Skip to main content
. 2023 Nov 22;25(1):e14210. doi: 10.1002/acm2.14210

TABLE 2.

The comparison of predictive ResNet50 model's performance across previous studies.

Authors Models No. of original images Number of classes Sensitivity (%) Specificity (%) Accuracy (%)
Present study CNN‐ResNet50 (Testing phase) non‐FLL = 150 5 92.7 ± 7.2(non‐FLL) 89.3 ± 4.6(non‐FLL) 87.2 ± 2.2
Cyst = 150 92.7 ± 2.8 (Cyst) 98.6 ± 2(Cyst)
FFS = 77 88.7 ± 6.9 (FFS) 81.6 ± 5.8(FFS)
HMG = 150 81.3 ± 3.8 (HMG) 86.3 ± 7.6(HMG)
HCC = 54 80.7 ± 6.8 (HCC) 81.2 ± 3.7 (HCC)
Hwang et al. (2015) 20 Two‐layered feed‐forward neural network (FFNN)

Cyst = 29

HMG = 37

Malignancy (HCC+MLC) = 33

2(Cyst vs. HMG,

Cyst vs.Malignancy,

HMG vs. Malignancy)

98 (Cyst vs. HMG)

97 (Cyst vs. Malignancy)

40 (HMG vs. Malignancy)

98 (Cyst vs. HMG)

98 (Cyst vs. Malignancy)

60 (HMG vs. Malignancy)

98 (Cyst vs. HMG)

98 (Cyst vs. Malignancy)

51 (HMG vs. Malignancy)

Reddy et al. (2018) 21

Model1: CNN

Model2: VGG16+transfer learning

Model 3: VGG16+transfer learning+fine tuning

Normal liver = 64 and

Fatty liver = 93

2

89 (1st model)

95 (2nd model)

95 (3rd model)

85 (1st model)

76 (2nd model)

85 (3rd model)

84 (1st model)

88 (2nd model)

91 (3rd model)

Yamakawa et al. (2019) 22 CNN‐based VGGnet

Cyst = 159

HMG = 68

HCC = 73

MLC = 24

4

98 (Cyst)

87 (HMG)

86(HCC)

46 (MLC)

12 88
2 (Benign vs. Malignancy) 94 (Malignancy) 5 91

Ryu et al.

(2021) 23

CNN+ReLU

Cyst = 1214

HMG = 1220

HCC = 874

MLC = 1001

4

94 (Cyst)

83 (HMG)

67 (HCC)

82 (MLC)

90 80
2 (Benign vs. Malignancy) 87 (Malignancy) 89 90
Nishida et al. (2022) 24

CNN‐based VGGNet

(Model 3, utilizing the largest available HCC dataset)

HCC = 1750

MLC = 396

HMG = 433

Cyst = 43

4 67.5 (HCC) 96 (HCC) 93.4 (HCC)

Abbreviations: CCN, convolution neural network; Cyst, simple hepatic cyst; FFS, fat focal sparing; HCC, hepatocellular carcinoma; HMG, hemangioma; MLC, metastases liver cancer; non‐FLL, non‐focal liver lesion.