranging from just twomotifs formacrophages to11differentmotifs

for epithelial cells. Macrophages included just two motifs, 10 and

21. A set of seven motifs each appeared only among epithelial

cells, while motif 21 was similarly restricted only to macrophages.

The remaining five motifs each appeared in at least two different

cell type classes. (We note that motif 24 did not appear in any

cell types annotated for one of these four classes.) These results

suggest thatTGF-b receptorsmotifs showpartial but not complete

preferences for certain cell type classes.

In contrast to motifs, which were by definition dispersed, other

TGF-b profiles recurred in multiple cell types but exhibited low

dispersion, as in Figure 1B, middle panel (Figure S3D). One of

these groups, consisting of profiles 1, 2, and 5, was in fact

dispersed among diverse developmental cell types, including

the primitive streak, ectoderm derivatives, and mesodermal tis-

sues. However, it received a lower dispersion score due to the

relative similarity of early embryonic cell types compared to adult

cell types. We therefore classified these profiles as a develop-

mental motif (Figure 3B, hot pink). These three profiles ex-

pressed a combination of Bmpr1a and Acvr2b and resembled

the BMP receptor profile previously identified in mouse embry-

onic stem cells, suggesting that the early embryonic receptor

profile is stably maintained during early germ layer cell fate

diversification.35
bserved dispersion distribution (turquoise) lies between the extremes of cell-

es by shuffling cell type labels (black). We classifiedmotifs in the shaded region,

distribution (gray) as motifs.

each motif, the number of cell states in which it appears is indicated by the

ns (columns). Each matrix element represents the number of cell states in the

otifs are expressed in multiple tissues or organs, and most tissues or organs

lial cell types, each spanmultiple TGF-bmotifs. Motifs are ordered tomatch the

et differed in their motif diversity. For example, epithelial cells comprise a broad

rimarily restricted to smaller subsets of more closely related motifs.
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By contrast, profiles 29 and 30 were each confined to a single

set of closely related cell types: chondrocytes (E13.5–E15.0) and

macrophages, respectively (Figure 3B; Table S2). Because they

were tightly associated with a particular set of cell types, these

profiles are effectively the opposite of a motif, and we refer to

them as ‘‘private,’’ or cell-type-specific, profiles. Notably, these

private profiles both expressed Bmpr2, which is less prevalent

compared to other receptors. Nevertheless, Bmpr2 is not an

exclusive marker of private profiles, as it is also expressed in

dispersed motifs, such as motifs 8, 9, 10, 13, and 27 (Figure 4D).

Together, these results suggest that the TGF-b pathway exhibits

a set of recurrent and dispersed expression motifs, as well as a

smaller number of private profiles.

Additional signaling pathways also exhibit pathway
expression motifs
Pathway motifs could in principle occur in many other pathways.

To assess how general this type of organization is, we used the

PathBank database of biological pathways37 to identify 40

different annotated biological pathways involved in signaling and

other functions (TableS3). For eachpathway,weassembledacor-

responding list of genes, normalized their expression, clustered

the resulting profiles, computed silhouette scores, and compared

them to a null hypothesis in which the expression levels of each

gene were independently and randomly reassigned to different

cell types as described previously (Figure S4A). Pathways differed

in the width of their silhouette profiles. For example, the SRSF

splicing protein family exhibited a narrow silhouette peak similar

to that of TGF-b receptors, indicating a well-defined number of

distinct profiles (SRSF, Figure 5A, upper panel; TGF-b, Figure 3A;

Figure S4A, left column). By contrast, other pathways, such as the

Rassignalingpathway, exhibitedabroadsilhouetteprofile,withno

clear optimum (Figure 5A, lower panel; Figure S4A, right column).

Across all pathways surveyed,we observed a bimodal distribution

of silhouette profile widths (Figure 5B).

To identify pathways with strong motif structure, we then

computed the dispersion score for pathways with well-defined

silhouette peaks (STAR Methods). Finally, to visualize the two

key motif metrics together, we plotted dispersion versus recur-

rence score for these pathways (Figure 5C). Among the path-

ways with the strongest motif signatures (Figure 5C, upper-left

corner), we observed core cell-cell communication pathways

such asNotch,Wnt, and ephrin; the SRSF splicing protein family,

which includes all 11 SR family splice regulatory proteins; and a

protein degradation pathway defined by PathBank, consisting

predominantly of different proteasome subunits.37

Notably, not all pathways exhibited strong motif signatures. In

fact, some pathways displayed recurrent but weakly dispersed

profiles that were more confined to related cell types (Figure 5C),

similar to Figure 1B, middle. These pathways included NF-kB

signaling, Ras signaling, and lipopolysaccharide (LPS) signaling

in inflammation (Figure 5C; Table S3).

Notch, SRSF, and Wnt pathways exhibit dispersed
expression motifs
In addition to TGF-b, the developmental signaling pathways

Notch, SRSF, and Wnt all also exhibited strong motif signatures

(Figure 5C). We therefore analyzed their motifs in more detail.
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Notch signaling

The Notch pathway involves juxtacrine interactions between a

set of membrane anchored ligands, including Dll1, Dll4, Jag1,

Jag2, and the cis-inhibitor Dll3, and a set of four Notch receptors,

Notch1-4.38–40 Further, a set of three Fringe proteins (M-, R-, and

L-fng) modulates cis and trans ligand-receptor interaction

strengths, both between adjacent cells (trans) as well as within

the same cell (cis).41,42 We therefore defined a minimal Notch

pathway comprising 11 ligands, receptors, and Fringe proteins

(Data S2). This definition excludes ADAM family metallopro-

teases, g-secretase, the CSL (CBF1, Suppressor of Hairless,

Lag-1) complex, and other components, in order to focus specif-

ically on ligands, receptors, and the Fringe proteins that directly

modulate their interactions, all of which exist in multiple variants.

We classified pathway expression as ‘‘on’’ if at least two of these

geneswere expressed above aminimum threshold of 20%of the

maximum observed expression level across all cell types. With

these criteria, the Notch pathway was ‘‘on’’ in 37% of cell states

(450 out of 1,200) (Figure 2C).

As with TGF-b, the Notch pathway exhibited combinations of

co-expressed components, including receptors, ligands, and

Fringe proteins. The pathway exhibited a peak silhouette score

at �30 cell clusters (Data S2), 16 of which qualified as motifs

based on their dispersion scores (Data S2; Figure 6A).

The Notch motifs were largely consistent with previous obser-

vations. For example, B cells (Notch motif 19) are known to ex-

press the Notch2 receptor and no ligands.43,44 Among the three

Delta ligands, it was notable that Dll3, which inhibits, but does

not activate, Notch signaling, was strongly expressed only inmotif

4, whereas expression of the activating ligands Dll1 and Dll4 was

morewidespread. This is consistent with previous observations of

Dll3 expression in brain and bladder epithelial tissues, wheremotif

4 appears.45

Most motifs co-expressed both ligands and receptors. For

example, the combination of Notch1, Notch2, and Jag1

occurred inmostmotifs, whichwere distinguished by expression

of other components (Figure 6A). Nevertheless, even amongmo-

tifs expressing both Notch1 and Notch2, the expression ratio of

the two receptors varied (compare Notch motifs 19 and 28,

Figure 6A).

Among the Fringe proteins, R-fng was expressed in all motifs

(Figure 6A). While the expression distributions of the three Fringe

proteins across cell types differed from one another, L-fng and

M-fng both exhibited lower median expression levels compared

to R-fng (Figure S5B). In particular, R-fng was broadly expressed

at levelsR0.25 on the normalized expression scale in most mo-

tifs, while less than half of the cell types exceeded this threshold

for L-fng and R-fng (Figure S5B).

In addition to its expression motifs, Notch also exhibited a

smaller set of "private" expression profiles limited to closely

related cell types (Figure S5C). Private motifs were used bymus-

cle cells during forelimb development (profile 25), basal cells of

the mammary gland (profile 21), mesodermal lineages at E7.0–

E8.0, and the adult endothelium (profile 8). The private profiles

exhibited greater expression of M-fng and the Delta family li-

gands Dll1, -3, and -4 compared to the motifs (Data S2).

Taken together, these results reveal that the Notch pathway

uses a set of recurrent and dispersed combinatorial expression
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Figure 5. Expression motifs occur in multiple pathways

(A) The silhouette score calculated for different numbers of clusters (k) normalized as a Z score compared to randomized profiles. The peak width is defined as the

number of k values with a Z score within 10% of the maximum Z score (blue lines), relative to the total number of k values evaluated (200). Pathways with a well-

defined peak (SRSF, top) display a well-defined number of profiles around the peak. On the other hand, a broad range of k with high silhouette scores indicates

higher order structure as for increasing number of clusters (Ras signaling pathway, bottom).

(B) The distribution of width scores for selected pathways (from PathBank database, Table S3).

(C) Dispersion and recurrence metrics for multiple pathways with well-defined peaks (relative width < 0.35). Based on the silhouette Z score, we identified the

optimal number of clusters and computed the dispersion for different pathways (y axis). The optimal value of k is normalized by the number of genes in the

pathway (x axis). We defined the silhouette peak strength as the inverse of the peak width (dot size). Pathways including motifs appear in the upper-left corner:

they display a few discrete profiles that are expressed across multiple cell types.
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motifs as well as private expression profiles in some lineages.

Notch ligands and receptors are known to exhibit inhibitory

(cis-inhibition19,46) and activating (cis-activation47) same-cell in-

teractions that can generate complex interaction specificities

with other cell types expressing similar or different ligand and re-

ceptor combinations. The prevalence of multi-component Notch
motifs could help explain complex Notch behaviors with the po-

tential to send or receive signals to or from specific cell

types.4,20,46

SRSF splicing proteins

Among the most recurrent and dispersed pathways in our panel

was the SRSF family of splicing regulators (Figure 5C, top left).
Cell Genomics 4, 100463, January 10, 2024 9
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Figure 6. Expression motifs occur in multiple pathways and are largely uncorrelated

(A) Motifs in the Notch pathway and their distribution across tissues and organs, similar to Figures 4D and 4E.

(B) Motifs in the SRSF pathway and their distribution across tissues and organs, similar to Figures 4D and 4E.

(C) Pairwise correlations in profile usage between pathways, quantified by the adjusted mutual information between their respective profile labels.
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SRSF proteins play crucial roles in alternative splicing, gener-

ating diversity in the transcriptome,48 by modulating the recogni-

tion of exon-intron boundaries and interacting with other compo-

nents of the spliceosome to promote the selection of specific

splice sites.49 Diverse SRSF proteins play partially overlapping

but distinct roles in transcription-coupled splicing and mRNA

processing in the nucleus,50,51 and they have varying abilities

to ‘‘shuttle’’ between nucleus and cytoplasm.52 Some variants

promote exon inclusion while others promote exon skipping,49

with the balance of SRSF factors in the cell influencing the final

composition of mature transcripts.

We tabulated the expression of the 11 SRSF mouse variants

across all global clusters. The recurrence score for SRSF was

lower (more recurrent) than that of TGF-b and Notch, and its

silhouette score peaked at �19 clusters (Data S2). Strikingly,
10 Cell Genomics 4, 100463, January 10, 2024
all of these clusters exhibited co-expression of multiple SRSF

variants (Figure 6B). Some SRSF proteins were broadly ex-

pressed (SRSF2 and SRSF5) across all tissues, whereas others

showed more motif-specific expression. For example, SRSF12

appeared predominantly in only a single motif. At the same

time, that motif was distributed acrossmultiple tissues, including

thymus, trachea, brain, and fat (Figure 6B, right). More generally,

all motifs were combinatorial, including multiple SRSF variants,

and broadly distributed across tissues and organs (Figure 6B,

right). Conversely, most tissue and organ types contained multi-

ple SRSFmotifs. Because of the high level of recurrence, the two

largest motifs (numbers 4 and 7) were expressed in more than

100 distinct cell states (Figure 6B, left, histogram), with early

developmental cell states exhibiting elevated SRSF expression

levels overall (Data S2).
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Figure 7. Developmental transitions of pathway profiles and summary

(A) Pseudotime trajectory analysis of the trunk neural crest60 captures delamination of progenitors into three distinct cell fates in a ForceAtlas projection: sensory

neurons, autonomic neurons, and the mesenchyme. Here, we follow the sensory neuron trajectory (black arrow).

(B) Developmental pathways expression dynamics in neural crest differentiation. For each pathway, corresponding mean expression profiles are shown in

grayscale for each of the cell states indicated in (A), as indicated by the colored dots. Profile numbers indicate the closest match (nearest neighbor) to one of the

reference pathway profiles in Figure 3B for TGF-b and Data S2 for Notch and SRSF.

(legend continued on next page)
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Wnt signaling

Finally, as a fourth signaling pathway, we also analyzed Wnt,

which plays critical roles in a vast range of developmental and

physiological processes. Wnts can function as morphogens

and are involved in regeneration, cancer, and disease.53 Extra-

cellular interactions between Wnt ligand and receptor variants

exhibit promiscuity, with each ligand typically interacting with

many receptor variants.16 Signaling involvesWnt ligands binding

to Frizzled (Fzd1-10) receptors and low-density lipoprotein-

related co-receptors 5/6 (LRP5/6) to stabilize b-catenin, allowing

it to activate transcription of target genes.18,54,55 Wnt signaling

has also been shown to have combinatorial features.56

The recurrence score for Wnt was slightly less than that of

TGF-b and SRSF (Data S2). Nonetheless, the pathway exhibited

recurrent profiles. Silhouette score analysis showed a peak

elevation at kopt = 37 profiles and was elevated compared to a

null model of randomly scrambled pathways constructed from

the same genes (Data S2). Strikingly, these profiles all exhibited

co-expression of multiple Fzd variants, and all but two co-ex-

pressed both the Lrp5 and Lrp6 co-receptors (Figure S5A).

A subset of Wnt pathway expression profiles were broadly

dispersed (Figure S5A). All of these high dispersion profiles co-

expressed multiple Frizzled variants. Conversely, most Frizzled

variants were expressed in multiple high dispersion profiles.

The exceptions were Fzd9 and Fzd10, which were expressed

at much lower levels in most cell types, although Fzd9 was highly

expressed in profile 34, along with other receptors. These results

show that the Wnt pathway also exhibits combinatorial expres-

sion motifs.

Inter-pathway correlations reveal independent profile
usage
Identifying combinatorial expression profiles in multiple pathways

provokes the question of whether component configurations are

correlated between pathways. For example, in the limit of tight co-

ordination, cells expressing one TGF-b profile might always ex-

press a corresponding Notch profile. In the opposite limit, profiles

from one pathway might be used independently of those from

another pathway, suggesting amoremosaic cellular organization.

To quantify the correlation between expression profiles of

different pathways, we computed the pairwise adjusted mutual

information (AMI) between the profile labels of each pair of path-

ways across all cell types (clusters on heatmaps in Data S2). The

AMI metric quantifies the degree of statistical dependence be-

tween the two clusterings, controlling for correlations expected

in a null, or completely independent, model. The full dataset of

1,206 cell states was used for computing the pairwise AMI, as-

signing the profile label ‘‘0’’ to cell states that do not express a

given pathway. We visualized the results with a heatmap

showing the pairwise AMI values across themain recurrent path-

ways (Figure 6C).
(C) ForceAtlas projection and pseudotime reconstruction of early vascular differe

cell fates (gray arrows).

(D) Dynamics of three core pathways for each of the two trajectories in (C): erythro

row). Colored dots indicate cell states in (C). Profile numbers indicate closest matc

(E) Mosaic view of profile usage (schematic). Cell states can express each of their p

profile ticks). In this way, cell states can be thought of, in part, as mosaics built f
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In general, most pathway-pathway correlations were weak

(AMI < 0.4) (Figure 6C). To ensure that the AMI was indeed

capable of capturing correlations, we included a subset of the

TGF-b receptors (the seven BMP receptors: Acvr1, Acvrl1,

Bmpr1a, Bmpr1b, Acvr2a, Acvr2b, and Bmpr2) as a separate

pathway (‘‘BMP receptors’’). Given their overlapping compo-

nents, TGF-b and BMP showed elevated AMI values of �0.6,

as expected (Figure 6C). A notable exception was the strong cor-

relation between the ubiquitin-proteasome pathway and SRSF

splice regulators, which arose predominantly from develop-

mental cell states expressing ubiquitin-proteasome profile 1

with SRSF profiles 1 and 2 (Table S4). Other pathway pairs, con-

sisting of TGF-b and Wnt exhibited weaker relationships,

whereas the Notch pathway showed little correlation with almost

all other pathways. These results suggest that, at least for the

limited set of components considered here, different pathways

seem to adopt profiles largely independently of one another.

Pathway profiles exhibit distinct dynamic behaviors
during differentiation
The relative independence of profile usage between pathways

provokes the dynamic question of when and how pathways

switch profiles during development. At one extreme, profiles

could switch in a stepwise fashion, changing one component

at a time. At the opposite extreme, they could change multiple

components simultaneously, directly switching from one profile

to another. Further, either type of change could occur gradually

or suddenly and could be temporally synchronized or unsyn-

chronized between different pathways. As an initial step in ad-

dressing these questions, we explored pathway profile usage

in two well-studied processes: neural crest and blood cell

differentiation.

The neural crest is responsible for diverse cell types, including

sensory neurons, autonomic cell types, and mesenchymal stem

cells.57,58 Further, TGF-b, Notch, Eph-ephrin, and Wnt all play

key roles in its differentiation.59 Soldatov et al. performed

SMART-seq2 scRNA-seq analysis of neural crest development

from E9.5.60 Using the Slingshot package,61 we constructed

pseudotime trajectories from these data, andwe identified seven

distinct pseudotemporal stages (Figure 7A). All expression

counts were scaled to match the normalization used in the inte-

grated atlas (Figure 2; STARMethods). This reconstruction reca-

pitulated known cell fate trajectories, with neural crest progeni-

tors differentiating into sensory neurons, autonomic neurons,

and mesenchymal cells (Figure 7A). Except for a transient upre-

gulation of Bmpr1b early on, the TGF-b profile was remarkably

stable during the trajectory from progenitors to more differenti-

ated cell types. The profile was dominated by Bmpr1a, Tgfbr1,

Acvr2a, and Acvr2b (Figure 7B, first panel). Its closest match in

the integrated atlas was profile 6, which exhibited a roughly

similar composition but with higher relative Bmpr2 expression
ntiation.29 Mesodermal progenitors differentiate into endothelial and erythroid

id differentiation (upper row of heat maps) and endothelial differentiation (lower

hes in reference profiles (Figure 3B for TGF-b and Data S2 for Notch and SRSF).

athways, using any of the distinct available profiles (indicated schematically by

rom combinations of available pathway profiles.
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(Figures 3B and S6A). Profile 6 occurs in the developing forebrain

and spinal cord, adult mesenchymal, and adult podocyte cell

types. The expression of TGF-b receptors is consistent with pre-

vious observations that TGF-b inhibition in neural crest stem

cells leads to cardiovascular defects.62 These results indicate

that a developmental pathway can retain a stable profile along

a differentiation trajectory.

In contrast to the stability of TGF-b along this trajectory, Notch

components exhibited a step-like transition at the end of the

pseudotime trajectory (Figure 7B, second panel). Progenitors

predominantly express the receptors Notch1 and Notch2, the li-

gands Dll1 and Jag1, and high levels of R-fng. This closest match

to this profile was Notchmotif 16 (Figures 6A and S6B). Upon dif-

ferentiation into sensory neurons, cells switched on expression

of Notch1, Dll3, and M-fng, as well as a lower level of Jag2, while

downregulating Notch2, thus changing to private profile 27 (Fig-

ure S5C). In contrast to the signaling pathways, the SRSF

splicing regulators showed stable co-expression of almost all

components, except for Srsf5 and Srsf12, at high levels, most

similar to profile 1 (Figure 7B, third panel; Figure S6C). Thus,

the transition to the sensory neural fate involves both mainte-

nance of stable profiles, as observed for TGF-b and SRSF, as

well as abrupt multi-gene alterations, as observed for Notch.

Next, as a second example, we analyzed hematopoiesis,

which occurs in temporally and spatially overlapping waves in

close proximity to blood vascular endothelial cells.63 Meso-

dermal hematoendothelial progenitors differentiate into both

endothelium and erythroid cells (E7.5–E8.5), allowing analysis

of how pathway profiles change during a branched differentia-

tion trajectory (Figure 7C). Endothelial cells exhibit ‘‘private’’

TGF-b profiles, characterized by expression of Acvrl1. Thus,

they provide an opportunity to analyze how pathway profiles

change during a branched transition and how private profiles

are acquired dynamically.

We clustered the subset of hematoendothelial lineages from

Pijuan-Sala et al.29 (15,645 single cells), applied Slingshot to

reconstruct branching pseudotime trajectories (Figure 7C), and

then analyzed changes in TGF-b receptor expression profiles

over these trajectories. The TGF-b profiles expressed multiple

receptor variants, including the developmental receptor Acvr2b,

most closely matching profile 5 from the integrated dataset (Fig-

ure S6A). The amplitude of profile expression decayed during the

transition to erythroid fate, but the relative expression levels of

different components were preserved. By contrast, cells differ-

entiating into endothelial fates maintained expression of the

core profile genes. These dynamics thus reveal that profiles

can vary gradually in amplitude during differentiation.

By contrast, the Notch pathway showed an abrupt profile

change during erythroid differentiation. The initial mesodermal

cells expressed a profile resembling profile 1 (cf. Figures 7D

and S6B). However, differentiation coincided with a reduction

of expression of ligands and receptors to a profile resembling

profile 24. Similar to the TGF-b dynamics, expression of most

components faded out in the erythroid lineage, except for

R-fng whose expression increased. By contrast, the endothelial

lineage exhibited more complex expression dynamics, including

a sequential switch from Dll1 and Dll3 ligands to Dll4 and Jag2

ligands, coinciding with activation of M-fng (Figure 7D). Finally,
SRSF showed stable expression of a profile closely resembling

that observed in the neural crest, across both lineages (Fig-

ure 7D, right). Taken together, these results show that pathways

can exhibit stable expression states, dynamic multi-component

changes, and gradual variation in amplitude during differentia-

tion trajectories.

DISCUSSION

In multicellular organisms, a core set of molecular signaling path-

ways mediate a huge variety of developmental and physiological

events. How can such a limited set of pathways play such a

broad range of different roles? At a coarse level, each pathway

may be considered competent for signaling in a given cell type

if its receptors and other components are expressed and not in-

hibited by other cellular components. However, examining

pathway expression patterns globally, as we did here, reveals

a more subtle situation, in which pathways can be expressed

in a finite number of distinct configurations, characterized by

different expression levels for their components, all potentially

competent to signal in response to suitable inputs. Each config-

uration could be functional in some contexts but nevertheless

differ from other configurations in the specific input ligands it

senses or the downstream effectors it activates within the

cell.3,4,6,8,20,35,56,64

To find out what configurations exist, we focused on cell-cell

signaling pathways known to use sets of partially redundant

component variants. Each of these pathwayswas already known

to adopt multiple expression configurations in specific biological

contexts. However, cell atlas data permit a systematic analysis

of expression profiles in a broad set of cell and tissue contexts

(Figures 2, 3, 4, and 5), revealing what pathway profiles are ex-

pressed, how they correlate with one another between pathways

(Figure 6C), and how they change dynamically during develop-

ment (Figure 7).

The expression profiles of pathways are strikingly combinato-

rial. Across each of the four major pathways studied here (TGF-b,

Notch, Wnt, and SRSF), no two components exhibited identical

expression patterns, and all were differentially regulated in some

cell types. Further, almost all motifs comprised multiple receptor

and/or ligand variants. The number of distinct expression profiles

for each pathway was much smaller than one would expect if in-

dividual components varied independently. For instance, the

SRSF pathway with 11 components exhibits�19 profiles, which

is almost 2-fold smaller than the�30 profiles observed for the 11

TGF-b receptors and far less than the 211 = 2,048 pathway pro-

files one would expect if each of its 11 genes could indepen-

dently vary between low and high expression states.

Expression profiles for different pathways appeared to vary

independently across cell types (Figure 6C). This observation ar-

guesagainst tight coupling of specific expression receptor profiles

in one pathwaywith those in another. However, it does not rule out

the possibility that signaling through combinations of pathways

could play special roles in some cases.65 Comparison of pseudo-

time trajectories from two developmental contexts revealed both

stability and dynamic change in pathway profiles. Specifically,

TGF-b and SRSF exhibited relatively stable profiles during these

trajectories. By contrast, the Notch pathway exhibited dynamic
Cell Genomics 4, 100463, January 10, 2024 13
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multi-component expression changes (Figures 7B and 7D). In the

future, it will be interesting to comprehensively analyze pathway

expression dynamics from the point of view of pathway motifs.

While we focused on the pathways that show strong motif sig-

natures, it is equally important to note that other pathways pre-

dominantly used cell-type-specific, or private, profiles (Fig-

ure 5C), and even the pathways that we focused on here also

contained some private profiles (Figures S3D and S5C). Never-

theless, these results suggest a ‘‘mosaic’’ view of cells, in which

each cell type adopts a particular motif or private profile for each

of its general-purpose pathways (Figure 7E).

Why use motifs? Motifs could provide a rich but limited reper-

toire of distinct functional behaviors for each pathway.64 One

appealing possibility is that each motif provides a distinct but

related function. Many-to-many protein interaction systems

can in fact ‘‘compute’’ complex functions and change the func-

tion they compute by altering component expression levels.11

For example, in a ‘‘combinatorial addressing’’ system, cell types

that express different receptor profiles can respond to different

ligand combinations, allowing increased cell type specificity in

signaling.4,35,64 A similar principle could apply to juxtacrine

signaling pathways such as Notch and Eph-ephrin, where the

combination of components expressed in a given cell type could

control which other cell types it can communicate with, based on

their own pathway expression profiles. In the case of SRSF,

otherwise diverse cell types expressing the same motif might

generate similar splicing patterns. In the future, it will be inter-

esting to experimentally test whether individual motifs indeed

confer distinct functional behaviors across the cell types in which

they appear. If so, a more complete functional understanding of

pathway motifs could contribute to allowing researchers to pre-

dict and control pathway activities in diverse cell types based on

their gene expression profiles.

Limitations of the study
Several limitations apply to the findings reported here. First,

pathway definition starts with a human-curated list of receptors,

ligands, or other components or previously annotated pathway

definitions. Different pathway definitions could potentially alter

these results. Second, while comprehensive, the datasets used

here are likely incomplete, and they could miss profiles used

only by rare cell types or could inaccurately estimate dispersion

scores if some cell types appear over- or under-represented.

Note also that cell typeswith lower overall expression of pathway

components, such as immune cells for TGF-b, were filtered out.

Alternative approaches could account for these issues and retain

a larger subset of cell types. Third, clustering is an imperfect rep-

resentation of expression variation, potentially averaging over

subtle quantitative differences in individual component levels

between cells. In particular, unsynchronized single-cell dy-

namics, such as those that occur during Notch-dependent fate

determination,66 could therefore be missed. Moreover, we

explored signaling dynamics in only a few developmental trajec-

tories. A broader exploration of more developmental processes

could potentially reveal other types of dynamic behaviors

beyond those shown here. Finally, subcellular localization pat-

terns, post-translational modifications, alternative splice forms,

and other types of regulation could diversify the functional
14 Cell Genomics 4, 100463, January 10, 2024
modes of the pathway beyond what can be detected by

scRNA-seq. For example, TGF-b pathway receptors are regu-

lated through post-translational modifications and recycling at

the membrane.67 On the other hand, alterations in transcription

of individual receptor subunits can quantitatively and qualita-

tively alter the specificity with which the BMP pathway responds

to different ligand combinations.11,15 With improving single-cell

technologies, we anticipate that it should eventually become

possible to extend pathway motif analysis to the protein level.
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METHOD DETAILS

Clustering cells and defining cell states
We obtained raw scRNA-seq matrices directly from the GEO repositories or specific locations indicated by the authors for the data-

sets appearing in Table S1. Clustering of single cells started from the count matrices of single cells vs. genes. First, we applied quality

control (when needed, since some datasets were already filtered) by filtering out cells with high mitochondrial RNA content, a low

number of detected transcripts or a low number of detected counts (at least 2,000 counts per cell). We then applied a standard pipe-

line for clustering scRNA-seq data. Briefly, we applied principal component analysis and used the first 50 principal components as

input for graph-based (Leiden) clustering using Scanpy.68,69 Finally, we labeled the resulting clusters using the cell type annotations

provided by the authors. All datasets analyzed in this study included ground truth cell type annotations that we use throughout the

manuscript.

Integration of multiple datasets
To integrate the 7 datasets in Table S1, spanning 14 different timepoints, into a single matrix of gene expression, we first generated a

pseudo-bulk expression matrix for each dataset by averaging the log-normalized gene expression values of individual cells in a clus-

ter. The resulting matrix has dimensions N x M, where N is the number of cell states in the dataset and M is the number of distinct

genes. To account for differences in gene detection across datasets, we found the intersection of detected genes across all datasets

and subsampled each matrix to include only genes that appeared in all datasets. The intersection of detected genes across all
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datasets comprised �11,000 genes that we then used for all downstream analysis. Having defined the intersection gene set, we

concatenated individual datasets into a global average expression matrix containing 1206 clusters and �11,000 genes.

To normalize gene expression values fromdifferent datasets to a common scale, we applied a second round of normalization to the

global expression matrix. First, we transformed the log-normalized matrix M using the exponential function to obtain a matrix Mij of

‘‘counts’’ per gene:M0
ij = expðMijÞ+ 1.We then normalized, scaled and clustered the resultingmatrix following the standardmethods

from Seurat v3 (total RNA counts per cell state = 1e4, 4,000 highly-variable genes, and 50 principal components), which resulted in

the clustering and UMAP shown in Figure 2B. We verified that cell states from different datasets and sequencing technologies clus-

tered together (Figure S1B), as an indication that the integrated and normalized atlas recovers the biological diversity across devel-

opment, adult, and aging datasets.

Clustering pathway profiles
All downstream analysis on pathway genes starts from a matrix of normalized pathway gene counts subsetted from the matrix M0

described above. We noticed that pathway genes showed different dynamic ranges in their expression across cell states. To give

each gene equal weight during clustering of pathway profiles, we applied a MinMax scaling for each pathway gene, using the

95% percentile observed across all 1206 cell states as the maximum value. After scaling, each gene in the pathway had a dynamic

range from 0 to 1, corresponding to the range of 0–95% of the maximum value in the dataset for that gene. For each cell state, we

classified a pathway as being ‘‘on’’’ if at least two of the pathway genes showed expression above a threshold of 0.3 on this scale,

meaning that the gene is expressed at a level of at least 30%of itsmaximumobserved value. This threshold allowed us to filter out cell

states in which most genes in the pathway are zero or showed low expression compared to most other cell states, and focus instead

on the cell states showing combinatorial expression of multiple genes (Figure S2C). This pre-processing step resulted in amatrix P of

scaled pathway gene expression counts of cell stateswith an ‘‘on’’ pathway profile. Using thismatrixP, we computed pairwise cosine

distances on cell states and applied hierarchical clustering to the resulting distance matrix (Figure 3A). Finally, we applied the same

pre-processing steps and obtained the pathway profiles for 55 pathways from the PathBank37 database annotated as ‘Signaling’ or

‘Protein’ in PathBank, excluding pathways with less than 7 genes (Table S3; Data S2).

For each pathway, we found the approximate optimal number of clusters, kopt, using the silhouette score metric. First, we applied

hierarchical clustering to the pathway expression matrix P, and defined the number of clusters, k, by setting a depth cut-off and split-

ting the associated dendrogram (Figure 3A). We then bootstrapped the average silhouette score on the pathway expression matrix

for a range of k values (from 3 to 100). To account for potential clustering artifacts, we normalized to a null distribution and randomized

the pathway gene expression matrix, shuffling the expression values for each gene independently across cell states, and repeated

the clustering procedure. By independently scrambling P, the pathway expression matrix, we could generate a sample from the null

distribution for the expected silhouette score at different values of k (Figure 3A, gray). We found that after �100 randomizations, the

silhouette score distribution converged and the Z score calculations were not significantly affected by increasing the number of

random datasets beyond that value. Using this null distribution, we computed z-scores (Figure 3A, blue) for the silhouette scores

observed in the real pathway expression matrix. Finally, we defined the optimal number of clusters, kopt, to be the largest value of

k for which the smoothed Z score dropped below 90% of its maximum value. To normalize for number of genes Ng in the pathway

definition, we defined the recurrence score of pathways to be r = kopt=Ng.

Some pathways did not show a clear peak in the Z score (Figure 5A, bottom; Figure S4A, right) meaning an optimal number of

clusters can’t be reliably found. To focus on pathways with a well-defined peak, we computed the range of k values with a Z score

within 90% of the maximum. We therefore defined the peak width as the fraction of k values within 90% of the maximum Z score

divided by the total number of k values considered (200) and excluded pathways with peak width greater than 0.35 (Figure 5B).

Defining motifs and private profiles
Having defined the kopt clusters, or pathway profiles, we computed the diversity of cell states expressing each profile based on their

transcriptome similarity. In principle, pathway profiles might comprise similar cell types (high transcriptome similarity) or sets of

diverse cell types (low transcriptome similarity). We calculated their pairwise Euclidean distances in the PCA projection constructed

from the top 4,000 highly variable genes (100 principal components) to measure transcriptome similarity in a subset of cell states. We

first verified that this metric was low for closely related cell states (as defined by their cell type annotation) and largest for randomly

selected cell states (Figures 4B and 4C). We then defined dispersion as the average pairwise PCA distance among a subset of cell

states (Figure 4A).

To find the lower bound of dispersion, we computed the expected dispersion for related cell states by clustering their transcrip-

tomes using the first 100 principal components, resulting in a global dendrogram of cell states (Figure 3C). We then identified the

clustering threshold for the global dendrogram to obtain the same number of clusters k as observed for the pathway in question,

therefore generating k groups of cell states that are each closely related. We then compared the distribution of dispersions for clus-

ters of related cell states and the dispersions for cell states within the pathway profiles (Figure 4C). The dispersion distribution

observed for related cell states (Figure 4C, gray) defines an approximate lower bound for the expected dispersion (Figure 4C, tur-

quoise). Conversely, we also computed dispersion values for randomly selected groups of cell states (Figure 4C, black). Random

groups of cell states provide the dispersion expected if pathway expression states were completely uncorrelated with the overall

expression similarity of the cells in which they appear. Finally, we defined a pathway profile as a motif if the cell states expressing
e2 Cell Genomics 4, 100463, January 10, 2024
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it showed dispersion values higher than the 90% percentile value expected for related cell states (Figure 4C, shaded area). The 90%

percentile threshold in dispersion identified pathway profiles expressed in the most diverse set of cell states. However, we observed

additional pathway states that appeared dispersed among cell types but did not pass the 90% threshold. Therefore, this method

could underestimate the number of dispersed pathway profiles and the threshold can be adjusted to allow a more flexible definition

of pathway motifs.

In contrast to pathwaymotifs, ‘‘private’’ profiles are cell-state specific, effectively the opposite of motifs (Figure S3D). By definition,

private profiles are confined to sets of similar cell states and therefore show low dispersion values. To classify private profiles, we

identified those profiles whose cell state dispersion overlapped with the expectation for highly-related cell states. Specifically, we

considered profiles with dispersion <50% percentile of the lower-bound distribution as ‘‘private.’’ For a pathway to be cell-state spe-

cific we expected the dispersion to be similar to that observed in closely related cell states. The threshold can be increased to allow

for identification of other pathway profiles with dispersion values comparable to related cell states.

Interpathway correlations
To detect potential statistical dependence between pathway states from different signaling pathways, we computed a pairwise

AdjustedMutual Information (AMI) for each pair of pathways (labels in Table S4). The AMI quantifies statistical dependencies between

categorical features in a dataset. In this case, each cell state has two different categorical labels, one for each pathway. The AMI

accounts for the expected correlations if the two labels are assigned at random. An AMI value of 0 represents the expected co-occur-

rence of labels due to chance, while a value of 1 represents perfect statistical dependence between the two clusterings.

Pseudotime trajectory analysis
To study transitions in pathway signaling profiles through the course of developmental processes, we performed pseudotime trajec-

tory analysis on two developmental datasets that were not included in the main integrated dataset (Figure 2): the neural crest devel-

opmental lineage from embryonic day 9.5,60 and the haemato-endothelial lineages from embryonic development days 7.5–8.5 sub-

setted from a scRNA-seq atlas of early organogenesis.29 We clustered single-cell data as described above (Clustering cells and

defining cell states) and constructed a force-directed projection using the ForceAtlas2 algorithm.70 We used cluster annotations

and the ForceAtlas2 reduced dimensional space as input to the Slingshot algorithm61 to obtain a global lineage structure. We

then placed cell states in the ordering given by the resulting pseudotime coordinates (Figures 7A and 7C).We scaled the gene expres-

sion values of the developmental dataset using min-max scaling after log-normalization. This scaling was performed to align each

gene’s expression distribution with the 0 and 0.95 quantiles of the corresponding gene in the integrated dataset. This allowed for

direct comparability of developmental profiles with the integrated dataset, as depicted in Figures 7B and 7D. Finally, we used the

k-nearest neighbors algorithm to obtain the profile numbers which closest match a given cell state along a developmental trajectory

(Figures 7B and 7D, numbers).
Cell Genomics 4, 100463, January 10, 2024 e3
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