Skip to main content
. 2023 Nov 21;4(1):100444. doi: 10.1016/j.xgen.2023.100444

Table 3.

Signatures derived from imaging data

Reference Cancer Signatures Notes
Nishino et al.132 melanoma, NSCLC, advanced-stage solid tumors PD-L1
Berry et al.135 melanoma CD8+FoxP3+PD-1
CD163+PD-L1
Chen et al.136 gastric cancer TIIC signature TIIC signature: CD4+FoxP3PD-L1+, CD8+PD-1LAG3, and CD68+STING+ cell density + the effective score of CD8+PD-1+LAG3 T cells; effective score = proportion of immune cells within a specific distance from the tumor cells
Lopez de Rodas et al.137 NSCLC spatial heterogeneity score spatial heterogeneity score uses Rao's Q index to measure diversity based on pairwise distances between cell types (tumor, CD4+, CD8+, CD20+, and stromal cells) and relative abundance of each cell type
Wu et al.138 head and neck cancer, colorectal cancer graphical embeddings of spatial relationships between cells delineates graph neural network spatial motifs associated with cancer recurrence and response
Patwa et al.139 TNBC scoring of interactions between cells expressing PD-1, PD-L1, IDO, and LAG-3
Zugazagoitia et al.140 NSCLC immune-stromal CD56 and CD4 protein expression
tumor VISTA and CD127 protein expression
Larroquette et al.141 NSCLC high CD163+ cell infiltration (possibly high expression of ITGAM, CD27, and CCL5)
high CSF1R expression in tumor cells higher CSF1R in tumors of responders
Johannet et al.148 metastatic melanoma DCNN-derived response classification + clinical variables ECOG performance score and immunotherapy category
Khorrami et al.149 NSCLC changes in a machine-learning-derived radiomic feature set
Vaidya et al.150 advanced NSCLC CT-scan radiomic features
Trebeschi et al.151 advanced melanoma and NSCLC CT-scan radiomic features only borderline significant for melanoma