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ABSTRACT
Background: We have an incomplete understanding of COVID-19 characteristics at hospital
presentation and whether underlying subphenotypes are associated with clinical outcomes and
therapeutic responses.
Methods: For this cross-sectional study, we extracted electronic health data from adults hospi-
talized between 1 March and 30 August 2020 with a PCR-confirmed diagnosis of COVID-19 at
five New York City Hospitals. We obtained clinical and laboratory data from the first 24h of the
patient’s hospitalization. Treatment with tocilizumab and convalescent plasma was assessed
over hospitalization. The primary outcome was mortality; secondary outcomes included intub-
ation, intensive care unit (ICU) admission and length of stay (LOS). First, we employed latent
class analysis (LCA) to identify COVID-19 subphenotypes on admission without consideration of
outcomes and assigned each patient to a subphenotype. We then performed robust Poisson
regression to examine associations between COVID-19 subphenotype assignment and outcome.
We explored whether the COVID-19 subphenotypes had a differential response to tocilizumab
and convalescent plasma therapies.
Results: A total of 4620 patients were included. LCA identified six subphenotypes, which were
distinct by level of inflammation, clinical and laboratory derangements and ranged from a hypo-
inflammatory subphenotype with the fewest derangements to a hyperinflammatory with multi-
organ dysfunction subphenotypes. Multivariable regression analyses found differences in risk for
mortality, intubation, ICU admission and LOS, as compared to the hypoinflammatory subpheno-
type. For example, in multivariable analyses the moderate inflammation with fever subpheno-
type had 3.29 times the risk of mortality (95% CI 2.05, 5.28), while the hyperinflammatory with
multiorgan failure subphenotype had 17.87 times the risk of mortality (95% CI 11.56, 27.63), as
compared to the hypoinflammatory subphenotype. Exploratory analyses suggested that subphe-
notypes may differential respond to convalescent plasma or tocilizumab therapy.
Conclusion: COVID-19 subphenotype at hospital admission may predict risk for mortality, ICU
admission and intubation and differential response to treatment.

KEY MESSAGE

� This cross-sectional study of COVID patients admitted to the Mount Sinai Health System,
identified six distinct COVID subphenotypes on admission. Subphenotypes correlated with
ICU admission, intubation, mortality and differential response to treatment.
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Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2
(SARS CoV2) pandemic has resulted in significant mor-
bidity and mortality [1,2]. In the United States, there

were an estimated 83.1 million total infections from
March through December 2020 [3]. Of those infected,
the disease burden ranged from asymptomatic to crit-
ical illness, and the mortality among hospitalized
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patients in the US was estimated to be 21% [4]. A
number of studies have identified early clinical
markers of severe coronavirus disease 2019 (COVID-
19), such as fever, hyperglycemia, and elevated
inflammatory markers that may be associated with
worse outcomes [5–9]. Recent studies have shifted
focus to COVID-19 heterogeneity [10,11]. We posit
that COVID-19 heterogeneity at the time of hospital
admission represents underlying subphenotypes with
different natural histories, clinical and biological char-
acteristics, outcomes and, possibly, responses to
treatment [12–14]. Better characterizations of COVID-
19 subphenotypes and their associations with out-
comes could inform treatment options. Furthermore,
secondary analyses of completed trials using COVID-
19 subphenotypes may explain variable responses to
therapeutics and improve targeted therapy.

It is now understood that syndromes of critical ill-
ness, such as acute respiratory disease syndrome
(ARDS) and sepsis, both seen in severe COVID-19, are
not singular in presentation but rather are composed
of multiple underlying subphenotypes with differing
associated morbidity and mortality risk. Secondary
analyses of randomized controlled trials of ARDS
employed latent class analysis and consistently
identified hyperinflammatory and hypoinflammatory
subphenotypes where the hyperinflammatory subphe-
notype was associated with higher risk of mortality
[13,15–17]. These subphenotypes may differentially
respond to therapy, although evidence is mixed
[13,15,16]. Within the COVID-19 framework, published
studies have evaluated whether individual measures
such as oxygen saturation, creatinine, D-dimer or C-
reactive protein (CRP) predict disease severity.
Machine learning approaches have been applied to
understand risk for COVID-19 mortality and critical ill-
ness however these approaches are limited by data
missingness and sample size requirements [18–24].
More recent studies have examined COVID-19 subphe-
notypes at the time of ICU admission when the dis-
ease is advanced and successful interventions may be
limited [25,26]. Moreover, randomized controlled trials
of therapeutics recruit COVID-19 patients broadly and
do not enrich for subphenotypes that may be more
likely to respond to that therapeutic [27–29]. More
research is needed to identify subphenotypes of dis-
ease severity on hospital presentation and assist with
clinical risk stratification and treatment algo-
rithms [30,31].

To address this knowledge gap, we conducted a
retrospective analysis to identify COVID-19 subpheno-
types on admission, examine whether identified

subphenotypes were associated with COVID-19 out-
comes, and explore differential response to therapeu-
tics. Specifically, we leveraged electronic health record
data from inpatient COVID-19 encounters within five
New York City (NYC) hospitals during the Spring
through Summer 2020 surge. Our primary COVID-19
clinical outcome was mortality; secondary outcomes
included intensive care unit (ICU) admission, intub-
ation and length of stay (LOS).

Methods

Study participants

We extracted electronic health data from all persons
hospitalized with a PCR-confirmed diagnosis of COVID-
19 at five Mount Sinai Hospital System Hospitals
including Mount Sinai Brooklyn, Mount Sinai Queens,
the Mount Sinai Hospital, Mount Sinai Morningside
and Mount Sinai West. Specifically, we included
patients who were aged 18 years or older, admitted
between 1 March 2020 and 30 August 2020, and had
a positive SARS Cov2 PCR nasal swab within 7 days
of admission.

Ethics

The study was approved by the Institutional Review
Board at the Icahn School of Medicine at Mount Sinai
(20-00547).

Electronic health record data

Electronic health record data were collected from the
first COVID-19 encounter through 30 August 2020
thereby capturing complete hospital admissions and
outcomes over the NYC Spring 2020 COVID-19 surge.
Data were obtained from the Mount Sinai Data
Warehouse COVID-19 Data Sets, which obtained data
from Mount Sinai’s Caboodle, Clarity and Enterprise
Data Warehouse databases. The Mount Sinai Hospitals
are located in the NYC boroughs of Manhattan [Mount
Sinai Hospital (1141-bed), Mount Sinai Morningside
(495-bed), and Mount Sinai West (514-bed)], Brooklyn
[Mount Sinai Brooklyn (212-bed)] and Queens [Mount
Sinai Queens (235-bed)].

For each patient encounter, we extracted date of
admission, hospital, sex, age, self-reported race/ethni-
city, insurance provider and date of SARS-CoV-2 PCR
test. For patients with multiple encounters, data col-
lected at the first encounter that met inclusion criteria
were used in analyses. Information on medical comor-
bidities were extracted from the electronic health
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record using international classification of disease 10
(ICD 10) codes. Comorbidities were grouped into
organ-specific categories. Persons with history of
asthma, chronic obstructive pulmonary disease (COPD)
and/or obstructive sleep apnea (OSA) were catego-
rized as having pulmonary disease. Persons with his-
tory of hypertension (HTN), coronary artery disease
(CAD), congestive heart failure (CHF) and/or myocar-
dial infarction (MI) were categorized as having cardio-
vascular diseases. Persons were also categorized as
having a history of cancer or obesity (as measured by
ICD 10 code, or a calculated BMI >30). The number of
organ-specific comorbidities were then summed.

We obtained clinical and laboratory data from the
first 24 h of the patient’s first hospitalization that met
inclusion criteria. Only variables with data available
from at least 60% of participants or variables with a
strong biological basis based on prior studies [erythro-
cyte sedimentation rate (ESR), interleukin 6 (IL-6), inter-
leukin 1 beta (IL-1B)] were included. For variables with
repeated observations, we identified the worst value
recorded within 24 h of admission. Clinical variables
included lowest oxygen saturation, lowest systolic and
diastolic blood pressure, highest heart rate, and
highest temperature within the first 24 h. Laboratory
variables examined included inflammatory markers
[C-reactive protein (CRP), ESR, IL-6, IL-1B, lactate
dehydrogenase (LDH), procalcitonin, ferritin]; hemato-
logic markers [white blood cell (WBC), hemoglobin, pla-
telets, d-dimer, fibrinogen, prothrombin time (PT),
partial thromboplastin time (PTT)); cardiac markers
(troponin, brain natriuretic peptide (BNP)]; and renal and
hepatic markers (alanine transaminase (ALT), aspartate
aminotransferase (AST), albumin, total bilirubin, sodium,
potassium, calcium, bicarbonate, blood urea nitrogen
(BUN), creatinine, anion gap, glucose. Laboratory values
above the laboratory-defined limit of detection were
assigned the value at the limit of detection.

Patient outcomes were assessed across all hospital
encounters. The primary outcome was mortality; sec-
ondary outcomes included intubation and admission
to the intensive care unit (ICU). Specifically, patients
listed as ‘expired’ or ‘deceased’ as per Epic discharge
disposition were classified as deceased. Electronic
health record mortality data also included health-
record linked post-discharge deaths. Patients assigned
to an ICU bed at any point of any hospitalization were
classified as having an ICU admission. Patients
recorded as having a surgical intubation, non-surgical
airway intubation or endotracheal intubation during
any encounter were classified as being intubated.
Amongst survivors, we also determined length of stay

(LOS) of the initial hospitalization. Data regarding
COVID-19 therapeutics, including tocilizumab and con-
valescent plasma, administered while hospitalized
were also collected across all hospital encounters.

Covariates

We extracted the hospital in which patients were
hospitalized (categorical variable), self-identified race/
ethnicity (categorical variable: White, Black, Hispanic,
Asian, Other), insurance provider (categorical variable:
Private/Medicare, Medicaid/Emergency Medicaid,
Other) and onset time, defined as the time in days
from first SARS-Cov-2 PCR positive admission in
the Mount Sinai Health System to the individual
patient’s admission.

Statistical analysis

A two-step approach was undertaken in this analysis.
First, we employed latent class analysis (LCA) to iden-
tify COVID-19 subphenotypes on admission without
consideration of outcomes. The distribution and com-
pleteness of clinical and laboratory data was exam-
ined. As LCA allows for missingness, no data
imputations were performed. Clinical and laboratory
variables were placed into quintiles for LCA. We fit
LCA models ranging from 2 to 10 subphenotype
classes and then determined the best fitting model
(i.e. the number of subphenotypes). Criteria for num-
ber of subphenotypes included: (1) consistent Akakie
information criteria (cAIC) and adjusted Bayesian infor-
mation criteria (aBIC), where lower values suggest bet-
ter fit; (2) entropy, where higher values suggest better
class separation; (3) likelihood ratio; and (4) number of
participants per subphenotype, where models with
adequate sample size in each class are optimal. Once
the best fitting model and number of subphenotypes
was identified, participants were assigned to the sub-
phenotype for which they had the highest probability
of correct assignment. These subphenotype assign-
ments were then used as the independent variable for
subsequent regression analyses.

Given that our COVID-19 outcomes of interest were
common (occurring in more than 10% of the cohort),
we employed bivariate and multivariable Poisson
regression models with robust error variance to exam-
ine associations between COVID-19 subphenotype
assignment and risk of mortality, ICU admission, and
intubation, considered separately [32,33] using the R
package sandwich [34,35]. Amongst survivors, we
employed bivariate and multivariable generalized
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linear regression to examine associations between
COVID-19 subphenotype and length of stay.
Multivariable models adjusted for onset time, hospital,
self-identified race/ethnicity and insurance provider.
Finally, we explored whether the COVID-19 subpheno-
types had a differential response to tocilizumaband
convalescent plasma therapies through introduction of
an interaction term and in treatment-stratified models.

Analyses were conducted in R software version
4.1.2. Latent class analyses were performed using the
poLCA package [36,37].

Results

A total of 4620 patients were admitted to the Mount
Sinai Health System during the study period and met
inclusion criteria (patient characteristics, Table 1). The
largest percentage of patients in the cohort were
admitted to Mount Sinai Hospital (34%, n¼ 1550), fol-
lowed by Mount Sinai Queens (19%, n¼ 883), Mount
Sinai Brooklyn (18%, n¼ 850) and Mount Sinai
Morningside (18%, n¼ 838). Patients median age was
67 (IQR 55–78) years and 57% (n¼ 2629) were male.

Twenty-eight percent (n¼ 1272), 27% (n¼ 1258), and
5% (n¼ 223) of patients self-identified as Hispanic,
Black or Asian, respectively. Categories of co-morbid-
ities were summed as described above, and the major-
ity of the patients had zero (37%, n¼ 1715) or one
(40%, n¼ 1,831) organ-specific comorbidity. Overall
29% (n¼ 1342) of patients died, 16% (n¼ 714) were
intubated, and 21% (n¼ 972) were admitted to
the ICU.

Latent class analysis

Overall, clinical and laboratory data completeness was
high (Supplemental Table S1). Supplemental Figure S1
displays the LCA model fits, specifically cAIC, aBIC,
entropy and likelihood ratio for models with 2–10 sub-
phenotypes. Using these variables, we determined
that the optimal fit was six subphenotypes.

The six subphenotypes appeared clinically distinct
(Figure 1, Supplemental Table S1). We summarize
these subphenotypes as: an elderly (median age
75.5 years, IQR 65, 85), hyperinflammatory with multi-
organ dysfunction subphenotype (n¼ 821); a younger

Table 1. Baseline characteristics (N¼ 4620).
Number Per cent

Age, years (median (range), IQR) 67 (18–110) 55, 78
Male 2629 56.9
Race/ethnicity (self-reported)
Hispanic 1272 27.5
Black 1258 27.2
White 1094 23.7
Asian 223 4.8
Other 635 13.7
Missing 138 3.0

Insurance
Medicaid 1076 23.2
Medicare/Private Insurance 3415 73.9
Other 97 2.1
Missing 32 0.7

Hospital
MS Hospital 1550 33.5
MS Queens 883 19.1
MS Brooklyn 850 18.4
MS Morningside 838 18.1
MS West/Not specified 495 10.8
Missing 4

Number of comorbiditiesb

0 1715 37.1
1 1831 39.6
2 814 17.6
3 238 5.2
4 22 0.5
Time from onset of pandemica, days (median (range), IQR) 28 (0–173) 20, 38

Outcomes
Mortality 1342 29.0
Intubation 714 15.5
ICU admission 972 21.0
Length of stay (N¼ 3278 survivors), days (median (range), IQR) 6.2 (0.01–103) 3.1, 10.9

aTime in days from first SARS-Cov-2 PCR positive admission in the Mount Sinai Health System to the individual patient’s admission.
bComorbidities included history of cancer, obesity, pulmonary disease (asthma, chronic obstructive pulmonary disease (COPD) and/or
obstructive sleep apnea (OSA)), and cardiovascular disease (hypertension (HTN), coronary artery disease (CAD), congestive heart failure
(CHF) and/or myocardial infarction (MI)).
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(median age 59 years, IQR 49, 66), febrile with moder-
ate inflammation subphenotype (n¼ 766); an elderly
(median age 77 years, IQR 67, 84), moderate inflamma-
tion and coagulopathic subphenotype (n¼ 953); a
younger (median age 51 years, IQR 35, 69), predomin-
antly female (64%) hypoinflammatory subphenotype
(n¼ 673); a predominantly male (82.5%) hyperinflamma-
tory with liver dysfunction subphenotype (n¼ 790); and
a hyperinflammatory with renal dysfunction subpheno-
type (n¼ 617). The hypoinflammatory subphenotype
had the fewest clinical and laboratory abnormalities
thus was the referent class in subsequent analyses.

Associations between COVID-19 subphenotype
and mortality

Bivariate models suggest that, as compared to the
hypoinflammatory subphenotype, all subphenotypes
had increased risk of mortality (Supplemental Table S2).
In multivariable models adjusting for onset time, hos-
pital, self-identified race/ethnicity and insurance pro-
vider, all subphenotypes had increased risk of mortality
as compared to the hypoinflammatory subphenotype

(moderate inflammation and febrile RR 3.29, 95% CI
2.05, 5.28; hyperinflammation with liver dysfunction RR
6.85, 95% CI 4.37, 10.73; moderate inflammation and
coagulopathic RR 8.09, 95% CI 5.19, 12.61; hyperinflam-
matory with renal dysfunction RR 8.78, 95% CI 5.61,
13.75; hyperinflammatory with multiorgan dysfunction
RR 17.87, 95% CI 11.56, 27.63, Figure 2(A), complete
model output Supplemental Table S2).

Associations between COVID-19 subphenotype
and intubation

In bivariate and multivariate models, all subpheno-
types had increased risk of intubation as compared to
the hypoinflammatory subphenotype (multivariable
model: moderate inflammation and febrile RR 3.44,
95% CI 2.07, 5.74; hyperinflammation with liver dys-
function RR 7.49, 95% CI 4.60, 12.20; moderate inflam-
mation and coagulopathic RR 4.72, 95% CI 2.87, 7.77;
hyperinflammatory with renal dysfunction RR 3.30,
95% CI 1.95, 5.60; hyperinflammatory with multiorgan
dysfunction RR 10.88, 95% CI 6.72, 17.62, Figure 2(B),
complete model output Supplemental Table S3).

Figure 1. Distribution of clinical and laboratory variables on admission amongst the six COVID-19 subphenotypes. Clinical and labora-
tory variables on admission normalized and divided into quintiles. Latent class analysis identified six underlying COVID-19 subpheno-
types which were notable for varying levels of inflammation, vital sign abnormalities and/or organ dysfunction. T max: maximum
temperature; O2 Sat min: minimum oxygen saturation; HR max: maximum heart rate; SBP min: minimum systolic blood pressure;
DBP min: minimum diastolic blood pressure; Na: sodium; K: potassium; Ca: calcium; HCO3: bicarbonate; BUN: blood urea nitrogen; Cr:
creatinine; BNP: brain natriuretic peptide; WBC: white blood cell count; Hgb: hemoglobin; Plt: platelet count; PT: prothrombin time;
PTT: partial thromboplastin time; AST: aspartate aminotransferase; ALT: alanine transaminase; T bili: total bilirubin; IL-6: interleukin 6;
IL-1B: interleukin 1B; LDH: lactate dehydrogenase; CRP: c-reactive protein; ESR: erythrocyte sedimentation rate; Procal: procalcitonin.
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Associations between COVID-19 subphenotype
and ICU admission

In bivariate and multivariate models, all subpheno-
types had increased risk of admission to the ICU as

compared to the hypoinflammatory subphenotype
(multivariable model: moderate inflammation and
febrile RR 2.00, 95% CI 1.50, 2.67; hyperinflammation
with liver dysfunction RR 3.31, 95% CI 2.52, 4.34;

Figure 2. Associations between COVID-19 subphenotype and (A) mortality; (B) intubation; (C) intensive care unit (ICU) admission;
and (D) length of stay amongst survivors. Robust Poisson regression to determine the relative risk of outcomes by subphenotype as
compared to hypoinflammatory subphenotype where circles represent estimate and bars represent 95% confidence intervals.
Multivariable model (shown here) adjusted for onset time, hospital, self-identified race/ethnicity and insurance provider. Hypoinflam.:
Hypoinflammatory; Mod inflam. Fever: Moderate inflammation with fever; Hyperinflam. Liver dysfunc.: Hyperinflammatory with liver
dysfunction; Mod inflam. Coagulopathy: Moderate inflammation with coagulopathy; Hyperinflam. Renal dysfunc: Hyperinflammatory
with renal dysfunction; Hyperinflam. Multiorgan dysfunc.: Hyperinflammatory with multiorgan dysfunction.
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moderate inflammation and coagulopathic RR 2.25,
95% CI 1.71, 2.98; hyperinflammatory with renal dys-
function RR 1.84, 95% CI 1.35, 2.51; hyperinflammatory
with multiorgan dysfunction RR 3.94, 95% CI 3.02,
5.15, Figure 2(C), complete model output
Supplemental Table S4)

Associations between COVID-19 subphenotype
and length of stay

Amongst survivors (n¼ 3278), the median length of
stay was 6.2 days (IQR 3.1, 10.9). Length of stay in days
was longer in all subphenotypes as compared to the
hypoinflammatory subphenotype in unadjusted mod-
els (multivariable model: moderate inflammation and
febrile b¼ 2.95 days, 95% CI 1.88, 4.01; hyperinflamma-
tion with liver dysfunction b¼ 4.91 days, 95% CI 3.80,
6.02; moderate inflammation and coagulopathic
b¼ 4.87 days, 95% CI 3.81, 5.93; hyperinflammatory
with renal dysfunction b¼ 5.15 days, 95% CI 3.95, 6.34;
hyperinflammatory with multiorgan dysfunction
b¼ 10.19 days, 95% CI 8.79, 11.58, Figure 2(D), com-
plete model output Supplemental Table S5).

Exploratory analyses of COVID-19 therapies

Exploratory analyses to examine effect modification of
the association between convalescent plasma (CP) and
mortality by COVID-19 subphenotype suggested a dif-
ferential effect by subphenotype. Within the cohort,
n¼ 93 patients received CP. As compared to the hypo-
inflammatory subphenotype, the other subphenotypes
demonstrated increased risk of dying in those who did
not receive CP as compared to those who did [moder-
ate inflammation with fever: received CP (n¼ 10) RR
0.85, 95% CI 0.22, 3.31 vs no CP (n¼ 82) RR 4.05, 95%
CI 2.49, 6.59, p-int 0.06; hyperinflammatory with liver
dysfunction: received CP (n¼ 18) RR 1.43, 95% CI 0.39,
5.24 vs no CP (n¼ 179) RR 8.59, 95% CI 5.42, 13.62,
p-int 0.04; moderate inflammation with coagulopathy:
received CP (n¼ 25) RR 1.64, 95% CI 0.46, 5.92 vs no
CP (n¼ 253) RR 10.07, 95% CI 6.39, 15.87, p-int 0.03;
hyperinflammatory with renal dysfunction: received CP
(n¼ 11) RR 1.31, 95% CI 0.34, 5.00 vs no CP (n¼ 186)
RR 11.29, 95% CI 7.14, 17.86, p-int <0.01; hyperinflam-
matory with multiorgan dysfunction: received CP
(n¼ 27) RR 2.76, 95% CI 0.78, 9.76 vs no CP (n¼ 530)
RR 23.96, 95% CI 15.34, 37.41, p-int <0.01, Figure 3].

Within the cohort, n¼ 118 patients received
tocilizumab. The associated risks for mortality in the
hyperinflammatory with renal dysfunction and hyper-
inflammatory with multiorgan dysfunction, as

compared to the hypoinflammatory subphenotype
were higher amongst persons who did not received
tocilizumab as compared to those who did (hyperin-
flammatory with renal dysfunction: received tocilizu-
mab (n¼ 6) RR 1.29, 95% CI 0.23, 7.11 vs no
tocilizumab (n¼ 191) RR 10.61, 95% CI 6.78, 16.60, p-
int 0.08; hyperinflammatory with multiorgan dysfunc-
tion: received tocilizumab (n¼ 34) RR 2.00, 95% CI
0.40, 10.03 vs no tocilizumab (n¼ 523) RR 22.75, 95%
CI 14.74, 35.13, p-int 0.03) (Figure 4).

Discussion

Utilizing a cohort of 4620 COVID-19 patients during
the Spring to Summer 2020 NYC surge, these data
suggest that there are six distinct COVID-19 subpheno-
types at the time of hospital admission. These subphe-
notypes have varying clinical courses, with differences
in associated risk for mortality, intubation, ICU admis-
sion and LOS. Further, despite limited treatment
options in the early pandemic, this work provides
insight that COVID-19 subphenotypes may differen-
tially respond to therapeutics, suggesting that further
characterization of COVID-19 subphenotypes may be
critical for future COVID-19 therapeutic trials and,
ultimately, to guide therapy. This result expands on
the currently published literature in two significant
ways. It uses data at time of hospital admission, rather
than trajectories while hospitalized or ICU admission,
to provide the earliest possible timepoint to identify
distinct subphenotypes [14,25,26]. Additionally, much
of current literature focuses on strictly identifying sub-
phenotypes [10,24,38]. This study goes beyond identi-
fication to begin to explore the role subphenotypes
play in response to potential treatments.

Our admission dataset includes a number of sero-
logic markers (IL-6, IL-1B, ferritin, LDH, ESR, CRP and
procalcitonin) with variability across the cohort. The
identified six subphenotypes differed predominantly in
inflammatory profiles on admission, as defined by
these serologic inflammatory markers. For example,
median ferritin level on admission was 724 ng/ml (IQR
326, 1653) and varied amongst subphenotypes. The
median ferritin in the hypoinflammatory subpheno-
type was 148.0 (IQR 56.8, 261.5) as compared to the
hyperinflammatory subphenotypes (hyperinflammation
with liver dysfunction median 1341.0 (IQR 770.2,
2465.2), hyperinflammation with renal dysfunction
median 1004.0 (IQR 430.0, 2376.5) and hyperinflamma-
tion with multiorgan dysfunction subphenotype
median 1441.5 (IQR 685.0, 2756.0)). We noted similarly
separation of subphenotypes by IL-6, CRP and LDH in
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particular. While there is no single marker (serologic or
otherwise) that has been identified to predict disease
severity, associated organ involvement or outcome,
multiple studies have demonstrated the role of IL-6,
IL-8, CRP, LDH, procalcitonin and ferritin, in identifying
patients at higher risk of poor outcomes [10,39–41].
Interestingly, the inflammatory markers are not uni-
formly elevated suggesting nuances in the inflamma-
tory cascade and/or host response that need further
investigation.

Organ dysfunction occurred predominantly in
subphenotypes with the largest inflammatory
derangements. For example, subphenotypes with
hyperinflammation had multiorgan dysfunction or
renal or liver failure. Notably, the liver failure group
were predominantly younger (median age 61, IQR 52,
68) men which is not a group previously considered
high risk [42]. Given the cross-sectional view of clinical

and laboratory measures at admission we cannot tem-
porally identify whether the inflammation directly led
to the organ dysfunction or whether the inflammatory
markers were elevated due to reduced renal or hep-
atic clearance [43]. It is interesting to note, however,
that the two subphenotypes with moderately elevated
inflammatory markers on average did not have renal
or hepatic dysfunction. These data suggest that spe-
cific inflammatory markers in conjunction with markers
of renal and hepatic injury may be used to identify
patients at risk of clinical deterioration.

While the mortality risk observed for the most eld-
erly group with multiorgan derangements is not sur-
prising, it is important to note that this approach
allowed us to identify subphenotypes that were at
increased risk for mortality but may not previously
have been considered to be at higher risk. For
example, we identified a younger group (median age

Figure 3. Risk of dying by subphenotype in those who did (blue bars) and did not (red bars) receive convalescent plasma.
Robust Poisson regression models adjusted for onset time, hospital, self-identified race/ethnicity and insurance provider stratified
by receiving convalescent plasma versus not. P-interaction terms generated by robust Poisson multivariable regression with intro-
duction of an interaction term. P-interaction terms of less than 0.10 are shown. Hypoinflam.: Hypoinflammatory; Mod inflam.
Fever: Moderate inflammation with fever; Hyperinflam. Liver dysfunc.: Hyperinflammatory with liver dysfunction; Mod inflam.
Coagulopathy: Moderate inflammation with coagulopathy; Hyperinflam. Renal dysfunc: Hyperinflammatory with renal dysfunction;
Hyperinflam. Multiorgan dysfunc.: Hyperinflammatory with multiorgan dysfunction. Number at risk per subphenotype (those who
received convalescent plasma/those who did not): Hypoinflammatory (2/19), Moderate inflammation, fever (10/82),
Hyperinflammatory, liver dysfunction (18/179), Moderate inflammation, coagulopathy (25/253), Hyperinflammatory, renal dysfunc-
tion (11/186), Hyperinflammatory multiorgan dysfunction (27/530).
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59 years, IQR 49, 66) with moderate inflammation and
febrile subphenotype that had 3.3 times the risk of
death (RR 3.29, 95% CI 2.05 5.28), 3.4 times the risk of
intubation (RR 3.44, 95% CI 2.07, 5.74) and 2 times the
risk of ICU admission (RR 2.00, 95% CI 1.50, 2.67) in
the multivariable model as compared to the hypoin-
flammatory subphenotype. On average, members of
this group were previously healthy with no (N¼ 279,
36%) or one (N¼ 332, 43%) organ system comorbidity.
It is critical that future studies focus on these popula-
tions to better understand the pathophysiologic mech-
anisms of increased risk, enable early identification
and initiate appropriate treatments.

Further, these data suggest that identification of
these subphenotypes at the time of hospital admission
may be helpful in designing future COVID-19 thera-
peutic trials, guiding secondary analyses of existing
COVID-19 randomized controlled treatment studies

and, ultimately, in generating a patient-centered treat-
ment algorithm. This work builds on prior analyses by
Calfee et al. suggesting that ARDS subphenotypes dif-
ferentially respond to therapeutic interventions in
ARDS including fluid management strategies and use
of statins [13,15,16].

Specifically, we find that the hyperinflammatory
subphenotype with multiorgan dysfunction may differ-
entially respond to tocilizumab and convalescent
plasma therapies. Emerging evidence supports this
concept and suggests that some treatments may be
more efficacious in certain populations [39,44]. Current
literature on the efficacy of tocilizumab and convales-
cent plasma have demonstrated conflicting results.
Five large randomized trials examining the efficacy of
tocilizumab, which enrolled patients with varying
degrees of respiratory failure, found a mortality benefit
in only two studies [45–49]. A recent meta-analysis of

Figure 4. Risk of dying by subphenotype in those who did (blue bars) and did not (red bars) receive tocilizumab. Robust Poisson
regression models adjusted for onset time, hospital, self-identified race/ethnicity and insurance provider stratified by receiving toci-
lizumab versus not. P-interaction terms generated by robust Poisson multivariable regression with introduction of an interaction
term. P-interaction terms of less than 0.10 are shown. Hypoinflam.: Hypoinflammatory. Mod inflam. Fever: Moderate inflammation
with fever; Hyperinflam. Liver dysfunc.: Hyperinflammatory with liver dysfunction; Mod inflam. Coagulopathy: Moderate inflamma-
tion with coagulopathy; Hyperinflam. Renal dysfunc: Hyperinflammatory with renal dysfunction; Hyperinflam. Multiorgan dysfunc.:
Hyperinflammatory with multiorgan dysfunction. Number at risk per subphenotype (those who received tocilizumab/those who
did not): Hypoinflammatory (1/20), Moderate inflammation, fever (14/78), Hyperinflammatory, liver dysfunction (37/160), Moderate
inflammation, coagulopathy (26/252), Hyperinflammatory, renal dysfunction (6/191), Hyperinflammatory multiorgan dysfunction
(34/523).
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IL-6 antagonists, including tocilizumab, however did
demonstrate a mortality benefit [50]. Similarly, studies
of convalescent plasma have not shown mortality
benefit but do suggest that early administration to
mildly ill patients or with high titer plasma, may pro-
vide some benefit [51–55]. Our data support second-
ary analyses of completed randomized controlled
trials to better understand if COVID-19 subphenotypes
differentially respond to therapeutics. These analyses
will be critical to inform patient-centered treat-
ment algorithms.

Our study has several strengths. By leveraging the
Mount Sinai electronic medical record data repository,
we were able to evaluate a large, diverse sample of
patients from multiple hospitals in New York City. We
employed a data-driven method to analyze the het-
erogeneous population of COVID-19 patients and were
able to identify underlying subphenotypes and dem-
onstrate associations with mortality, ICU admission,
intubation risk, and length of stay, key COVID-19 end-
points. Our exploratory analyses suggest that these
subphenotypes may have a differential response to
therapeutic treatments, which suggests that com-
pleted COVID-19 RCTs may benefit from secondary
analyses of their datasets even if no effect in the over-
all cohort was found. Our employment of admission
data to generate subphenotypes provides a platform
for early identification of subphenotypes, which if
replicated in other studies, suggests the potential for
selecting therapeutic options based on identified dif-
ferences early in the hospitalization.

We also acknowledge limitations. There is variability
in duration of illness prior to presentation to the hos-
pital that is not captured by this dataset. Patients may
have presented at different phases of illness, which
we know was true in New York City during the first
wave of the pandemic as factors including patient vol-
ume and limited resources impacted decisions on
when to present to the hospital or be admitted.
Hospital capacity and available resources may have
also impacted aggressiveness of treatment (e.g. pallia-
tive care) which we are unable to capture by elec-
tronic health records. We adjust for time since the
onset of the pandemic to address this. An evaluation
of the stability of the subphenotypes over time would
lend additional evidence that the subphenotypes are
distinct classes, regardless of duration of illness at
presentation [56,57]. Exploratory analyses of associa-
tions with treatments are limited by potential biases
as these data are retrospective. Access to these treat-
ments was limited in Spring 2020. Certain treatments
were not available at every hospital site and were

restricted to patients with more severe illness rather
than distributed in a randomized fashion, introducing
selection bias. Criteria for use changed over time as
more studies became available about these treat-
ments, limiting generalizability of these analyses.
Additionally, these data reflect the original strain
of COVID, and were collected prior to the develop-
ment of vaccines, which has impacted the clinical
presentations and potentially altered the clinical
subphenotypes.

In conclusion, these data find six distinct, clinically
relevant, COVID-19 subphenotypes present on admis-
sion, which are associated with risk for mortality,
intubation, ICU admission and LOS and suggest differ-
ential responses to tocilizumab and convalescent
plasma. Future studies should validate these subphe-
notypes in other populations and health systems. Post
hoc analyses of randomized control trials of tocilizu-
mab, convalescent plasma and other therapeutics
are warranted.
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