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ABSTRACT: Lithium (Li) concentrations in drinking-water supplies are not regulated in
the United States; however, Li is included in the 2022 U.S. Environmental Protection Agency
list of unregulated contaminants for monitoring by public water systems. Li is used
pharmaceutically to treat bipolar disorder, and studies have linked its occurrence in drinking
water to human-health outcomes. An extreme gradient boosting model was developed to
estimate geogenic Li in drinking-water supply wells throughout the conterminous United
States. The model was trained using Li measurements from ∼13,500 wells and predictor
variables related to its natural occurrence in groundwater. The model predicts the probability
of Li in four concentration classifications, ≤4 μg/L, >4 to ≤10 μg/L, >10 to ≤30 μg/L, and
>30 μg/L. Model predictions were evaluated using wells held out from model training and
with new data and have an accuracy of 47−65%. Important predictor variables include average annual precipitation, well depth, and
soil geochemistry. Model predictions were mapped at a spatial resolution of 1 km2 and represent well depths associated with public-
and private-supply wells. This model was developed by hydrologists and public-health researchers to estimate Li exposure from
drinking water and compare to national-scale human-health data for a better understanding of dose−response to low (<30 μg/L)
concentrations of Li.
KEYWORDS: lithium, drinking water, groundwater, machine learning, extreme gradient boosting

1. INTRODUCTION
Lithium (Li) is a naturally occurring alkali metal found in
minerals and in groundwater and surface water as a
monovalent cation. Li concentrations in drinking-water
supplies are not currently regulated in the United States;
therefore, its occurrence has not been commonly measured. Li
is used as a medication to treat bipolar disorder and
depression,1 and clinical doses typically range between 600
and 1800 mg per day, which is 2−3 orders of magnitude
greater than typical drinking-water concentrations (<0.030
mg/L).2 Studies have linked the low-level occurrence (0.1−
219 μg/L) of Li in drinking water to positive human-health
outcomes such as reduced suicide mortality3−7 and other
mental-health benefits2,8−11 in addition to potential negative
outcomes such as autism12 and thyroid hormone levels.13,14

Further, side effects impacting renal, neurological, dermal,
cardiovascular, and endocrine systems can occur due to Li used
clinically, especially at higher doses (2.74−4.2 mg Li/kg of
body weight per day).15 The U.S. Environmental Protection
Agency (EPA) established a provisional reference dose (p-
RfD) of 2 μg of Li per kilogram of body weight per day and
reports that confidence in this value is low to medium because
of a lack of dose−response information at subclinical

concentrations.15 The U.S. Geological Survey developed a
nonenforceable health-based screening level of 10 μg/L for Li
in drinking water based on the p-RfD.16 Li is included in the
most recent EPA list of unregulated contaminants to be
monitored by public water systems as part of the fifth
Unregulated Contaminant Monitoring Rule (UCMR5). This
rule requires public water suppliers to measure Li concen-
trations in drinking water starting in 2023 to provide nationally
distributed data on its occurrence.17 The inclusion of Li in
UCMR5 indicates the potential for future regulations in public
drinking-water supply utilities.
To date, there have been few studies that quantify and

characterize the occurrence of geogenic Li in groundwater or
drinking water at the national scale for the conterminous
United States (CONUS).18−21 Historically, Li measurements
have been reported in groundwater studies that measure
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numerous elements.18,19 In a study focused on water quality
from domestic wells in the principal aquifers of the United
States, Li was measured in approximately 97% of 662 wells
sampled; however, there was no discussion or map related to
its occurrence.18 A subsequent national-scale study that
examined trace elements and radon in groundwater across
the United States reported Li in 94% of 936 wells sampled and
observed that in humid regions, Li was greater in monitoring
wells that were shallower as compared to deeper drinking-
water supply wells. However, in dry regions, an opposite
relationship was observed. The same study also found that Li
concentrations were generally higher in unconsolidated sand
and gravel aquifers than in other aquifers.19

Recently, two studies that focused solely on Li offer more
insights into its national occurrence. One study included data
from groundwater used as drinking water throughout the
United States20 and another measured Li at 21 public water
utilities across the United States that are supplied by surface
and groundwater.21 The groundwater-focused study deter-
mined that Li concentrations vary across the United States
with higher concentrations in arid regions and older ground-
water. This previous study determined that the primary
processes controlling Li in groundwater are cation exchange
and mixing with saline water.20 The study at public water
utilities reported regional differences in Li concentrations with
higher values in the arid southwestern and southern regions of
the United States compared to the Midwest, Southeast, and
mid-Atlantic regions. A comparison of groundwater and
surface water sourced drinking water found that Li
concentrations were higher in groundwater in the arid
southwestern and southern regions, with similar concentrations
in the Southeast and Midwest.21

In this study, we developed a machine learning model to
predict Li concentrations in groundwater used as drinking
water throughout the CONUS. Machine learning (ML)
methods are becoming more widely utilized in the field of
environmental science and can identify patterns in data not
easily accomplished with traditional statistical methods.22

Several different ML approaches have been applied to

predicting groundwater quality at regional and national scales
including random forest and boosted regression trees.23−28

Recently, extreme gradient boosting (XGB) models have been
developed to predict manganese concentrations in the North
Atlantic Coastal Plain aquifer system29 and nitrate concen-
trations in groundwater across the CONUS.30 The nitrate
study found that the XGB model outperformed a boosted
regression tree model based on the root-mean-square error
from the cross-validation folds during model tuning. Extreme
gradient boosting has been a highly successful modeling
approach for a wide range of applications and has been the
winning method in many machine learning competitions.31

This method utilizes ensemble decision trees with a regularized
learning objective (absent from other decision tree methods)
that minimizes the loss of function between the predicted and
actual values for each tree. Also, complex model structures are
penalized to avoid the problem of overfitting the model to the
model training data. XGB is also designed to handle sparse
data sets and missing values in the predictor variables,31 a
common occurrence in environmental data. We apply the XGB
method in this study based on its robustness.
The purpose of this study is to develop a model to map

estimated Li concentrations in groundwater used as drinking
water in the United States. We used the XGB algorithm, an
interpretable modeling method, to explore the relationships
between the predictor variables and Li occurrence. The maps
that are produced provide a nationally consistent estimate of Li
occurrence in groundwater, which is especially useful for areas
of the country lacking sampling data. The models were
developed in collaboration with public-health scientists so that
the results may be used in national-scale studies of associations
between exposure to low-dose Li and human-health outcomes.

2. METHODS
2.1. Lithium Data. Data on Li concentrations in

groundwater from wells across the CONUS were compiled
from the water-quality portal (https://www.waterqualitydata.
us/), which contains data from the U.S. Geological Survey
(USGS) National Water Information System Database, the

Figure 1. Lithium concentrations in groundwater (a) at well locations, (b) modeled for public-supply well depths, and (c) modeled for private-
supply well depths.
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EPA, and the National Water Quality Monitoring Council
provided by Federal, Tribal, and local agencies.
Upon collection of the Li data, some samples were excluded

from further analyses to focus on geogenic Li in groundwater
that had the potential to be used for drinking water. Exclusion
criteria included wells less than 1 m deep or greater than 1500
m deep as these were unlikely to be used as drinking-water
supply wells. Additionally, wells were excluded if the water
quality was considered nonpotable with dissolved solids
concentrations >1000 mg/L or pH values classified as acidic
or alkaline (3.5 ≤ pH ≥ 10.5), or they were readily identifiable
as contaminated or associated with coal, oil, or gas with explicit
identifiers in the site name such as coal, oil, gas, mining, or
contam operable unit. Samples were also excluded if the
reporting limit for Li analysis was >4 μg/L. For sites with
multiple samples, only the most recent sample was retained.
The final data set comprises 18,027 wells sampled between
January 1989 and November 2020. Most of the sites are either
monitoring (33.4%), domestic-supply (28.4%), or public-
supply (24.2%) wells. The well type for 6.2% of the sites is
unknown and the remaining 7.8% of sites are other
miscellaneous water uses. A summary of the general character-
istics of the wells is included in Table SI_1. Well locations are
shown in Figure 1.
Additionally, an independent set of samples were recently

collected from private wells in Nevada and northeastern
California for a separate study and Li concentrations from that
study were used to evaluate the regional accuracy of the
private-well model prediction map produced in the current
study.32 Independent data (in contrast to a subset of data
purposefully held back from a larger data set) are rarely used to
evaluate models but can be useful because they can represent a
different areal extent or time and provide additional
information on model performance.23,33

2.2. Predictor Variables. Predictor variables were selected
that represent established associations or are proxies for factors
that influence the occurrence of geogenic lithium in ground-
water. All variables were required to be available as geographic
information system (GIS) layers for CONUS. In general,
predictor variables represent hydrologic, geologic, geochemical,
and climatic characteristics associated with each well location.
Categorical variables, such as the Köppen−Gieger climate
classification, were converted to binary variables so that each
category is assigned one if it is present or zero if it is absent
(i.e., one-hot encoded). Approximately, 200 variables were
tested in preliminary models with groups of variables dropped
from consideration for the final model based on low variable
importance scores in preliminary models. After the final model
was developed, additional variables were excluded based on
normalized variable importance scores that were less than 0.34.
Li concentration and independent variable data used for

predictive modeling are available in a U.S. Geological Survey
Data Release.34

2.3. Model Development. An XGB classification model31

with four lithium concentration classes (≤4, >4 to ≤10, >10 to
≤30, >30 μg/L) was developed. This model algorithm was
selected because it can handle missing data values (unlike
random forest, for example) and in a previous study
outperformed another tree-based method for predicting
groundwater quality at the national scale.30 The boundaries
for the Li concentration classes were chosen based on the
distribution of Li concentrations (Table SI_2) and non-
regulatory health-based and regulatory values. The lowest

concentration boundary of 4 μg/L was chosen because it is
below the health-based screening level of 10 μg/L and did not
eliminate too many wells from inclusion in the study based on
method detection limits; for example, if a reported detection
limit for a sample was greater than 4 μg/L, then it could not be
included. The 10 and 30 μg/L concentration boundaries are
based on the health-based screening level and Eurasian
Economic Union Limit for Li in drinking water, respec-
tively.16,35

Lithium concentrations from a total of 18,027 wells were
used to develop and evaluate the model. Lithium well
concentration data were split into a model training data set
of 13,522 wells (75%) and model validation data set of 4505
wells (25%). The data were split between the two data sets to
have the same distribution of Li concentrations (Table SI_2).
The training data set was used to develop the model, and the
validation data set was used to evaluate the predictive
performance of the final model. As mentioned, the model
also was tested with an independent dataset from Nevada and
northeastern California, which is discussed later in this
manuscript.
Models were tuned using the R software environment,

version 4.2.0, and the “xgboost” and “caret” packages. 10-fold
cross-validation was run on a tuning grid consisting of 256
combinations of model hyperparameters. The range of
hyperparameters evaluated were step size shrinkage (η)
0.005 to 0.0125 by 0.0025, maximum depth of a tree
(max_depth) 8 to 14 by 2, nrounds from 500 to 2000 by
500, subsample ratio of columns when constructing each tree
(col_sample_by_tree) 0.5 to 0.75 by 0.25, and subsample 0.5
to 0.75 by 0.25. During initial model tuning, the hyper-
parameters held constant were the minimum loss reduction
required to make a further partition on a leaf node of the tree
(γ) held at 0, the minimum sum of instance weight needed in a
child (min_child_weight) held at 1, the constraint on the
updating step for each leaf output (max_delta_step) held at 0,
α (L1 regularization term) held at 1, and λ (L2 regularization
term) held at 0.
The most accurate model was determined via 10-fold cross-

validation, and standard errors for the model accuracy were
calculated. The simplest model within one standard error of
the most accurate model was selected as the final model.
Simpler models were identified based on the smallest values for
model hyperparameters with preference given in the following
order: η, max_depth, nrounds, colsample_bytree, and
subsample. The simpler model within one standard error was
selected as the final model to avoid overfitting to the training
data. After selection of the simpler model, changes in
secondary hyperparameters including the model regularization
terms (α and λ), γ, and max_delta_step were tested to assess
their impact on reducing the number of variables included in
the final model and model prediction accuracy to the training
data set. Each of these secondary hyperparameters was
changed individually, while the primary hyperparameters
were held constant and the additional secondary hyper-
parameters were held at their default values. Secondary
hyperparameter values tested were γ (0, 3, 5), λ (1, 3, 5), α
(0, 3, 5), and max_delta_step (0, 1, 2, 5, 7). Finally, the
number of variables in the model were evaluated based on the
variable importance scores and were included in the model if
normalized importance scores were greater than 0.34.
Continuous maps of Li occurrence in groundwater used as

drinking water were made for the CONUS using the final
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model and run using the R software environment, version
4.3.1. Map predictions were made at a 1 km2 grid cell size by
overlaying a common grid36 on each of the GIS files for the
independent variables and extracting a value for each grid cell
using the bilinear resampling technique in ArcMap v.10.8.1.37

Well depth values were extracted from two different GIS layers,
representing typical private-well and public-supply well depths,
which range from 1.5 to 1463 and 1.5 to 1596 m,
respectively.38 The final model was used to predict a lithium
concentration at each grid cell, and two maps were created,
one at each well depth distribution, representing private or
public wells.
2.4. Model Interpretation. SHapley Additive exPlan-

ations (SHAP) dependence plots provide insights into the
relationships between the predictor variables and the model
outcomes,39 allowing for interpretation of the model. SHAP
plots were generated using the xgboost package, and their
patterns were compared to processes and conditions known to
contribute to Li concentrations in groundwater.

3. RESULTS AND DISCUSSION
Lithium concentrations in the data set used to develop the
model range from <0.001 to 15,000 μg/L. The number of wells
within each concentration class used in the classification model
are listed in Table SI_2. The Li concentration class of ≤4 μg/L
contains the most wells (n = 7025), while the concentration
class >30 μg/L contains the least wells (n = 2727). Based on
the model tuning results, the hyperparameters of the final
model (i.e., the simplest model within one standard error of
the most accurate model) are η = 0.005, max_depth = 10,
nrounds = 1000, colsample_bytree = 0.75, and subsample =
0.50. Using these hyperparameters, the secondary hyper-
parameters were varied and changes evaluated by assessing the
impact on the number of variables included in the model and
the model accuracy for predictions to the training data set.
Changes to the secondary hyperparameters decreased the
model accuracy; therefore, the default values were used in the
final model and include γ = 0, λ = 1, α = 0, and
max_delta_step = 0. The variable importance scores were
examined and used to determine the final number of variables
in the model. There was a large decrease in the variable
importance scores from 0.34 to 0.07 between the 20th and 21st
variables. The model was run with the top 20 variables, and
predictions to the training data were compared to the model
with 46 variables. The model with fewer variables had slightly
greater overall model prediction accuracy (92.66% vs 92.52%)
and was chosen as the final model.
When the model is run on the validation data set, it has an

overall accuracy of 65.1%. Additional model prediction metrics
for each Li concentration class include the sensitivity (true
positive rate), specificity (true negative rate), and balanced
accuracy (average of sensitivity and specificity) (Table 1). The
predictions have the highest balanced accuracy and sensitivity
for the lowest Li concentration class (Li ≤ 4 μg/L), which is
expected because the greatest number of wells occur in this

class. The specificity for the model predictions in this class is
the lowest across the classes (0.7905); however, the difference
between the specificity and sensitivity in this class is the
smallest when compared to the other classes, with a difference
of 0.0945. The difference between the sensitivity and
specificity of the predictions for the other classes ranges
from 0.2324 to 0.5855. For the three higher Li concentration
classes (>4 and ≤10 μg/L, >10 and ≤30 μg/L, and >30 μg/L),
the specificity is greater than the sensitivity. Therefore, when Li
is greater than 4 ug/L, the model is better at predicting when
Li is less than a certain threshold compared to when Li is
above that threshold. The model does best at predicting when
a well has a Li concentration that is in a class other than >30
μg/L (specificity for >30 μg/L) and is worst at predicting Li
concentrations from >4 to ≤10 μg/L (sensitivity for >4 to ≤10
μg/L).
To examine the differences in the model prediction

classifications and the observed classifications of Li concen-
trations, the classifications were assigned a value of 1 through 4
(one equal to the lowest concentration class), and the observed
classification was subtracted from the model prediction
classification (Figure 2). A result of zero indicates the model

correctly predicts the observed classification, while negative
values indicate the model underpredicts and positive values
indicate the model overpredicts. The results from this analysis
show that the model predicts the correct class for 65.1% of the
validation data and predicts a result either one class above (1)
or below (−1) the correct result for 27.1% of the validation
data. Overall, the model predicts the observed concentration
class or within one class of the observed 92.2% of the time.
The model tends to underpredict with negative values
accounting for 21.7% and overpredict with positive values
accounting for 13.2%.

Table 1. Model Prediction Metrics for the Validation Data set Used to Estimate Geogenic Lithium (Li) in Drinking-Water
Supply Wells throughout the Conterminous United States

Li classification class 1 (≤4 μg/L) class 2 (>4 to ≤10 μg/L) class 3 (>10 to ≤30 μg/L) class 4 (>30 μg/L)
sensitivity 0.8850 0.3333 0.6100 0.5580
specificity 0.7905 0.9188 0.8424 0.9548
balanced accuracy 0.8377 0.6261 0.7262 0.7564

Figure 2. Modeled minus observed lithium concentration classi-
fications for model validation data used to estimate geogenic lithium
in drinking-water supply wells throughout the conterminous United
States. Li classifications: Class 1 (≤4 μg/L); Class 2 (>4 to ≤10 μg/
L); Class 3 (>10 to ≤30 μg/L); and Class 4 (>30 μg/L).
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3.1. Predictor Variables. The final model contains 20
predictor variables (Figure 3 and Table SI_3). They include
climatic variables such as average annual precipitation,40

geochemical variables representing the soil chemistry,41 and
hydrologic variables such as the lateral position of a well with
respect to streams and their hydrologic divides42 and outputs
from a national groundwater model.43 The variable importance

within the model was determined using the function built into
the XGBoost package that calculates the fractional contribu-
tion of each feature based on the total gain from the splits that
use that feature.44 For the overall model, the relative variable
importance, which is normalized to the variable with the
greatest variable importance, is shown in Figure 3 and listed in
Table SI_3. The average annual precipitation (ppt_91_20)

Figure 3. Model variables, their relative importance, and general classification used to estimate geogenic lithium in drinking-water supply wells
throughout the conterminous United States. Variable descriptions are provided in Table SI_3.

Figure 4. SHapley Additive exPlanations (SHAP) plots for the prediction classification of lithium (Li) > 30 μg/L for (a) average annual
precipitation (ppt_19_20), (b) well depth (WELL_DEPTH), (c) lateral position relative to ninth-order streams (LP_9), and (d) Li concentration
in the C soil horizon (C_Li) for geogenic lithium in drinking-water supply wells throughout the conterminous United States. Red curves are locally
estimated scatterplot smoothing (LOESS) best fit lines.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03315
Environ. Sci. Technol. 2024, 58, 1255−1264

1259

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03315/suppl_file/es3c03315_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03315/suppl_file/es3c03315_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03315/suppl_file/es3c03315_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c03315?fig=fig4&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03315?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and well depth (WELL_DEPTH) are the two most important
variables. The lateral positions of a well within a watershed for
ninth-, seventh-, and fifth-order streams are 3 of the top 10
variables, and soil geochemistry variables comprise an
additional 3 variables in the top 10. The relative variable
importance was also determined for each Li classification in the
model (Tables SI_4−SI_7) and indicates that there are slight
differences in variable importance between the classifications,
but generally they are similar. For example, the average annual
precipitation is the most important variable overall and for all
well classifications except class 2 where it is the second most
important variable. Similarly, well depth is in the top 2 for
variable importance overall and for Li concentration
classifications 1, 2, and 3. For the Li concentration class 4,
the well depth is the fifth most important variable.
3.2. Model Interpretation. Here, we focus on the SHAP

plots for the model predictions relative to the highest Li
concentration classification (Li > 30 μg/L), allowing for easier
interpretation because these plots compare the independent
variables to the predictions being greater than a given Li
concentration, as opposed to the other classifications, which
are for Li concentrations less than a value or between two
concentrations. We examine in detail and discuss four SHAP
plots for the most important predictor variables (Figure 4).
The SHAP plot for average annual precipitation indicates

that generally the probability of Li concentrations > 30 μg/L
increases with decreasing average annual precipitation
amounts. The overall pattern in this graph is indicative of
the locations of high Li concentrations that occur more
frequently in the arid western region of the country (average
annual rainfall < 500 mm) compared to the more humid
eastern regions of the country that tend to have lower Li
concentrations (Figure 1a). This result agrees with two
previous national-scale studies that report higher Li concen-
trations in groundwater and surface waters from dry climate
regions compared to humid regions.19,21 These higher
concentrations in arid regions might be associated with playas,
or dried lake beds that have elevated concentrations of lithium
in associated salts.45 However, an additional national-scale
study focusing on Li concentrations in groundwater observed
higher concentrations (>60 μg/L) in both arid and humid
regions of the country.20 The infrequently higher Li
concentrations observed in parts of the more humid upper
Midwest and Northeast may be driven by factors unrelated to
climate.
Well depth is another important model variable, and the

SHAP plot indicates a large and positive relationship between
well depth and high Li concentrations (Figure 4b). The
increase in Li concentration with well depth has been observed
in other Li groundwater studies and is indicative of processes
that contribute to Li in groundwater including mixing with
deep brines, dissolution of lithium-bearing minerals, and cation
exchange.20 The well depth relationship is also consistent with
the previously reported relationship of higher Li with
increasingly older groundwater.20

The lateral position (LP) of a well is a normalized
dimensionless value ranging from 0 to 10,000 that represents
the location of a well relative to its distance between a stream
of nth order and the drainage divide.42,46 The lower the value,
the closer the well is to a stream where the LP is equal to zero.
Lateral positions have been calculated for the CONUS for first-
through ninth-order streams (n = 1 through 9),42,46 we use 5 of
the 9 LP variables (LP 1, 3, 5, 7, 9) in our model to avoid over-

reliance on these variables. The SHAP plot for the LP for
ninth-order streams (LP_9), which has the highest relative
importance of the LP variables, is shown in Figure 4c and
indicates a nonlinear relationship where Shapley values are
greatest at low (<1000) and high (>9000) LP values and dip in
between. This could be indicative of several different processes
and geologic associations linked with Li occurrence in
groundwater. Ninth-order streams are the largest rivers in
the conterminous United States and include the Missouri,
Mississippi, Columbia, and Colorado Rivers. LP_9 values also
approach zero along the oceanic coastlines and shores of the
Great Lakes. LP_9 values are greatest along the Continental
Divides of North America including the Great Continental
Divide in the western United States from New Mexico to
Montana and the Appalachian Mountain range in the eastern
United States from Georgia north to Maine. The higher Li
concentrations observed at low lateral position values near
ninth-order streams (LP_9) may be associated with ground-
water that has a long residence time and, thus, greater chemical
evolution, allowing Li to increase through mineral weathering
and cation exchange along the flow path from recharge regions
to discharge at streams. The high LP 9 values in the eastern
United States coincide with mountainous regions that contain
pegmatites, some of which are known to be enriched in Li.45,47

The concentration of Li in the C soil horizon is also an
important predictor variable. The C soil horizon is the
lowestmost soil horizon that sits above the bedrock and
typically consists of partially weathered bedrock or the parent
material. The soil chemistry information used in this study is
from a national-scale study that collected soil samples
throughout the CONUS and measured numerous geochemical
and mineralogical constituents.41 The SHAP plot for Li in the
C soil horizon indicates that higher concentrations of Li in the
soil contribute more to the model prediction of Li > 30 μg/L
than lower concentrations (Figure 4d). This indicates that
dissolution of Li from minerals in the soil and bedrock
contributes to the presence of Li in groundwater.
The SHAP plots are useful tools for interpreting how

individual variables contribute to model predictions and the
relationships between the model predictions and that variable.
The SHAP plots for the Li prediction class ≤ 4 μg/L and the
same variables shown in Figure 4 indicate consistent results
between the contributions of these variables to the model. The
patterns for the SHAP plots in the Li prediction class ≤ 4 μg/L
(Figure SI_1) are the opposite of the patterns for the Li
prediction class > 30 μg/L (Figure 4). For example, the
relationship between average annual precipitation and the
predictions for the lowest Li class indicate that at higher
average annual precipitation, the probability of Li ≤ 4 μg/L is
greatest or that Li concentrations are lowest at higher average
annual precipitation values. This is the same interpretation that
can be inferred from Figure 4a. The SHAP plots for the two
intermediate Li concentration classes are not as straightforward
to interpret because most of them do not contain any
discernible pattern and are largely scattered around the SHAP
value of zero (Figures SI_2 and SI_3). SHAP plots for all
predictor variables and all Li concentration classification
predictions as well as the overall model are included in Figures
SI_1−SI_5.
3.3. Model Prediction Maps. Maps were made for the

CONUS that show model predictions of the Li concentration
classification at estimated well depths for domestic and public-
supply wells (Figure 1b,c). A comparison of the observed and
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predictive maps generally indicates that the observed Li
concentration map (Figure 1a) is spatially well-represented by
the predictive maps (Figure 1b,c). Li concentrations > 30 μg/L
were measured throughout much of the west and southwestern
states including Montana, Wyoming, North Dakota, South
Dakota, Colorado, Utah, Nevada, Arizona, New Mexico and
Texas, and also in the eastern and northeastern States but to a
lesser degree and extent. These areas of high Li are captured in
the model prediction maps. A visual comparison of the
prediction maps for domestic and public-supply well depths
shows that the two are very similar, with noticeable differences
in Li concentration predictions primarily in the southeastern
United States (Georgia, Alabama, Mississippi, and Louisiana)
where public-supply well depth predictions of Li concentration
categories are slightly higher than those for domestic-supply
well depths.
The mapped model predictions for Li concentration classes

from domestic-supply wells were compared to newly collected,
independent Li data from 253 wells that were part of a study
on water quality in domestic-supply wells in Nevada and
northeastern California.32 The mapped predictions for these
wells have 45.5% accuracy, which is lower than the model
prediction accuracy for the model validation data set (62.5%).
The mapped predictions for these wells tend to underpredict
the correct Li concentration classification (41.5%) more than
they overpredict (13.0%; Figure 5). This result indicates that

the model is more accurate in some areas than others, and this
may occur for several reasons including (1) specific important
local features such as geologic formations or deposits that are
not represented by the predictor variables in our model, (2)
this comparison was between the grid predictions at the well
location and not for model point predictions at the specific
well locations, and (3) geospatial variation in the model
uncertainty.
3.4. Model Prediction Uncertainty. The Li concen-

tration classification that is predicted for a grid cell is based on
the classification that has the highest probability of occurrence
from the model results, and the sum of all probabilities across
the four classes equals 1. There are four possible classifications
for each grid with the probabilities spread across these
categories; therefore, a grid with a classification probability
of only 26% could have the highest probability if, for example,
the probabilities across the four classes were 26, 24, 25, and
25%. The Li classification with 26% would be selected as the
most probable; however, that class has a much higher

uncertainty than a class that is selected with a 90% probability.
As prediction values across all classifications approach 0.25,
uncertainty increases because there is a greater chance of
predicting one of the four classes nearly equally. Figure 6a is a

map of the highest probability for each grid classification from
the private-well depth predictions; areas with low values have a
higher uncertainty than those with high values. Areas of the
country with the highest probabilities greater than 75% (and
lowest prediction uncertainty) include the Pacific Northwest,
north Texas, Nebraska, Wisconsin, and the upper Peninsula of
Michigan, parts of New York, and the southeastern States
(Figure 6a). Areas of the country with the lowest probabilities
(and highest prediction uncertainty) are more widespread and
include the Northeast, Midwest, and Western States (Figure
6a). Therefore, one explanation for the lower prediction
accuracy in Nevada and northeastern California for the private-
well map compared with observations is the low overall
probabilities of classification predictions in that area of the
country (Figure 6a). The map for the highest probabilities for
public-supply well depth predictions is very similar and is
included in Figure SI_6.
Figure 6b maps the modeled Li concentration classes minus

observed Li concentration classes for the model validation data
and shows that most predictions are correct or within one class
of the actual class. Comparing Figure 6b with Figure 6a
indicates that areas of the country with the highest
probabilities for each grid classification, such as north Texas,
have predictions that tend to be correct in Figure 6b as
indicated by a zero. The validation wells that have modeled
classes that are most different from the observed wells (−3 or
+3 in Figure 6b) are dispersed in areas of the country in the
lower probability ranges shown in Figure 6a.

4. LIMITATIONS AND FUTURE DIRECTIONS
The model presented here for a CONUS-scale representation
of Li in drinking water from public and private groundwater
sources has reasonable accuracy at the well scale and across

Figure 5. Modeled minus observed lithium (Li) concentration
classifications for geogenic Li in drinking-water supply wells in
Nevada and California. Li classifications: Class 1 (≤4 μg/L); Class 2
(>4 to ≤10 μg/L); Class 3 (>10 to ≤30 μg/L); and Class 4 (>30 μg/
L).

Figure 6. (a) Highest probability for each grid classification for
private-well depth predictions. (b) Modeled minus observed lithium
class for private-well depth predictions and model validation wells.
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CONUS-scale predictions. However, there is room for
improved predictions. For example, more dependent variable
data (i.e., Li concentrations) in areas of sparse representation
(the Northwest and Central United States) would most likely
result in more refined and higher-accuracy predictions. Also,
additional or improved predictor variables, such as refinement
on the representation of groundwater residence time or
chemical evolution of groundwater, would be useful. It is
also possible that estimates of modeled groundwater travel
times or recharge ages for depths to drinking-water supplies
would improve predictive accuracy.
Further, our model does not consider impacts from potential

anthropogenic sources of Li to groundwater. This may become
important to consider in the future as the use and disposal of
Li-containing products increases.48 Li has become increasingly
important as an economic commodity due to its use in
rechargeable batteries, especially for electric vehicles.49 This
recent surge in demand and use of Li in consumer products is
likely to result in its increased level of detection in groundwater
and waterways due to anthropogenic impacts from use and
disposal. Our model may be used to help discern whether areas
with Li detections in groundwater are from anthropogenic or
geogenic sources. A study of Li concentrations and isotopes in
South Korean streams found that Li concentrations down-
stream of areas with high population density have higher Li
concentrations and attributed the increase to anthropogenic
activities based on Li isotope ratios.50 Studies have reported
that standard wastewater treatment methods do not decrease
Li concentrations between the influent and effluent.21,50

Additionally, our model only considers groundwater sources
of drinking water and many large cities throughout the United
States rely on surface water sources for their drinking water.51

Surface water sources of drinking water are likely to contain Li
in varying concentrations; however, the data are currently
sparse.17,21 As the UCMR5 rule goes into effect and more data
become available, this model may be useful in future efforts to
compare Li concentrations and occurrence in groundwater and
surface waters.
Given the scattered sampling of wells for Li across the

CONUS, the model and maps developed in this study provide
a current best estimate of Li concentrations in groundwater
used as drinking water throughout the CONUS. These
estimates will be used to calculate human exposure metrics
and evaluate associations with various human-health outcomes.
This is particularly important as there is mixed evidence about
possible health benefits to having higher concentrations of Li
in drinking water, even when exposures are several orders of
magnitude lower than would be seen in clinical situations.
These potential benefits include a reduction in suicide,52

violent crime,53 and dementia.9 This has led to some calling for
trials to evaluate the supplementation of Li in drinking water as
a public-health intervention.54 Still, further confirmatory
evidence in new geographic areas would help to clarify
whether the health associations are attributable to Li exposure
and whether they are beneficial or detrimental. These
necessary future studies will be supported by the model
presented here, which enables epidemiologic investigation
across the CONUS. It also enables assessment of interactions
with other exposures, such as lead, which may interact with Li
in its impact on human health.2 Groundwater-quality models
such as these provide a useful tool for identifying potential
health effects of drinking-water contaminants, environmental
justice issues, and public-health education and outreach needs.
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