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Abstract

We develop a new approach to estimating the causal effects of treatments or instruments 

that combine multiple sources of variation according to a known formula. Examples include 

treatments capturing spillovers in social or transportation networks and simulated instruments 

for policy eligibility. We show how exogenous shocks to some, but not all, determinants of 

such variables can be leveraged while avoiding omitted variables bias. Our solution involves 

specifying counterfactual shocks that may as well have been realized and adjusting for a summary 

measure of non-randomness in shock exposure: the average treatment (or instrument) across shock 

counterfactuals. We use this approach to address bias when estimating employment effects of 

market access growth from Chinese high-speed rail construction.

1 Introduction

Many questions in economics involve the causal effects of treatments which are computed 

from multiple sources of variation, and sometimes observed at different “levels,” according 

to a known formula. Consider three examples. First, when estimating spillovers from a 

randomized intervention, one might count the number of an individual’s neighbors who 

were selected for the intervention. This spillover treatment combines variation in who 

was selected with variation in who neighbors whom. Second, in studies of transportation 

infrastructure effects, one might measure the growth of regional market access: a treatment 

computed from the location and timing of transportation upgrades and the spatial 

distribution of economic activity in a country. A third example is a treatment capturing 

individual eligibility for a public program, such as Medicaid, which is jointly determined 

by the eligibility policy in the individual’s state and her household’s demographics and 

income.1
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This paper develops a new approach to estimating the effects of such composite variables 

when some, but not all, of their determinants are generated by a true or natural experiment. 

We ask, for example, how one can estimate market access effects by leveraging the timing 

of new railroad line construction as exogenous shocks, when the other determinants of 

market access (such as the pre-determined location of large markets and planned lines) are 

non-random.

We first show that omitted variable bias (OVB) may confound conventional regression 

approaches in such settings. Bias arises from different observations receiving systematically 

different values of the treatment because of their individual non-random “exposure” to 

the exogenous shocks. For example, even when construction is delayed for a random set 

of lines, regions that are economically or geographically more central will tend to see a 

larger growth in market access because they are closer to a typical potential line (and thus 

closer to a typical constructed line). Regression estimation of market access effects then 

fails without an additional assumption on the exogeneity of economic geography: that more 

exposed (e.g., central) regions do not differ in their relevant unobservables, such as changes 

in local productivity or amenities. Intuitively, randomizing transportation upgrades does not 

randomize the market access growth generated by them.

Our solution to the OVB challenge is based on the specification of counterfactual exogenous 

shocks that might as well have been realized. This approach views the observed shocks 

as one realization of some data-generating process—what we call the shock assignment 
process—which can be simulated to obtain counterfactuals. In a true experiment, the shock 

assignment process is given by the randomization protocol. In natural experiments, shock 

counterfactuals make explicit the contrasts which the researcher wishes to leverage, for 

instance by specifying permutations of the shocks that were as likely to have occurred. For 

example, if line construction delays are considered as-good-as-random, one might produce 

counterfactual network maps by randomly exchanging the lines which were completed 

earlier and later.

Valid shock counterfactuals can be used to avoid OVB by a “recentering” procedure 

which involves measuring and appropriately adjusting for a single confounder: the expected 
treatment. To do so, a researcher draws counterfactual shocks from the assignment process 

and recomputes the instrument many times. Then, for each observation, the treatment is 

averaged across these many draws to obtain the expected treatment. Finally, the expected 

treatment is subtracted from the realized treatment to obtain the recentered treatment. We 

show that using this recentered treatment as an instrument for the realized treatment removes 

the bias from non-random shock exposure. Intuitively, observations only get high vs. low 

values of the recentered treatment because the observed shocks were drawn instead of the 

counterfactuals, which is assumed to happen by chance. For example, when the expected 

treatment is constructed by permuting the timing of new line construction, regressions that 

instrument with recentered market access growth compare regions which received higher vs. 

lower market access growth because proximate lines were constructed early vs. late, and not 

because of the economic geography. Another closely related solution to OVB is to include 

the expected treatment as a control in the regression of an outcome on the realized treatment; 
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this can be viewed as recentering the treatment while also removing some residual variation 

in the outcome, in a control function approach.2

This approach to causal inference with composite variables, in which some determinants 

are labeled as exogenous and characterized by an assignment process, can be seen as 

formalizing the natural experiment of interest and bringing composite variables to familiar 

econometric territory.3 Indeed, the conditions we impose on the exogenous shocks are 

similar to those which might be used if the shocks were directly used as treatments: e.g., if 

shocks to the timing of railroad line upgrades were used in a regression of outcomes defined 

at the “level” of those lines. Recentering ensures identification from the natural experiment, 

even when the regression is estimated at a different level (e.g., across regions instead of 

lines).

Our framework further allows the treatment to have endogenous or unobserved 

determinants. In this case one may construct candidate composite instruments based on 

the treatment’s exogenous and predetermined components. The same OVB problem arises 

in this instrumental variable (IV) case, and it can again be solved by recentering the 

candidate instrument by its expectation over the shock assignment process. Controlling for 

the expected instrument is again another solution.

We establish several attractive properties of the recentering approach, beyond our primary 

results on OVB. First, recentered estimators are consistent provided the exogenous shocks 

induce sufficient cross-sectional variation in the instrument and treatment—regardless of the 

correlation structure of unobservables. Second, shock counterfactuals can be used for exact 

finite-sample inference and specification tests via randomization inference (RI). Finally, 

while our consistency and RI results rely on an assumption of constant treatment effects, 

recentered IV estimators generally capture a convex average of heterogeneous effects under 

a natural first-stage monotonicity condition.

We apply this framework to estimate the employment effects of market access (MA) growth 

due to new high-speed railway system in China. We show how recentering can help leverage 

variation in the timing of transportation upgrades to purge OVB. Simple regressions of 

employment growth on MA growth suggest a large and statistically significant effect, 

which is only partially reduced by conventional geography-based controls. But this effect 

is eliminated when we adjust for expected MA growth, measured by permuting constructed 

HSR lines with similar ones that were planned but not built. The unadjusted estimates thus 

reflect the fact that employment grew in regions which were more exposed to planned 

high-speed rail construction, whether or not construction actually occurred.

2While recentering is the key step that removes OVB, removing residual variation is likely to increase the efficiency of estimation in 
large samples. We give practical recommendations for each adjustment in the paper’s conclusion.
3Our approach is “design-based,” in that identification is achieved by specifying the assignment process of some observed shocks 
(see, e.g., Lee (2008), Athey and Imbens (2022), Shaikh and Toulis (2021), and de Chaisemartin and Behaghel (2020)). This 
strategy for analyzing observational data builds on a long tradition in the analysis of randomized experiments, going back to 
Neyman (1923). It contrasts with other identification strategies that instead model the residual determinants of the outcome, such 
as difference-in-difference strategies (e.g. de Chaisemartin and D’Haultfoeuille (2020) and Athey et al. (2021)) or fully-specified 
structural models.
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Econometrically, expected treatment and instrument adjustment is similar to propensity 

score methods for removing OVB (Rosenbaum and Rubin 1983), with two key differences. 

First, we propose using the structure of composite treatments and instruments to compute 

their expectation from more primitive assumptions on the assignment process for exogenous 

shocks. This approach is similar to how Borusyak et al. (2022) and Aronow and Samii 

(2017) address OVB when using linear shift-share instruments and network treatments, 

respectively. It differs from conventional methods of directly estimating propensity scores; 

such methods are typically infeasible in the settings we consider because the exposure to 

exogenous shocks is intractably high-dimensional. Second, our regression-based adjustment 

differs from conventional approaches of weighting by or matching on propensity scores.4 

Regression adjustment is more popular in applied research, avoids practical issues of limited 

overlap (due to, e.g., propensity scores that are close to zero or one), does not require 

the treatments or instruments to be binary, and is natural for estimating constant structural 

parameters or convex averages of heterogeneous treatment effects.

The remainder of this paper is organized as follows. The next section motivates our analysis 

with three examples related to network spillovers, market access effects, and Medicaid 

eligibility effects. Section 3 develops our general framework and results. Section 4 presents 

our application, and Section 5 concludes. Additional results and extensions are given in an 

earlier working paper, Borusyak and Hull (2021, henceforth BH).

2 Motivating Examples

We develop three stylized examples, inspired respectively by the settings of Miguel and 

Kremer (2004), Donaldson and Hornbeck (2016), and Currie and Gruber (1996), to illustrate 

the main insights of this paper. In each example we consider estimating the parameter β of a 

causal or structural model which relates an outcome yi to a treatment xi,

yi = βxi + εi,

(1)

for a set of units i = 1, …, N with an unobserved error εi. The common feature of the 

examples is that xi is computed from multiple sources of variation by a known formula.

Network spillovers:

Suppose yi is student i’s educational achievement and xi counts the number of i’s neighbors 

who have been dewormed in an intervention:

xi = ∑
k = 1

N
N eigℎborikDewormedk .

4A notable exception of a recentering-type regression adjustment in the traditional propensity scores setting is the E-estimator of 
Robins et al. (1992).
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Here Dewormedk ∈ {0, 1} is an indicator for student k being selected for the deworming 

intervention and Neigℎborik ∈ {0, 1} indicates that i and k are neighbors (i.e., connected by 

an observed network link). The error term εi captures i’s educational outcome when none of 

her neighbors are dewormed. This example is a stylized version of the main specification in 

Miguel and Kremer (2004).5

Market access:

Suppose yi is the growth of land values in region i between two dates t ∈ {0, 1} and 

xi = log MAi1 − log MAi0 is the growth of regional market access (MA) due to improvements 

to the interregional railroad network. Market access is computed

MAit = ∑
j = 1

N Popj
τ (Networkt, Loci, Locj) ,

following standard models of economic geography (e.g. Redding and Venables (2004)). 

Here Popj is the time-invariant population of region j, Networkt is the set of railway lines 

and other types of transit which comprise the transportation network in operation at time 

t, Locj is the location of region j on the map, and τ( ⋅ ) is a function giving the travel time 

between regions i and j. The error term εi captures location i’s land value growth in the 

absence of market access growth, due to some regional amenity and productivity shocks. 

Similar market access growth specifications are considered in, for example, Donaldson and 

Hornbeck (2016).

Medicaid eligibility:

Suppose yi is individual i’s health outcome and xi ∈ {0, 1} indicates her eligibility 

for Medicaid. Let IncDemi be a vector of individual income and demographics, 

Statei ∈ {1, …, 50} index i’s state of residence, and Policyk be state k’s eligibility policy: 

i.e. the set of income and demographic groups eligible for Medicaid in that state. Then

xi = 1 [IncDemi ∈ PolicyStatei] .

The error term εi captures individual i’s outcome when she is ineligible for Medicaid. This 

example comes from Currie and Gruber (1996).

To estimate β in each example, we consider a true or natural experiment that manipulates 

some of the determinants of xi. Formally, we partition the variables from which 

x = (x1, …, xN) is computed into two groups: a set of shocks g and a set of predetermined 

variables w. The shocks g = (g1, …, gK) are assumed to be exogenous, i.e. independent of 

the errors ε = (ε1, …, εN). Shock exogeneity combines two conceptually distinct assumptions

—that g is as-good-as-randomly assigned, and that this assignment only affects the outcome 

5Nothing is changed in what follows if one instead considers the number of not-dewormed neighbors as the treatment. For simplicity 
here we consider only the spillover treatment and not also the direct deworming treatment; see Section 3.6 on the extension to multiple 
treatments.
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of each unit i via its treatment xi (an exclusion restriction). The shocks can be assigned 

at a different “level” than the observations, with K ≠ N. The remaining variables w have 

an arbitrary structure and fi( ⋅ ; w) governs the mapping from the exogenous shocks to each 

unit’s treatment, i.e. the observation’s “exposure” to the shocks.6 We assume that w is 

determined prior to the (natural) experiment and is unaffected by the shocks.

Network spillovers (cont.)

Suppose deworming is assigned in a randomized control trial (RCT) and βxi fully captures 

its spillover effects. Then g = (Dewormedk)k = 1
K  collects the exogenous shocks, for K = N.7 

The remaining determinants of the spillover treatments of all units, w = (Neigℎborik)i, k = 1
N , are 

fixed in the experiment.

Market access (cont.)

Suppose the timing of new railroads is exogenous. Specifically, suppose that among K lines 

planned to be constructed by t = 1 some are randomly delayed by unexpected engineering 

problems (unrelated to the trends in regional land values). Suppose also the model of 

economic geography is correctly specified, so β log M Ait fully captures the effects of 

transportation upgrades. Then g = (Openk)k = 1
K  collects the exogenous shocks, where Openk

is an indicator for whether planned line k faces no delays. Assuming no other changes 

to the network at t = 1, we can partition the determinants of MA growth into g and 

w = (Loci, Popi)i = 1
N , Network0  as Network1 is fully determined by Network0 and the set of 

newly opened lines.

Medicaid eligibility (cont.)

Suppose Medicaid policies across the K = 50 states are exogenous, i.e. are chosen 

irrespective of the potential health outcomes and affect individual outcomes only via 

Medicaid eligibility. Then g = (Policyk)k = 1
K  collects the exogenous shocks, with the other 

determinants of eligibility collected in w = (IncDemi, Statei)i = 1
N .

The first point of this paper is that ordinary least squares (OLS) estimation of β can 

suffer from OVB, despite the experimental variation underlying xi.8 The OVB problem 

arises because some units receive systematically higher values of xi than others, as a 

consequence of their non-random exposure to the shocks. This systematic variation may be 

cross-sectionally correlated with the errors εi, generating bias in OLS estimation of equation 

(1).

6Aronow and Samii (2017) use a similar “exposure mapping” terminology for objects like fi( ⋅ ; w) in the network spillover context. 
We depart from this literature by referring to the realized fi(g; w) as the “treatment” or “candidate instrument” and not the realized 
“exposure.”
7For simplicity here we assume away any direct effects of deworming; see Section 3.6 on the extension to multiple treatments.
8Such OVB may arise even if (as in the network spillovers and market access examples) variation in the treatment “results” from the 
experimental shocks, in the sense that x1 = ⋯ = xN = 0 whenever g1 = ⋯ = gK = 0.
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Network spillovers (cont.)

Even when deworming is randomly assigned to students, those with more neighbors (e.g., 

because they live in dense urban areas) will tend to have more dewormed neighbors and 

therefore be more exposed to the deworming intervention. Urban areas may have different 

educational outcomes for reasons unrelated to deworming, generating OVB.

Market access (cont.)

Even when the opening status of lines is as-good-as-randomly assigned, regions in the 

economic and geographic center of the country will tend to see more market access growth 

than peripheral regions as the former are closer to a typical potential line. Central regions 

may face different amenity and productivity shocks, generating OVB.

Medicaid eligibility (cont.)

Even when Medicaid policies are as-good-as-randomly assigned to states, poorer individuals 

will tend to see higher rates of eligibility. Poor individuals may face different health shocks, 

generating OVB.

Our second insight is that this OVB problem has a conceptually simple solution, which 

follows from viewing the set of realized g as one draw from a shock assignment process and 

considering what counterfactual sets of exogenous shocks could have as likely been drawn. 

The specification of such counterfactuals allows one to measure and remove the systematic 

component of variation in the treatment which drives OVB. Specifically, the researcher 

recomputes the treatment xi of each unit i across many counterfactual sets of shocks and 

takes their average to measure the expected treatment, μi. We show that this μi, which is 

co-determined by the exposure of xi to the shocks g and the shock assignment process, is 

the sole confounder in equation (1). OVB can then be purged by “recentering” the treatment, 

i.e. instrumenting xi with x i = xi − μi in equation (1), or by simply adding μi as a control in 

OLS estimation. The key to removing bias with this approach is thus to credibly specify and 

average over shock counterfactuals—a task which is trivial in true experiments and which 

otherwise formalizes the natural experiment of interest.

Network spillovers (cont.)

With deworming assigned in an RCT, the shock assignment process is given by the known 

randomization protocol. If, say, each student has a 30% chance of being dewormed, the 

expected number of i’s dewormed neighbors over repeated draws of deworming shocks μi

is 0.3 times their number of neighbors ∑k = 1
K Neigℎborik. OVB is thus purged by controlling 

for the number of neighbors, or by using the recentered number of dewormed neighbors 

x i = xi − μi to instrument for xi. With either adjustment, the regression will only compare 

students who had more neighbors dewormed than expected (given the network) to those with 

fewer-than-expected dewormed neighbors.

Market access (cont.)

The as-good-as-random assignment of opening status can be formalized by each planned 

line facing an equal and independent chance of opening. Then, if ∑k = 1
K Openk = K1 railway 
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lines open by t = 1, every counterfactual network in which K1 lines from the plan opened 

was as likely to have occurred. One can thus compute expected MA growth μi as the 

average MA growth of region i across these counterfactuals (or a random subset of them). 

Recentering by or controlling for this μi ensures that the regressions only compare regions 

which saw higher MA growth than expected—given pre-existing economic geography and 

the plan—to those which saw less-than-expected MA growth.

Medicaid eligibility (cont.)

The as-good-as-random assignment of Medicaid policies can be formalized by each state 

randomly drawing from a pool of potential policies, such that every permutation of the 

realized policies was equally likely to have occurred. Averaging individual i’s eligibility 

across these permutations yields an expected eligibility μi which equals the share of states in 

which she would be eligible. Our solution is to instrument actual eligibility with recentered 

eligibility xi − μi, or control for μi in an OLS regression. Either approach would, for example, 

effectively remove from the sample “always-eligible” or “never-eligible” individuals (with 

xi = μi = 1 or xi = μi = 0) whose income and demographics make them unaffected by policy 

variation.

The recentering solution generally dominates more conventional ones, such as instrumenting 

directly by the shocks or controlling for the other determinants of xi. Instrumenting with 

the shocks is infeasible when the shocks are assigned at a different level than the units, 

and generally discards variation in treatment due to w. Controlling for an observation’s 

non-random shock exposure flexibly is typically infeasible, because such exposure is 

high-dimensional. Conversely, low-dimensional controls are only guaranteed to purge OVB 

(absent additional non-experimental restrictions on the error term) when they linearly span 

μi, which is difficult to establish except when μi is known and recentering is feasible. If either 

the assignment process or shock exposure mapping is complex, μi is unlikely to be a simple 

function of observed characteristics.

Network spillovers (cont.)

Using student i’s own deworming status as an instrument is infeasible as it does not predict 

the number of dewormed neighbors; incorporating the non-random network adjacency 

matrix is necessary. Controlling for the entire row of the adjacency matrix (which 

characterizes student’s exposure) is also infeasible, as it would absorb all cross-sectional 

variation in the treatment. Controlling for the number of i’s neighbors is enough to purge 

OVB under completely random assignment of deworming, since this control is proportional 

to μi. However, such simple controls would not linearly span μi with more complex 

randomization protocols, such as with two tiers (by school, then by student) or stratification 

(e.g., with girls dewormed with a known higher probability). Simple controls are also 

generally insufficient with more complex specifications of spillovers.9

9An example is given by Carvalho et al. (2021), where i is a Japanese firm and xi is the distance in the firm-to-firm supply network 
from i to the nearest firm located in the area hit by an earthquake. Unlike the number of treated neighbors, this spillover treatment is 
a nonlinear function of the earthquake shock dummies. The earthquake assignment process is also more complex, exhibiting spatial 
correlation. Our recentering approach still applies naturally in cases like this.
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Market access (cont.)

Railroad timing shocks vary at the level of lines, so it is infeasible to use them as 

instruments for regional market access without incorporating some non-random features 

of economic geography. Controlling perfectly for these features is also infeasible, as each 

region’s market access depends on the entire spatial distribution of economic activity. 

Simple sets of controls, such as polynomials in the latitude and longitude of a region, need 

not linearly span μi given the complexity of xi, and thus are not guaranteed to purge OVB.

Medicaid eligibility (cont.)

Currie and Gruber (1996) propose instrumenting individual eligibility with a measure of the 

overall policy generosity of her state—a so-called “simulated instrument.” Such instruments 

are simple functions of Policyk for all individuals in state k and are thus exogenous 

and relevant under random policy assignment. However they discard relevant within-state 

variation in i’s income and demographics and are thus likely to yield a less powerful 

first-stage prediction of xi than recentered eligibility.10

We conclude this section by noting that the OVB problem and recentering solution both 

extend to the case with an arbitrary endogenous xi and a candidate instrument zi which is 

constructed from exogenous shocks and other variables by a known formula. This approach 

is natural when the treatment can be represented as a function of exogenous shocks g, 

predetermined variables w, and endogenous (and possibly unobserved) variables u: i.e. when 

xi = ℎi(g, w, u) for a known ℎi( ⋅ ). An intuitive candidate instrument for xi is the prediction 

of xi in the scenario when the u shocks are ignored: zi = ℎi(g, w, 0). Our framework shows 

that these candidate instruments are generally invalid, again because of the non-random 

exposure of zi to g. Yet OVB can again be purged by measuring the expected instrument 

μi—the average zi across counterfactual g—and either instrumenting xi with the recentered 

IV z i = zi − μi or controlling for μi while instrumenting with zi.

Market access (cont.)

Suppose population sizes also change between t = 0 and t = 1, and the observable changes 

u = (Popi1 − Popi0)i = 1
N  are not exogenous (e.g. they respond to house price shocks in ε). Then 

one can consider instrumenting the realized change in MA by a predicted change in MA 

which keeps population sizes fixed at t = 0 levels. Without recentering, this IV regression 

may suffer from the same OVB as the OLS regression discussed above. OVB is now avoided 

by recentering the MA prediction via counterfactual railroad networks.

Medicaid eligibilty (cont.)

Suppose one is interested in the effects of Medicaid takeup, instead of eligibility. Takeup is 

the product of eligibility and 1 − NeverTakeri, where NeverTakeri indicates that individual 

10With completely random policy assignment, flexibly controlling for IncDemi may purge OVB as this is the only source of 
variation in μi. However, even in this setting the relevant demographics in IncDemi and their interactions can be high-dimensional, 
as discussed by Gruber (2003). This problem is exacerbated under more complex assignment processes, e.g. if policies can be viewed 
as random only within some groups of states, in which case group indicators and their interactions with the demographics would also 
have to be included. Recentering extends naturally and avoids the curse of dimensionality.
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i would decline Medicaid if eligible and u = (NeverTakeri)i = 1
N  is unobserved. Under the 

appropriate exclusion restriction one can consider instrumenting takeup with eligibility; our 

recentering strategy then again removes OVB from non-random variation in policy exposure.

3 Theory

We now develop a general econometric framework for settings with non-random exposure 

to exogenous shocks. We introduce the baseline setting, develop our approach to estimation 

based on the recentering procedure, and discuss how this recentering can be performed 

by specifying counterfactual shocks in Sections 3.1-3.3. We then discuss conditions for 

consistency of recentered IV estimators in Section 3.4, and how inference can be conducted 

in Section 3.5. Several extensions are summarized in Section 3.6.

3.1 Setting

We consider estimation of β in the causal or structural model

yi = βxi + εi,

(2)

from a dataset of scalar and demeaned yi and xi, i = 1, …, N. Below we discuss extensions to 

heterogeneous causal effects, nonlinear models, multiple treatments, and additional control 

variables. Although we use a single index of i for observations, we note our framework 

accommodates repeated cross-sections and panel data.

Importantly for the applicability of our framework, we do not assume that the observations 

of yi and xi are independently or identically distributed (iid) as when arising from random 

sampling. This allows for complex dependencies across the units due to their common 

exposure to observed and potentially unobserved shocks. It is also consistent with settings 

where the N units represent a population—for example, all regions of a country—and 

conventional random sampling assumptions are inappropriate (Abadie et al., 2020).11

We suppose that to estimate β a researcher has constructed a candidate instrument

zi = fi(g; w),

(3)

where f1( ⋅ ), …, fN( ⋅ ) is a list of known non-stochastic functions, g is a K × 1 vector of 

shocks, and w is a list of other variables of unrestricted dimension. Equation (3) is very 

general: any zi that can be computed from a set of observed data, according to a known 

formula, can be described in this way.12 It also allows xi = zi, in which case β is the causal 

effect of the composite treatment.

11Formally, we assume (xi, εi)i = 1
N  and the g and w variables introduced below are all drawn from some joint distribution which is 

unrestricted at this point.
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We assume that the shocks g are exogenous, which we formalize by their conditional 

independence from the vector of errors given the other sources of instrument variation:

Assumption 1. (Shock exogeneity): g ⫫ ε ∣ w

As noted in Section 2, this notion of shock exogeneity combines two conceptually distinct 

conditions. First, it imposes an exclusion restriction, reflecting an economic model of how g
can affect y. Second, it requires as-good-as-random shock assignment. This latter condition 

is satisfied when the shocks are fully randomly assigned, as in an RCT (i.e., g ⫫ (ε, w)), but 

also allows w to contain variables that govern the shock assignment process.13 Importantly, 

Assumption 1 allows E[εi ∣ w] to vary arbitrarily across i; this reflects the lack of non-

experimental assumptions, such as parallel trends, constraining the error in equation (2).14 

Assumption 1 is consistent with a two-step data-generating process, where w is determined 

prior to the realization of shocks g and errors ε which then together determine (x, y).15

We start by considering an instrumental variable (IV) regression of yi on xi that 

instruments with zi. As usual, this strategy requires zi to be relevant to the treatment and 

orthogonal to the error term. In our non-iid setting, we formalize these two conditions 

in terms of the full-sample IV moments E 1
N ∑i zixi  and E 1

N ∑i ziyi . Since (2) implies 

E 1
N ∑i ziyi = βE 1

N ∑i zixi + E 1
N ∑i ziεi , β is recoverable from the ratio of these moments 

(what we term identification) under the relevance condition of E 1
N ∑i zixi ≠ 0 and the 

orthogonality condition of E 1
N ∑i ziεi = 0.16 To start we assume the two IV moments are 

known, in order to focus on the potential for OVB when the orthogonality condition fails. 

We discuss conditions for consistent estimation in Section 3.4.

12In some cases (such as the network spillover and medicaid eligibility examples in the previous section) the candidate instrument 
can be naturally written as zi = f(g, wi) with a common function f( ⋅ ) and a unit-specific measure of exposure wi. In other cases 
a more general notation is necessary: in the market access example, for example, the MA of each region depends on the entire 
country’s economic geography. An alternative way to formalize general composite variables is zi = f(g; w, wi) for a common w
and unit-specific wi. This notation is equivalent to (3); we use fi(g; w) as it is more compact. We also note also that equation (3) does 
not contain a residual: it formalizes an algorithm for computing an instrument rather than characterizing an economic relationship.
13The exclusion and as-good-as-random assignment assumptions are isolated in Appendix C.1 of BH, via a general potential 
outcomes model.
14Our identification results hold under the weaker conditional mean independence assumption of E [ε ∣ g, w] = E[ε ∣ w]. 
This assumption can be understood as defining a partially linear model, as in Robinson (1988): yi = βxi + ψi(w) + ε i where 
ψi(w) = E [εi ∣ w] and E [ε i ∣ g, w] = 0 for ε i = εi − ψi(w). A difference from Robinson (1988) arises because we do not 
assume iid data; for instance, we do not assume ψi(w) ≡ ψ(wi) for iid wi.
15Throughout, we allow (ε, w) to be stochastic (as when some components are sampled from a superpopulation) or fixed (as in 
a more conventional “design-based” analysis; e.g. Athey and Imbens (2022)). In the Medicaid eligibility example it may be more 
natural to view the observed (IncDemi, statei) as sampled from the national population, along with untreated potential outcomes εi. 
Conversely, in the market access example, it may be more natural to view the set of observed regions as a finite population, with fixed 
geography (Loci)i = 1

N . With fixed (ε, w), Assumption 1 holds trivially but Assumption 2 below is still restrictive.
16It is worth emphasizing that in our non-iid setup these conditions combine two dimensions of variation: over the stochastic 
realizations of g, w, x, and ε, and across the cross-section of observations i = 1, …, N. In the iid case they reduce to the more 
familiar conditions of E [zixi] ≠ 0 and E [ziεi] = 0.
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3.2 OVB and Instrument Recentering

We define the expected instrument μi = E[fi(g; w) ∣ w] as the average value of zi across 

different realizations of the shocks, conditional on w. Our first result shows that OVB may 

arise when predetermined exposure to the natural experiment is endogenous, and that the 

potential for such bias is entirely governed by the relationship between μi and the error εi. 

Formally, under Assumption 1 instrument orthogonality need not hold: E 1
N ∑i ziεi ≠ 0 in 

general. Rather,

E 1
N ∑

i
ziεi = E 1

N ∑
i

μiεi .

(4)

This result follows from the law of iterated expectations: 

E [ziεi] = E [E [fi(g; w)εi ∣ w]] = E [μiE [εi ∣ w]] = E [μiεi] for all i, where the second equality 

uses Assumption 1 and the definition of μi.

The central role of μi in governing OVB suggests the recentering solution: even though OVB 

results from potentially high-dimensional variation in units’ exposure to shocks, adjustment 

for the one-dimensional confounder μi is sufficient for instrument orthogonality. We adjust 

zi by defining the recentered instrument z i = zi − μi. By equation (4), orthogonality always 

holds for this instrument:

E 1
N ∑

i
z iεi = E 1

N ∑
i

ziεi − E 1
N ∑

i
μiεi = 0 .

Thus, if z i is also relevant, β is identified by the IV regression which uses the recentered 

instrument z i instead of zi.17

A closely related solution, also suggested by equation (4), is to include the expected 

instrument μi as a control in specification (2) while using the original zi as the instrument 

in a control function approach (Wooldridge, 2015). Controlling for μi can be thought of 

as recentering zi while also removing the residual variation in yi which is cross-sectionally 

correlated with μi. As usual, removing this residual variation may generate precision gains in 

large samples; similar gains may arise from including (a fixed number of) any predetermined 

controls in a recentered IV regression.18

17There exist fi( ⋅ ) constructions that yield a relevant recentered instrument whenever the shocks induce some variation 
in treatment. Formally, when Var [E [xi ∣ g, w] ∣ w] is not almost-surely zero at least for some i, the recentered 
instrument constructed as z i = E [xi ∣ g, w] − E [xi ∣ w] is relevant. This again follows by the law of iterated expectations: 

E 1
N ∑i z ixi = E 1

N ∑i z iE [xi ∣ g, w] = E 1
N ∑i Var [E [xi ∣ g, w] ∣ w] .

18Formally, the regression with μi as a control yields the reduced-form and first-stage moments E 1
N ∑i ziyi

⊥  and E 1
N ∑i zixi

⊥ , 

where vi
⊥ denotes the residuals from a cross-sectional projection of vi on μi. We show in Appendix B.1 of BH that these moments also 
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Equation (4) further shows that adjusting for μi is generally necessary for identification, 

absent additional restrictions on the unobserved error. Conventional controls and fixed 

effects are only guaranteed to purge OVB when they linearly span μi: a condition that is 

difficult to verify except when recentering is also feasible.19

Adjustments based on μi, as the sole confounder of zi, are similar to more conventional 

propensity score methods. There are three key differences, concerning the setting, 

adjustment method, and computation of μi. First, propensity score methods have mostly 

been applied to binary treatments, starting from Rosenbaum and Rubin (1983). While 

generalizations to binary instruments (e.g. Abadie (2003)) and non-binary treatments 

(e.g. Imbens (2000)) have been proposed, our setting allows for arbitrary treatments 

or instruments. Second, the propensity score literature has mostly used non-regression 

adjustment methods, such as matching or binning (Abadie and Imbens, 2016; King and 

Nielsen, 2019). A notable exception is the E-estimator of Robins et al. (1992), which 

similarly leverages linearity of an outcome model like (2) to recenter by a scalar variable. 

Third, and most importantly, propensity scores are usually estimated from the data by 

relating the treatment to a vector of observation-specific covariates. This approach is 

generally not feasible because exposure to exogenous shocks is high-dimensional: for 

instance, as noted in Section 2, the expected market access of any region i depends on 

the entire economic geography of the country. We therefore take a different approach to 

computing μi, which we turn to next.

3.3 Computing the Expected Instrument via Shock Counterfactuals

We propose computing the expected instrument by specifying an assignment process for 

the shocks, drawing many sets of counterfactual shocks from this process, recomputing 

the candidate instrument each time, and averaging it across the counterfactuals. Here 

we formalize this approach, discuss general ways in which counterfactual shocks can be 

specified, and highlight the advantages of our approach over alternatives.

We define the shock assignment process as the conditional distribution of g ∣ w, with 

cumulative distribution function G(g ∣ w). When G( ⋅ ) is known, the expected instrument 

μi = ∫ fi(γ; w)dG(γ ∣ w) can be computed and either used to recenter zi or added as a 

regression control.20 To emphasize the importance of a known shock assignment process, 

we write it as an assumption:

identify β under Assumption 1. Appendix C.9 of BH shows that controlling for μi always reduces asymptotic variance of the estimator 
when zi ∣ w is homoskedastic, while also giving a counterexample under heteroskedasticity.
19In panel data with zit = fit(gt, wt), for example, unit fixed effects generally purge OVB only when the expected instrument is 
time-invariant, which generally requires the fit( ⋅ ) mapping, the value of wt, and the distribution of gt to be time-invariant. While 
plausible in some applications, these conditions (in particular, stationarity of the shock distribution) can be quite restrictive. For 
instance, when new railroad lines tend to be built more than destroyed, expected market access will tend to grow over time.
20For the identification results, it is enough to approximate μi by an average of fi(g(s); w) for any number S of g(s) drawn 

from G(g ∣ w), independently of each other and of g. We have, for example, E 1
N ∑i zi − 1

S ∑s fi(g(s); w) εi = 0 by iterated 

expectations, since E [zi ∣ w, ε] = E fi(g(s); w) ∣ w, ε . We discuss how the number of draws affects the asymptotic behavior of 

the recentered IV estimator below.
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Assumption 2. (Known assignment process): G(g ∣ w) is known in the support of w.

This assumption is unrestrictive when the shocks are determined by a known randomization 

protocol, as in an RCT or with policy randomizations (such as tie-breaking lottery numbers 

in centralized assignment mechanisms; Abdulkadiroglu et al. (2017)). The assignment 

process may also be given by scientific knowledge when the shocks are randomized 

naturally, such as when g captures weather or seismic shocks governed by meteorological 

or geological processes (e.g., Carvalho et al. (2021); Madestam et al. (2013)). Policy 

discontinuities (as in regression discontinuity designs) can also yield a known G( ⋅ ) when 

viewed as generating local randomization around known cutoffs (Lee, 2008; Cattaneo et al., 

2015).

In observational data, where the distribution of shocks is unknown, Assumption 2 can be 

satisfied by specifying some permutations of shocks that were as likely to have occurred. 

For instance, if one is willing to assume the shocks gk are iid across k, it follows that all 

permutations of the observed g are equally likely. In this case G(g ∣ w) is uniform when w
is augmented by the permutation class Π(g) = {π(g) ∣ π( ⋅ ) ∈ ΠK}, where ΠK denotes the set 

of permutation operators π( ⋅ ) on vectors of length K (e.g. Lehmann and Romano, 2006, p. 

634). The distribution of each gk (conditionally on other components of w) then needs not be 

specified; the expected instrument is the average zi across all permutations of shocks, which 

serve as counterfactuals:

μi = 1
K! ∑

π( ⋅ ) ∈ ΠK

fi(π(g); w) .

Such μi are easy to compute (or approximate with a random set of permutations).

Similar expected instrument calculations follow under weaker shock exchangeability 

conditions, such as when the gk are iid within, but not across, a set of known clusters 

and the class of within-cluster permutations is used to draw counterfactuals. We illustrate 

this approach in Section 4. In BH we discuss how our framework can also apply with 

G(g ∣ w) specified up to a low-dimensional vector of consistently estimable parameters 

(Appendix C.5); we also show how Assumption 2 can derive from an economic model (e.g. 

of transportation network formation) with stochastic shocks or from symmetries of the joint 

shock distribution (Appendices D.1 and D.2)

We note that even when G( ⋅ ) is challenging to specify, a possibly incorrect specification 

can be useful as a sensitivity check. Specifically, if Assumption 1 holds and there is already 

no OVB because the included regression controls perfectly capture either the endogenous 

features of exposure or the expected instrument, then controlling for any candidate expected 

instrument mi(w) cannot introduce bias. In this case the researcher may safely control for 

one or several mi(w) based on some guesses of the assignment process.21 More generally, 

researchers may achieve additional robustness by controlling for multiple candidate mi(w)
based on multiple shock assignment process guesses; only one such guess needs to be right 

to purge OVB.
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3.4 Recentered IV Consistency

With the ratio of recentered IV moments identifying β, we now consider whether the 

corresponding IV estimator β = ( 1
N ∑i z iyi) ∕ ( 1

N ∑i z ixi) is consistent, i.e. whether β p β

as the number of observed outcomes and treatments grows large (N ∞). To formalize 

consistency in our non‐iid context we consider a sequence of distributions PN for the 

complete data (y, x, g, w). Only in this section, to make the asymptotic sequence explicit, 

we index moments by PN: e.g., we write the recentered IV moments as EPN
1
N ∑i z iyi  and 

EPN
1
N ∑i z ixi . We allow the number of observed shocks, KN = dim(g), and the dimensions of 

w to change arbitrarily with N.

We first consider mean-square convergence of 1
N ∑i z iεi to EPN

1
N ∑i z iεi = 0 under 

Assumption 1: i.e., whether VarPN
1
N ∑i z iεi 0. Since β = β + 1

N ∑i z iεi ∕ 1
N ∑i z ixi  by (2), 

such convergence implies β p β so long as the instrument is asymptotically relevant (a 

condition we return to below). We establish this convergence under a regularity condition on 

εi and a substantive restriction on z i, which we term weak mutual dependence:

Assumption 3. (Weak mutual dependence):

EPN
1

N2 ∑
i, j

∣ CovPN[z i, z j ∣ w] ∣ 0 .

Proposition 1. Suppose Assumptions 1-3 hold and EPN εi
2 ∣ w ≤ Uε uniformly across N and 

i = 1, …, N. Then VarPN
1
N ∑i z iεi 0.

Proof. See Appendix D.

Assumption 3 holds when the shocks induce rich cross-sectional variation in the recentered 

instrument, through heterogeneous exposure, such that most pairs of (z i, z j) have a weak 

covariance across possible realizations of g. The proof shows this is enough for a law of 

large numbers to apply to 1
N ∑i z iεi.22

Note that in line with our approach to identification, Proposition 1 makes no substantive 

restrictions on the errors εi beyond Assumption 1 (in particular, it puts no restrictions on 

the dependence of εi across observations). In the absence of such restrictions, Proposition 2 

21Formally, suppose either E [zi ∣ w] = 0 or E [εi ∣ w] = 0 for each i, where vi denotes the cross-sectional residualization 

of variable vi on some functions of w used as controls. Then E 1
N ∑i zi

⊥εi
⊥ = 0, where here vi

⊥ denotes the residuals from a 

cross-sectional projection of vi on mi(w). See Appendix C.6 of BH for our framework extended to predetermined controls.
22The proof to Proposition 1 shows Assumption 3 is also sufficient for consistency when μi is approximated by an average of 

fi(g(s); w) for g(s) drawn as in footnote 20. Intuitively, the variance of 
1
N ∑i z iεi is higher with fewer simulations S but converges to 

zero for any fixed S under Assumption 3.
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in Appendix C shows the Assumption 3 is not only sufficient for VarPN
1
N ∑i z iεi 0 but, 

under regularity conditions, also necessary. Of course, more conventional restrictions on the 

mutual dependence of errors (such as iid or clustered εi) may also suffice for convergence 

when weak mutual dependence of z i fails.

Three additional results in Appendix C, which extend the results on consistency with linear 

shift-share instruments from Borusyak et al. (2022), unpack Assumption 3 further. First, a 

large number of exogenous shocks is essentially necessary for the recentered instrument to 

not have many strong cross-sectional dependencies. Proposition 3 formalizes this intuition 

by showing that, with sufficiently smooth fi( ⋅ ; w), Assumption 3 can only hold with 

KN ∞. Moreover, the concentration of exposure to this growing number of shocks matters. 

Proposition 4 formalizes this idea by considering a concentration measure for average shock 

exposure which is similar to a Herfindahl-Hirschman Index (HHI): EPN ∑k = 1
KN ∂f̄(g; w)

∂gk

2
, 

where f̄(g; w) = 1
N ∑i (fi(g; w) − μi). For binary gk and weakly monotone fi( ⋅ ; w) (as in the 

network spillovers and market access examples) and with mutually-independent shocks, 

Assumption 3 is satisfied when this measure converges to zero such that the impact of 

any finite set of shocks on 1
N ∑i z i vanishes.23 Proposition 5 considers a different low-level 

condition in a case covering the medicaid eligibility example: Assumption 3 holds when 

most pairs of observations of z i are affected by non-overlapping sets of shocks.

Convergence of 1
N ∑i z iεi implies consistency of the recentered IV estimator so long as 

(i) EPN
1
N ∑i z ixi  remains bounded away from zero and (ii) 1

N ∑i z ixi − EPN
1
N ∑i z ixi

p 0.24 

Condition (i) follows when the relationship between zi and xi is strong and when most 

observations of z i have exposure concentrated in a small number of exogenous shocks, 

such that VarPN[z i] does not dissipate even as KN ∞. Proposition 6 in Appendix C 

formalizes these conditions with a linear first stage model of xi = πzi + ui, with g ⫫ u ∣ w, 

and a different measure of shock exposure concentration: the HHI of the effects of different 

shocks on z i, ∑k = 1
KN EPN

∂fi(g; w)
∂gk

∣ w
2
, averaged across observations i. In the case of 

mutually-independent binary shocks, we require π ≠ 0 and that the expectation of this 

concentration measure is bounded above zero. The HHI conditions from Propositions 4 and 

6 may simultaneously hold when most observations are mostly exposed to a small number of 

23Proposition 4 also applies when shocks are normally distributed, and when fi( ⋅ ; w) is linear regardless of the shock distribution. 
It further gives a necessary condition for Assumption 3 in all of these cases, which is a slightly stronger notion of vanishing average 
shock exposure concentration. For binary shocks, ∂f̄(g; w) ∕ ∂gk is defined as the difference in f̄ when gk switches from 0 to 1, 
keeping all other shocks fixed.
24This follows because β − β = ℎN(r1, r2) ≡ r1 ∕ EPN

1
N ∑i z ixi + r2  for r1 = 1

N ∑i z iεi and 

r2 = 1
N ∑i z ixi − EPN

1
N ∑i z ixi . Since ℎN( ⋅ ) is Lipschitz-continuous at (0, 0) with a Lipschitz constant uniformly bounded from 

above, β p β if r1 and r2 converge to zero in probability.
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shocks, differentially across a large number of shocks. Conditions similar to Assumption 3 

can be derived to ensure convergence of the sample first stage, (ii).25

3.5 Randomization Inference and Specification Tests

In some applications of our framework, natural assumptions on the mutual independence 

of z i or εi across observations can make conventional (e.g. clustered) asymptotic 

inference valid. Generally, however, the common exposure of observations to observed 

and unobserved shocks generates complex dependencies across observations making 

conventional asymptotic analysis inapplicable.26 In such cases, it may be attractive to 

construct confidence intervals for the constant effect β and tests for Assumptions 1 and 2 

based on the specification of the shock assignment process, following a long tradition of 

randomization inference (RI; Fisher, 1935). The RI approach guarantees correct coverage in 

finite samples of both observations and shocks.27 We focus on a particular type of RI test 

which is tightly linked to the recentered IV estimator β .

RI tests and confidence intervals for β are based on a scalar test statistic T = T(g, y − bx, w), 
where b is a candidate parameter value. Under the null hypothesis of β = b and Assumption 

1, the distribution of T = T (g, ε, w) conditional on ε and w is implied by the shock 

assignment process G(g ∣ w). One may simulate this distribution, by redrawing the g shocks 

and recomputing T . If the original value of T  is far in the tails of the simulated distribution, 

one has grounds to reject the null. Inversion of such tests yields confidence interval for β by 

collecting all b that are not rejected. These intervals have correct size, both conditionally on 

(ε, w) and unconditionally (see Appendix C.3 of BH for details).

We propose addressing the practical issue of choosing a randomization test statistic 

by picking a T  that is tightly linked to the recentered IV estimator, building on 

the theory of Hodges and Lehmann (1963) and Rosenbaum (2002). Specifically, we 

consider the sample covariance of the recentered instrument and implied residual: 

T = 1
N ∑i (fi(g; w) − μi) ⋅ (yi − bxi). Lemma 2 of BH shows that β  is a Hodges-Lehmann 

estimator corresponding to this T , meaning that β  equates T  with its expectation across 

counterfactual shocks (specifically, zero).28 This connection makes RI tests and confidence 

intervals based on T  inherit the consistency of β : the test power asymptotically increases to 

25For example, with a linear first stage, VarPN
1
N ∑i z ixi = VarPN π 1

N ∑i z i
2 + 1

N ∑i z i (πμi + ui) . Here, with mutually-

independent binary shocks, Lemma 4 in Appendix C ensures VarPN
1
N ∑i z i

2 0 when the expected sum of squared effects 

of individual shocks on 
1
N ∑i z i

2 converges to zero, and Proposition 1 implies VarPN
1
N ∑i z i (πμi + ui) 0 whenAssumption 3 

holds and EPN (πμi + ui)2 ∣ w  is uniformly bounded.
26An exception is Adão et al. (2019) who derive non-standard asymptotic inference in one such setting: when zi is a linear shift-share 
variable, i.e. with fi(g; w) = ∑k wikgk.
27Specifically, RI guarantees the validity of tests for the model parameter β, which can be interpreted as a constant treatment effect. 
Valid inference with heterogeneous effects in the kind of interdependent data we study is a difficult challenge, even with an asymptotic 
approach (Adão et al., 2019).
28With additional predetermined controls included in the regression (e.g. μi), the same property is satisfied by the residualized statistic 
1
N ∑i z i yi

⊥ − bxi
⊥ , where here vi

⊥ denotes the residuals from a cross-sectional projection of vi on the included controls.
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one for any fixed alternative b ≠ β under additional regularity conditions (Proposition S2 of 

BH).29

Randomization inference can also be used to perform falsification tests on our key 

Assumptions 1 and 2. Recentering implies a testable prediction that z i is orthogonal to 

any variable r = (ri)i = 1
N  satisfying g ⫫ r ∣ w, such as any function of w or other observables 

(either predetermined or contemporaneous) thought to be conditionally independent of g. To 

test this restriction, one may check that the sample covariance T = 1
N ∑i z iri is sufficiently 

close to zero by drawing counterfactual shocks and checking that T  is not in the tails 

of its conditional-on-(w, r) distribution. Multiple falsification tests, based on a vector of 

predetermined variables Ri, can be combined by an appropriate RI procedure, e.g. by taking 

T  to be the sample sum of squared fitted values from regressing z i on Ri.30

Falsification tests can be useful in two ways. First, when ri is a lagged outcome or another 

variable thought to proxy for εi, they provide an RI implementation of conventional placebo 

and covariate balance tests of Assumption 1. While the use of RI for inference on causal 

effects may be complicated by treatment effect heterogeneity, the sharp hypothesis of zero 

placebo effects is a natural null. Second, RI tests will generally have power to reject false 

specifications of the shock assignment process, i.e. violations of Assumption 2, even when 

ri does not proxy for εi. For ri = 1, for example (which is trivially conditionally independent 

of g), the test verifies that the sample mean of zi is typical for the realizations of the 

specified assignment process. Setting ri = μi instead checks that the recentered instrument is 

not correlated with the expected instrument that it is supposed to remove.

3.6 Extensions

While we analyze the constant-effect model (2), identification by μi-adjusted regressions 

extends to settings with heterogeneous treatment effects. Namely, Appendix C.1 of BH 

shows that the recentered IV estimator generally identifies a convex-weighted average of 

heterogeneous effects under an appropriate monotonicity condition, extending Imbens and 

Angrist (1994). The weights are proportional to the conditional variance of z i ∣ w across 

counterfactual shocks, σi
2. These σi

2, like μi, are given by the shock assignment process 

(Assumption 2) and therefore can be computed by the researcher. Moreover, they can be 

used to identify more conventional weighted average effects. For example, in reduced-form 

models of the form yi = βizi + εi a recentered and rescaled IV (zi − μi) ∕ σi
2 identifies the 

average effect E 1
N ∑i = 1

N βi . Similarly, in IV settings with binary xi and zi, this rescaled 

instrument identifies the local average treatment effect of Imbens and Angrist (1994).31

29RI confidence intervals based on this statistic are still obtained by test inversion, and not from the distribution of the recentered 

estimator itself across counterfactual shocks g∗. The latter idea fails in IV since the re-randomized instrument fi(g∗; w) − μi has a 
true first-stage of zero. The distribution of reduced-form coefficients across counterfactual shocks is also not useful, except for testing 
β = 0, as that distribution is centered around zero rather than β.

30This T = z ′R(R′, R)−1R′z  extends our single-dimensional test: it is a quadratic form of the vector-valued statistic 
1
N ∑i z iRi, 

weighted by (R′, R)−1, where R is the matrix collecting Ri and z  is the vector collecting z i.
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Further extensions are given in the appendix of BH. Appendix C.6 shows how 

predetermined observables can be included as regression controls to reduce residual 

variation and potentially increase power. Appendix C.7 discusses identification and 

inference with multiple treatments or instruments. Finally, Appendix C.8 extends the 

framework to nonlinear outcome models.

4 Application: Effects of Transportation Infrastructure

We now present an empirical application showing how our theoretic framework can be used 

to avoid OVB in practice. Specifically, we estimate the effect of market access growth on 

Chinese regional employment growth over 2007–2016, leveraging the recent construction of 

high-speed rail (HSR). We show how counterfactual HSR shocks can be specified, and how 

correcting for expected market access growth can help purge OVB.

The recent construction of Chinese HSR has produced a network longer than in all other 

countries combined (Lawrence et al., 2019). The network mostly consists of dedicated 

passenger lines and has developed rapidly since 2007.32 Construction objectives included 

freeing up capacity on the low-speed rail network and supporting economic development 

by improving regional connectivity (Lawrence et al., 2019; Ma, 2011). While affordable 

fares make HSR popular for multiple purposes, business travel is an important component of 

rail traffic, ranging between 28% and 62%, depending on the line (Ollivier et al., 2014; 

Lawrence et al., 2019). The role of HSR may also extend beyond directly connected 

regions, as passengers frequently transfer between HSR and traditional lines (and between 

intersecting HSR lines). An early analysis by Zheng and Kahn (2013) finds positive effects 

of HSR on housing prices, while Lin (2017) similarly finds positive effects on regional 

employment.

We analyze HSR-induced market access effects for 340 sub-province-level administrative 

divisions in mainland China, referred to as prefectures.33 We measure market access growth 

between 2007 and 2016 by combining data on the development of the HSR network 

and each prefecture’s location and population (as measured in the 2000 census). A total 

of 83 HSR lines opened between these years, with the first in 2008; a further 66 lines 

were completed or under construction as of April 2019.34 We compute a simple market 

access measure in each prefecture i and year t based on the formula in Zheng and Kahn 

(2013): MAit = ∑j exp ( − 0.02τijt) ⋅ Popj, 2000, where Popj, 2000 denotes the year-2000 population 

of prefecture j and τijt denotes predicted travel time between regions i and j in year t (in 

minutes). Travel time predictions are based on the operational speed of each HSR line 

as well as geographic distance, which proxies for the travel time by car or a low-speed 

train. We relate MA growth, xi = log MAi, 2016 − log MAi, 2007, to the corresponding growth in 

31We note that this heterogeneous effects extension applies to identification but not randomization-based confidence intervals which, 
as noted above, require a sharp null hypothesis βi = b for all i.
32Construction was started by the Medium- and Long-Term Railway Plan in 2004; this plan was later expanded in 2008 and again in 
2016.
33Most prefectures are officially called “prefecture-level cities,” but typically include multiple urban areas.
34We define a line by a contiguous set of inter-prefecture HSR links that were proposed together and opened simultaneously. One 
pilot HSR line between Qinhuangdao and Shenyang opened in 2003. We include it in our market access measure but focus on the bulk 
of HSR growth over 2007–2076.
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prefecture’s urban employment yi from Chinese City Statistical Yearbooks. This yields a set 

of 275 prefectures with non-missing outcome data; see Appendix A for details on the sample 

construction and MA measure. Panel A of Figure 1 shows the Chinese HSR network as of 

the end of 2016, along with the implied MA growth of relative to 2007.

Column 1 of Table I, Panel A, reports the coefficient from a regression of employment 

growth on MA growth.35 The estimated elasticity of 0.23 is large. With an average MA 

growth of 0.54 log points, it implies a 12.4% employment growth attributable to HSR for an 

average prefecture—almost half of the 26.6% average employment growth. The estimate is 

also highly statistically significant using Conley (1999) spatially-clustered standard errors.

Panel A of Figure 1, however, gives reason for caution against causally interpreting the 

OLS coefficient. Prefectures with high MA growth, which serve as the effective treatment 

group, tend to be clustered in the main economic areas in the southeast of the country where 

HSR lines and large markets are concentrated. A comparison between these prefectures 

and the economic periphery may be confounded by the effects of unobserved policies, both 

contemporaneous and historical, that differentially affected the economic center.

We quantify the systematic nature of spatial variation in MA growth in Column 1 of Table 

II, by regressing it on a prefecture’s distance to Beijing, latitude, and longitude. These 

predictors capture over 80% of the variation in MA growth (as measured by the regression’s 

R2), reinforcing the OVB concern: for a causal interpretation of the Table I regression, one 

would need to assume that all unobserved determinants of employment growth (e.g. local 

productivity shocks) are uncorrelated with these geographic features. While one could of 

course control for the specific geographic variables from Table II (as we explore below), 

controlling perfectly for geography is impossible without removing all variation in xi.

Our solution is to view certain features of the HSR network as realizations of a natural 

experiment. By specifying a set of counterfactual HSR networks we can compute the 

appropriate function of geography μi which removes the systematic variation in MA growth.

Our specification of counterfactuals exploits the heterogeneous timing of HSR construction. 

Specifically, we permute the 2016 completion status of the built and unbuilt (but planned) 

lines, assuming that the timing of line completion is conditionally as-good-as-random. Panel 

B of Figure 1 compares the built and unbuilt lines which form our counterfactuals. Unbuilt 

lines tend to be concentrated in the same areas of China as built lines, reinforcing the fact 

that construction is not uniformly distributed in space. Moreover, built lines tend to connect 

more regions: the average number of cross-prefecture “links” is 3.19 and 2.44 for built and 

unbuilt lines, respectively, with a statistically significant difference (p = 0.048). To account 

for this difference we construct counterfactual upgrades by permuting the 2016 completion 

status only among lines with the same number of links. For example the main Beijing 

to Shanghai HSR line, which has the greatest number of links, is always included in the 

35This regression can be viewed as a reduced form of a hypothetical IV regression, in which the treatment is a measure of market 
access that accounts for changes in population. We focus on the reduced form because of data constraints: we only observe the 
population of all 340 prefectures in the 2000 Census.
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counterfactuals. This procedure generates 1,999 counterfactual HSR maps that are visually 

similar to the actual 2016 network; Appendix Figure A1 gives an illustrative example.

Columns 2–4 of Table II validate this specification of the HSR assignment process by the 

test described in Section 3.5. Column 2 shows that this recentering successfully removes the 

systematic geographic variation in market access. Specifically, we regress recentered MA 

growth on a constant and the same geographic controls as in Column 1. The regression 

coefficients and R2 fall dramatically relative to Column 1, while a permutation-based 

p-value for their joint significance (based on the regression’s sum-of-squares, as suggested 

in footnote 30) is 0.44. Columns 3 and 4 further show that recentered MA growth is 

uncorrelated with expected MA growth.36

Figure 2 plots expected and recentered MA growth given by the permutations of built and 

unbuilt lines. The effect of recentering is apparent by contrasting the solid and striped 

regions in Panel B of Figure 2 (indicating high and low recentered MA growth) with the 

dark- and light-shaded regions in Panel A of Figure 1 (indicating high and low MA growth). 

The recentered treatment no longer places western prefectures in the effective control group, 

as their MA growth is as low as expected. Similarly, some prefectures in the east (such 

as Tianjin) are no longer in the effective treatment group, as they saw an expectedly large 

increase in MA. At the same time, recentering provides a justification for retaining other 

regional contrasts. Hohhot, for example, expected higher MA growth than Harbin due to 

the planned connection to Beijing. This line was still under construction in 2016, however, 

resulting in lower MA growth in Hohhot than Harbin.

Column 2 of Table I, Panel A, shows that instrumenting MA growth with recentered 

MA growth reduces the estimated employment elasticity substantially, from 0.23 to 0.08. 

Controlling for expected MA growth yields a similar estimate of 0.07 in Column 3. 

Neither of the two adjusted estimates is statistically distinguishable from zero according to 

either Conley (1999) spatial-clustered standard errors or permutation-based inference (which 

yields a wider confidence interval in this setting). The difference between the unadjusted 

and adjusted estimates is explained by the fact that employment growth is strongly predicted 

by expected MA growth. In Column 3 we find a large coefficient on μi, of 0.32, meaning 

that employment grew faster in prefectures that were more highly exposed to potential HSR 

construction, whether or not the nearby lines were built yet.

Panel B of Table I shows that the geographic controls from Table II do not isolate the same 

variation as expected MA growth adjustment. Including these controls in the unadjusted 

regression of Column 1 yields a smaller but still economically and statistically significant 

coefficient of 0.13. In contrast, Columns 2 and 3 show that the finding of no significant 

MA effect after adjusting for μi is robust to including geographic controls. The μi adjustment 

alone appears sufficient to remove the geographic dependence of MA, as Table II also 

showed.37

36These results are consistent with correct specification of counterfactuals (i.e. we cannot reject Assumption 2), though we note they 
do not provide direct support for the exogeneity of HSR construction to the unobserved determinants of employment (Assumption 1).
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While our primary interest is to illustrate the recentering approach, we note that there are 

several possible explanations for the substantive finding of a small employment effect of 

MA. Unlike other transportation networks used for trading goods, the Chinese HSR network 

primarily operates passenger trains. Its scope for directly affecting production is therefore 

smaller, although it could still facilitate cross-regional business relationships. In addition, 

the employment effects of growing market access could be positive for some regions but 

negative for others, as easier commuting between regions relocates employers. We leave 

analyses of such mechanisms and heterogeneity for future study.

In BH we discuss how market access recentering relates to other approaches in the long 

literature estimating transportation infrastructure upgrade effects (Redding and Turner, 

2015). We first contrast the well-known challenge of strategically chosen transportation 

upgrades with the less discussed problem that regional exposure to exogenous upgrades 

may be unequal. We then explain how common strategies to address the former issue 

(e.g. by leveraging historical routes or inconsequential places) can be incorporated in our 

framework, at least in principle. At the same time, we highlight that recentering may still be 

needed to address the latter issue. We further discuss how some of the existing approaches 

naturally yield specifications of counterfactual networks (e.g. the placebos in Donaldson 

(2018) and Ahlfeldt and Feddersen (2018)) and summarize the conceptual and practical 

advantages of our approach relative to employing more conventional controls. We emphasize 

that even when it is challenging to obtain a convincing specification of counterfactuals, any 
specification can yield a robustness check on these alternative strategies (see footnote 21).

5 Conclusion

Many studies in economics use treatments or instruments which combine multiple sources 

of variation, which are sometimes observed at different “levels,” according to a known 

formula. We develop a general approach to causal inference when some, but not all, 

of this variation is exogenous. Non-random exposure to the exogenous shocks can bias 

conventional regression estimators, but this problem can be solved by specifying a shock 

assignment process: namely, a set of counterfactual shocks that might as well have been 

realized. Averaging the treatment or instrument over these counterfactuals yields a single 

μi which can be adjusted for to achieve identification and consistency. The specification of 

counterfactuals also yields a natural form of valid finite-sample inference.

In practice, researchers face a choice in how to use μi in a regression analysis: recentering 

by it or controlling for it. When the assignment process is given by a true randomization 

protocol, as in a RCT, we recommend researchers recenter first to purge OVB. Then any 
predetermined controls (i.e. functions of exposure) can be included to remove variation in 

the error term and likely increase estimation efficiency. While μi is one possible control, 

which automatically recenters the treatment or instrument, it need not be the best choice 

in terms of predicting the residual variation. Our recommendation is different in natural 

37In BH we provide additional robustness checks, adjusting the definitions of MA and outcome variables, using a binary measure 
of connectivity to the HSR network, including province fixed effects, dropping influential prefectures, and examining the role of 
treatment effect heterogeneity.
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experiments where assumptions must be placed on the assignment process. Then controlling 

for candidate μi instead of recentering can have a valuable “double-robustness” property. 

Researchers can compute and control for several candidate μi based on different assignment 

processes, such that OVB is purged if at least one of the processes is specified correctly (or 

if there is no OVB to begin with).

We conclude by noting that our framework bears practical lessons for a range of common 

treatments and instruments, well beyond the market access measure in our empirical 

application. In our working paper (Borusyak and Hull, 2021), we discuss and illustrate 

some of these implications for policy eligibility treatments, network spillover treatments, 

linear and nonlinear shift-share instruments, model-implied instruments, instruments from 

centralized school assignment mechanisms, “free-space” instruments for mass media 

access, and weather instruments. We expect other settings may also benefit from explicit 

specification of shock counterfactuals and appropriate adjustment for non-random shock 

exposure.

A: Data Appendix

Our analysis of market access effects uses data on 340 prefectures of mainland China. 

This excludes the islands of Hainan and Taiwan and the special administrative regions of 

Hong Kong and Macau, but includes six sub-prefecture-level cities (e.g. Shihezi) that do not 

belong to any prefecture. We use United Nations shapefiles to geocode each prefecture by 

the location of its main city (or, in a few cases, by the prefecture centroid).38

We use a variety of sources to assemble a comprehensive database of the HSR network in 

2016 as well as the lines planned (and in many cases under construction) as of April 2019 

but not opened yet by the end of 2016. Our starting points are Map 1.2 of Lawrence et al. 

(2019), China Railway Yearbooks (China Railway Yearbook Editorial Board, 2001-2013), 

and the replication files of Lin (2017). We cross-check network links across these sources 

and use Internet resources such as Wikipedia and Baidu Baike to confirm and fill in missing 

information. Our database includes various types of HSR lines, including the National HSR 

Grid (4+4 and 8+8) and high-speed intercity railways. However, we only consider newly 

built HSR lines, excluding traditional lines upgraded to higher speeds. We do not put further 

restrictions on the class of trains (e.g. to G- and D-classes only) or specify an explicit 

minimum speed. The operating speed therefore ranges between 160 and 380kph, although 

the majority of lines are at 250kph. For each line we collect the date of its official opening 

(if it has opened), the actual or planned operating speed, and the list of prefecture stops. 

When different sections of the same line opened in a staggered way, we classify each section 

as a separate line for the purposes of constructing our 1,999 counterfactuals, following the 

definition of a line in footnote 34. We include only one contiguous stop per prefecture and 

drop lines that do not cross prefecture borders.

We compute travel time τijt between all pairs of prefectures i and j as of the ends of 

2007 and 2016 for both the actual and counterfactual networks. Travel time combines 

38The shapefiles are obtained from OCHA Regional Office for Asia and the Pacific (2018, 2020), accessed on April 4, 2020.
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traditional modes of transportation (car or low-speed train) with HSR, where available. We 

allow for unlimited changes between different HSR lines and between HSR and traditional 

modes without a layover penalty, as HSR trains tend to operate frequently and traditional 

modes also involve downtime. Following the existing literature, we proxy for travel time by 

traditional modes by the straight-line distance, and specify the speed of 100 = 120/1.2kph, 

where 120kph is their typical speed and the 1.2 adjustment for actual routes that are longer 

than a straight line. For two prefectures connected by an HSR line, we compute the distance 

along the line as the sum of straight-line distances between adjacent prefectures on the line. 

We use the operating speed of each line divided by an adjustment factor of 1.3 to capture 

the fact that the average speed is lower than the nominal speed we record. Computing MA 

further requires the population of each of the 340 prefectures from the 2000 population 

Census, which we obtain from Brinkhoff (2018).39

We measure prefecture employment in the 2008–2017 China City Yearbooks (China 

Statistics Press, 2000-2017).40 Each yearbook covers the previous year (so our data cover 

2007–2016). While the yearbooks provide several employment variables, we use “The 

Average Number of Staff and Workers” (from the “People’s Living Conditions and Social 

Security” chapter), as measured in the entire prefecture and not just the main urban core. 

This employment series has by far the lowest number of strong year-to-year deviations 

which may indicate data quality issues.

We finally apply a data cleaning procedure to the outcome variable. We first mark a 

prefecture-year observation as exhibiting a “structural break” if (i) the outcome changes 

by more than twice in either direction relative to the previous non-missing value for the 

prefecture, (ii) it is not followed by a change in the opposite direction that is between 3/4 

and 4/3 as large in terms of log-changes (which we view as a one-off jump and ignore), and 

(iii) the previous change does not satisfy (i). We view the outcome change between 2007 and 

2016 as valid only if there are no structural breaks in any year in between. This reduces the 

sample from 283 to the final set of 275 prefectures.

39Accessed on November 20, 2018.
40Data for 2008-2015, excluding 2009 and 2011, are from http://oversea.cnki.net.proxy.uchicago.edu/kns55/default.aspx; data from 
2009, 2011, 2016, and 2017, are from http://tongji.oversea.cnki.net/chn/navi/HomePage.aspx?id=N2018050234&name=YZGCA (all 
accessed on January 23, 2019 via a University of Chicago portal).
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B: Additional Exhibits

Figure A1: Simulated HSR Lines and Market Access Growth
Notes: This figure shows an example map of simulated Chinese HSR lines and market 

access growth over 2007–2016, obtained by permuting the opening status of built and 

unbuilt lines with the same number of cross-prefecture links.

C: Additional Results

Throughout the results and later proofs we omit the phrase “almost surely with respect to w” 

for brevity. We also abbreviate weak mutual dependence (Assumption 3) as WMD.

Proposition 2 (Convergence for all errors implies WMD). Suppose VarPN [z i ∣ w] ≤ Uz

uniformly. If, for some Uε > 0, VarPN
1
N ∑i z iεi 0 for every sequence of distributions of 

ε such that VarPN [εi] ≤ Uε for all N and i = 1, …, N then WMD holds.

Proposition 3 (WMD implies growing number of shocks). Suppose the support of gk is 

bounded uniformly across across N and k = 1, …, KN. Suppose further that, uniformly across 

N, f i(g; w) ≡ fi(g; w) − EPN [fi(g; w) ∣ w] is Lipschitz-continuous in g with the Lipschitz 

constant below ULip and that VarPN f i(g; w) ∣ w ≥ Lz > 0 for at least N ⋅ LV  units i, with 

LV > 0. Then WMD implies KN ∞.

Proposition 4 (WMD and dispersed shock exposure). Suppose fi(g; w) is weakly monotone 

in g for all i, the components of g are jointly independent conditionally on w, and 

VarPN [gk ∣ w] ∈ [Lσ, Uσ] for 0 < Lσ < Uσ < ∞. Consider three cases: conditionally on w, (i) 

all components of g are normally distributed and EPN
∂f̄(g)

∂gk
∣ w < ∞, (ii) all components 

of g have the Bernoulli distribution, or (iii) f̄ is linear in g. In each case:
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a. If ∑k EPN
∂f̄(g; w)

∂gk

2
0, WMD holds;

b. If WMD holds, EPN ∑k EPN
∂f̄(g; w)

∂gk
∣ w

2
0,

where we define ∂f̄(g)
∂gk

≡ f̄(g1, …, gk − 1, 1, gk + 1, …, gKN) − f̄(g1, …, gk − 1, 0, gk + 1, …, gKN) in the 

Bernoulli shock case.

Proposition 5 (WMD and non-overlapping exposure sets). For each N, let G1( ⋅ ), …, GN( ⋅ )
be a fixed set of functions of w to subsets of {1, …, KN} such that fi( ⋅ ; w) does not depend 

on gk for any k ∉ Gi(w). Suppose the components of g are jointly independent conditionally 

on w, and VarPN [z i ∣ w] ≤ Uz, uniformly across N and i = 1, …, N. Then WMD holds if 

EPN
1

N2 ∑i, j = 1
N 1 [Gi(w) ∩ Gj(w) ≠ ∅] 0.

Proposition 6 (First stage and concentrated individual exposure). Suppose xi = πzi + ui with 

ui ⫫ g ∣ w, for all i and π ≠ 0. Suppose further, conditionally on w, the components of g
are mutually independent with VarPN [gk ∣ w] ≥ Lσ > 0 uniformly across N and k = 1, …, KN. 

Moreover, one of three conditions hold: (i) all components of g are mutually independent 

and EPN
∂f i(g; w)

∂gk
∣ w < ∞, (ii) all components of g have the Bernoulli distribution, or 

(iii) all f i( ⋅ ; w) are linear in g. Then EPN
1
N ∑i ∑k EPN

∂f i(g; w)
∂gk

∣ w
2

≥ LHHI > 0 uniformly 

across N, EPN
1
N ∑i xiz i  is also uniformly bounded away from zero (by ∣ π ∣ ⋅ LHHILσ.

D: Proofs

We drop the PN subscripting of moments for all proofs to simplify notation. We again 

abbreviate weak mutual dependence (Assumption 3) as WMD.

Proof of Proposition 1. By Assumption 1 and the Cauchy-Schwarz inequality

Var 1
N ∑

i
z iεi = E 1

N ∑
i

z iεi

2
= 1

N2 ∑
i, j

E [z iz jεiεj]

= 1
N2 ∑

i, j
E [E [z iz j ∣ w] E [εiεj ∣ w]]

≤ 1
N2 ∑

i, j
E ∣ E [z iz j ∣ w] ∣ E εi

2 ∣ w E εj
2 ∣ w

≤ UεE 1
N2 ∑

i, j
∣ Cov [z i, z j ∣ w] ∣ 0 .

(5)
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When μi is approximated by 1
S ∑s = 1

S z(s) for zi
(s) = fi(g(s); w) and for a finite number S of 

random draws g(s) from G(g ∣ w), the same argument holds with a variance upper bound that 

is at most twice as large. Indeed, since

E zi − 1
S ∑

s
zi

(s) zj − 1
S ∑

s
zj

(s) ∣ w

= Cov zi − 1
S ∑

s
zi

(s), zj − 1
S ∑

s
zj

(s) ∣ w + E zi − 1
S ∑

s
zi

(s) ∣ w E zj − 1
S ∑

s
zj

(s) ∣ w

= S + 1
S Cov [zi, zj ∣ w] = S + 1

S Cov[z i, z j ∣ w] ,

we have, repeating the steps in (5),

Var 1
N ∑

i
εi zi − 1

S ∑
s

zi
(s) ≤ S + 1

S UεE 1
N2 ∑

i, j
∣ Cov [z i, z j ∣ w] ∣ 0 .

Proof of Proposition 2. For each N consider ε = Uε ∕ Uz ⋅ ε  where (ε , w) is distributed as 

(z , w), and ε ⫫ g ∣ w. Then Var [εi] = Uε Var [z i] ∕ Uz ≤ Uε. Moreover,

Var 1
N ∑

i
z iεi = 1

N2 ∑
i, j = 1

N
E [E [z iz j ∣ w] E [εiεj ∣ w]]

= Uε
Uz

⋅ 1
N2 ∑

i, j = 1

N
E E z iz j ∣ w 2

= Uε
Uz

⋅ 1
N2 ∑

i, j = 1

N
E Cov [z iz j ∣ w]2 0 .

By the Cauchy-Schwarz inequality, 

1
N2 ∑i, j = 1

N ∣ Cov [z i, z j ∣ w] ∣ ≤ 1
N2 ∑i, j = 1

N Cov [z i, z j ∣ w]2
0.5

.

And by Jensen’s inequality, 

E 1
N2 ∑i, j = 1

N ∣ Cov [z i, z j ∣ w] ∣ ≤ E 1
N2 ∑i, j = 1

N Cov [z i, z j ∣ w]2
0.5

≤ E 1
N2 ∑i, j = 1

N Cov [z i, z j ∣ w]2
0.5

0

.

Proof of Proposition 3.41 We prove this result by contradiction. Without loss of generality 

suppose KN = K is constant along the asymptotic sequence; whenever KN ↛ ∞, there is a 

subsequence of KN bounded by some K, and the proof follows for that subsequence without 

change. Also without loss, we condition on w and suppress the w notation. We denote 

the upper bound on the support of ∣ gk ∣ by Ug ∕ 2 and extend the domain of each f i to 

[ − Ug ∕ 2, Ug ∕ 2]K preserving its Lipschitz constant, by the Kirszbraun theorem.

41We thank Mikhail Dektiarev for help with this proof.
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Let ℝ(x) = min { x ∕ δ ⋅ δ, Ug ∕ 2} denote the upward-rounding function for some δ > 0. 

Consider f i(g) = ℝ f i(ℝ(g1), …, ℝ(gK))  which rounds both the shocks and the values of f i

Note that

f i(g) − f i(g) ≤ f i(g) − f i(ℝ(g1), …, ℝ(gK)) + f i(ℝ(g1), …, ℝ(gK)) − f i(g) ≤ δ + δULip K,

where the second inequality uses the Lipschitz condition and ‖g − (ℝ(g1), …, ℝ(gK))‖2 ≤ δ K
since ∣ gk − ℝ(gk) ∣ ≤ δ for each k.

By the Lipschitz condition f i(gA) − f i(gB) ≤ ULipUg K for any gA, gB ∈ [ − Ug ∕ 2, Ug ∕ 2]K. 

Since E f i(g) = 0 and g ∈ [ − Ug ∕ 2, Ug ∕ 2]K, this implies f i(g) ≤ ULipUg K and 

consequently f i(g) ≤ ULipUg K + δ + δULip K. Thus, for all N and i = 1, …, N there 

is only a finite number UR of possible “rounded” f i( ⋅ ) functions. Therefore, at least 

NLV ∕ UR of observations i with Var f i(g) ≥ Lz have the same rounded function, and thus 

there are at least (NLV ∕ UR)2 such pairs of observations (i, j). For any such pair, since 

E f i(g) − f j(g) = 0,

2Cov f i(g), f j(g) = Var f i(g) + Var f j(g) − E f i(g) − f j(g) 2

≥ 2Lz − E f i(g) − f i(g) + f i(g) − fj(g) + f j(g) − fj(g) 2

≥ 2Lz − E δ 1 + ULip K + 0 + δ 1 + ULip K 2 .

Setting δ = Lz

2(1 + ULip K) , we have Cov f i(g), f j(g) ≥ Lz
2 > 0, and therefore

1
N2 ∑

i, j = 1

N
Cov f i(g), f j(g) ≥ 1

N2 ⋅ NLV
UR

2Lz
2 = LV

2 Lz

2UR
2 ↛ 0 .

Thus, weak mutual dependence does not hold, establishing the contradiction.

To establish Proposition 4, we first state and prove four lemmas. We assume all moments 

relevant for those lemmas exist.

Lemma 1. ℎ :ℝK ℝ is weakly increasing and random variables g1, …, gK are independent, 

then for any k ∈ {1, …, K − 1} the conditional expectation E [ℎ (g1, …, gK) ∣ g1, …, gk] is weakly 

increasing.

Proof. Fix γ1, …, γk and γ1
′ , …, γk

′  such that γr
′ ≥ γr for r = 1, …, k, and define the K × 1

vectors g = (γ1, …, γk, gk + 1, …, gK) and g′ = (γ1
′ , …, γk

′ , gk + 1, …, gK). Note ℎ (g′) ≥ ℎ (g). For 

r = k + 1, …, K, denote the cumulative distribution function of gr by Gr( ⋅ ). Then
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E [ℎ (g′)] = ∫ ⋯∫ ℎ (g′) dGk + 1(gk + 1)…dGK(gK)

≥ ∫ ⋯∫ ℎ (g) dGk + 1(gk + 1)…dGK(gK) = E [ℎ (g)] .

Lemma 2. For any weakly increasing ℎ1, ℎ2:ℝK ℝ, Cov [ℎ1 (g) , ℎ2 (g)] ≥ 0 for g = (g1, …, gK)
with independent components.

Proof. For K = 1 this is well known. The proof for K > 1 follows by induction. Suppose it is 

true for K − 1. Then by the law of total covariance

Cov [ℎ1 (g) , ℎ2 (g)] = E [Cov [ℎ1 (g), ℎ2(g) ∣ g1]] + Cov [E [ℎ1(g) ∣ g1] , E [ℎ2(g) ∣ g1]] .

The first term is the expectation of a covariance of two monotone (by Lemma 1) functions 

of K − 1 variables. The second term, again by Lemma 1, is a covariance of two monotone 

functions of random scalars. Thus both terms are non-negative.

Lemma 3. If fi(g; w) is weakly monotone in g for all i and components of g are jointly 

independent conditionally on w, then Cov [z i, z j ∣ w] ≥ 0 for all i and j. Furthermore WMD 

simplifies to Var [z̄] 0 for z̄ = 1
N ∑i z i.

Proof. Applying Lemma 2 to z i = fi(g; w) − E [fi(g; w) ∣ w] and 

z j = fj(g; w) − E [fj(g; w) ∣ w] (or their negations, if fi(g; w) is weakly decreasing) and 

conditioning on w everywhere, we obtain Cov [z i, z j ∣ w] ≥ 0. Thus, WMD simplifies to

E 1
N2 ∑

i, j
∣ Cov [z i, z j ∣ w] ∣ = E 1

N2 ∑
i, j

Cov [z i, z j ∣ w]

= E Var 1
N ∑

i
z i ∣ w = Var 1

N ∑
i

z i 0,

where the second line rearranges terms and the third line follows by E [ 1
N ∑i z i ∣ w] = 0.

Lemma 4. Suppose g = (g1, …, gK) is jointly independent with σk
2 ≡ Var [gk] and consider a 

scalar function ℎ on the support of g. Then if (i) all components of g are normally distributed 

and E ∂ℎ(g)
∂gk

< ∞ or (ii) all components of g have the Bernoulli distribution,

∑
k

σk
2 E ∂ℎ(g)

∂gk

2
≤ Var [ℎ(g)] ≤ ∑

k
σk

2E ∂ℎ(g)
∂gk

2
,

(6)

with ∂ℎ
∂gk

 defined in the Bernoulli case as in Proposition 4. Further, (iii) if ℎ is linear, (6) 

holds with equalities, regardless of the distributions of the components of g.
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Proof. For part (i), the lower bound is established by Cacoullos (1982, Proposition 3.7), and 

the upper bound on Var [ℎ(g)] is established by Chen (1982, Corollary 3.2). For part (ii), the 

lower bound follows from restricting the results for binomial distributions in Cacoullos and 

Papathanasiou (1989, p. 355), and the upper bound is similarly a special case of the result 

in Cacoullos and Papathanasiou (1985, p. 183). Part (iii) follows trivially from the fact that 

∂ℎ ∕ ∂gk is non-stochastic.

Proof of Proposition 4. By Lemma 3, WMD is equivalent to 

Var f̄(g; w) = E Var f̄(g; w) ∣ w 0. Applying Lemma 4 conditionally on w and using the 

bounds on Var [gk ∣ w],

E ∑
k

Lσ E ∂f̄(g; w)
∂gk

∣ w
2

≤ Var [f̄(g; w)] ≤ E ∑
k

UσE ∂f̄(g; w)
∂gk

2
∣ w .

The upper bound, the law of iterated expectations, and Uσ > 0 imply that if 

E ∑k [ ∂f̄(g; w)
∂gk

2
0, Var f̄(g; w) 0, and thus WMD holds. The lower bound and Lσ > 0

imply that if WMD holds and thus Var f̄(g; w) 0, we have E ∑k E ∂f̄(g; w)
∂gk

∣ w
2

0.

Proof of Proposition 5. For any N and fixed w̄ in the support of w and for i and j
such that Gi(w̄) ∩ Gj(w̄) = ∅ we have z i ⫫ z j ∣ w = w̄ because fi and fj are functions of two 

non-overlapping subvectors of g, the components of which are conditionally independent. 

Thus Cov [z i, z j ∣ w = w̄] = 0 for such (i, j) pairs, and we obtain

1
N2 ∑

i, j
∣ Cov [z i, z j ∣ w] ∣ = 1

N2 ∑
i, j

1 [Gi(w) ∩ Gj(w) ≠ ∅] E [ ∣ Cov [z i, z j ∣ w] ∣ ]

≤ 1
N2 ∑

i, j
1 [Gi(w) ∩ Gj(w) ≠ ∅] E Var [z i ∣ w] Var [z j ∣ w]

≤ Uz ⋅ 1
N2 ∑

i, j
1 [Gi(w) ∩ Gj(w) ≠ ∅]

and therefore E 1
N2 ∑i, j ∣ Cov [z i, z j ∣ w] ∣ 0.

Proof of Proposition 6. By the law of iterated expectations, 

E 1
N ∑i xiz i = πE 1

N ∑i z i
2 = πE 1

N ∑i Var [z i ∣ w] . The result then follows directly from 

Lemma 4 applied to each f i(g; w):

1
N ∑

i
Var [z i ∣ w] ≥ 1

N ∑
i

∑
k

Var [gk ∣ w] E ∂f i(g; w)
∂gk

∣ w
2

≥ Lσ ⋅ 1
N ∑

i
∑
k

E ∂f i(g; w)
∂gk

∣ w
2
,

and thus E 1
N ∑i xiz i ≥ ∣ π ∣ ⋅ LσLHHI.
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Figure 1: 
Chinese High Speed Rail and Market Access Growth, 2007-2016 A. Completed Lines and 

MA Growth B. All Planned Lines Notes: Panel A shows the completed China high-speed 

rail network by the end of 2016, with shading indicating MA growth (i.e. log-change in MA) 

relative to 2007. Panel B shows the network of all HSR lines, including those planned but 

not yet completed as of 2016.
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Figure 2: Expected and Recentered Market Access Growth from Chinese HSR
Notes: Panel A shows the variation in expected 2007–16 MA growth across Chinese 

prefectures, computed from 1,999 HSR counterfactuals that permute the opening status of 

built and unbuilt lines with the same number of cross-prefecture links. Panel B plots the 

variation in corresponding recentered MA growth: the difference between the MA growth 

shown in Panel A of Figure 1 and expected MA growth. The HSR network as of 2016 is also 

shown in this panel.
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Table I:

Employment Effects of Market Access: Unadjusted and Recentered Estimates

Unadjusted
OLS
(1)

Recentered
IV
(2)

Controlled
OLS
(3)

Panel A: No Controls

 Market Access Growth 0.232
(0.075)

0.084
(0.097)

[−0.245, 0.337]

0.072
(0.093)

[−0.169, 0.337]

 Expected Market Access Growth 0.317
(0.096)

Panel B: With Geography Controls

 Market Access Growth 0.133
(0.064)

0.056
(0.089)

[−0.135, 0.280]

0.047
(0.092)

[−0.146, 0.280]

 Expected Market Access Growth 0.214
(0.073)

Recentered No Yes Yes

Prefectures 275 275 275

Notes: This table reports coefficients from regressions of employment growth on MA growth in Chinese prefectures from 2007–2016. MA growth 
is unadjusted in Column 1. In Column 2 this treatment is instrumented by MA growth recentered by permuting the opening status of built and 
unbuilt HSR lines with the same number of cross-prefecture links. Column 3 instead estimates an OLS regression with recentered MA growth 
as treatment and controlling for expected MA growth given by the same HSR counterfactuals. The regressions in Panel B control for distance to 
Beijing, latitude, and longitude. Standard errors which allow for linearly decaying spatial correlation (up to a bandwidth of 500km) are reported in 
parentheses. 95% RI confidence intervals based on the HSR counterfactuals are reported in brackets.
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Table II:

Regressions of Market Access Growth on Measures of Economic Geography

Unadjusted Recentered

(1) (2) (3) (4)

Distance to Beijing −0.291
(0.062)

0.069
(0.039)

0.088
(0.045)

Latitude/100 −3.324
(0.646)

−0.342
(0.276)

−0.182
(0.319)

Longitude/100 1.321
(0.458)

0.485
(0.237)

0.440
(0.240)

Expected Market Access Growth 0.026
(0.056)

0.054
(0.069)

Constant 0.536
(0.029)

0.018
(0.018)

0.018
(0.021)

0.018
(0.018)

Joint RI p-value 0.443 0.711 0.492

R2 0.824 0.083 0.010 0.086

Prefectures 275 275 275 275

Notes: This table reports coefficients from regressing the unadjusted and recentered MA growth of Chinese prefectures (2007–2016) on geographic 
controls. Recentering is done by permuting the opening status of built and unbuilt lines with the same number of cross-prefecture links. All 
regressors are measured for the prefecture’s main city and demeaned such that the constant in each regression captures the average outcome. 
Distance to Beijing is measured in 1,000km. Standard errors which allow for linearly decaying spatial correlation (up to a bandwidth of 500km) are 
reported in parentheses. Joint RI p-values are based on the 1,999 HSR counterfactuals and the sum-of-square fitted values statistic, as described in 
footnote 30.
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