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Abstract

Background and purpose—Gut bacteria metabolize tryptophan into indoles. Intestinal levels 

of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated 

hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in 

mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as 

Aryl-hydrocarbon receptor (Ahr) agonists.

Methods—C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given 

PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and 

EcN-Ahr were also examined in mice lacking Ahr in Il22 producing cells.

Results—Through deletion of endogenous genes trpR and tnaA, coupled with overexpression 

of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce 
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tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including 

indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease 

in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, 

and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells (ILC3). In addition, 

EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was 

abrogated in mice lacking Ahr expression in Il22 producing immune cells.

Conclusions—Our findings indicate that tryptophan metabolites locally produced by engineered 

gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.
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Introduction

Alcohol-associated liver disease is a spectrum of liver diseases ranging from simple steatosis 

to fibrosis, cirrhosis, and alcohol-associated hepatitis. Alcohol-associated liver disease is 

one of the most prevalent liver diseases worldwide, and a leading cause of mortality in the 

United States (Lozano et al., 2012, Rehm et al., 2014, Rehm et al., 2013, Tapper and Parikh, 

2018). There are no effective treatments for alcohol-associated liver disease, especially for 

patients with advanced liver disease (Bataller et al., 2019, Hydes et al., 2019).

The aryl hydrocarbon receptor (Ahr), a ligand-activated transcriptional factor, plays a central 

role in the innate and adaptive immune system by regulating the functions of immune 

cells and production of cytokines (Agus et al., 2018, Ambrosio et al., 2019, Gutiérrez-

Vázquez and Quintana, 2018). Although xenobiotic compounds were first identified as 

Ahr ligands (Poland and Knutson, 1982), the diet is an abundant source of Ahr ligands 

(Gutiérrez-Vázquez and Quintana, 2018). Recently, indoles as microbial-derived metabolites 

from dietary tryptophan, have been identified to activate Ahr (Hubbard et al., 2015, Zelante 

et al., 2013). Patients with alcohol use disorder and liver disease show changes in the gut 

microbiota composition (Bajaj, 2019), causing alterations in microbial metabolites including 

tryptophan and indole metabolites (Gao et al., 2020). Our previous study demonstrated 

that patients with alcohol-associated hepatitis have reduced fecal levels of the Ahr ligand 

indole-3-acetic acid, and oral indole-3-acetic acid administration reduces ethanol-induced 

liver disease in mice (Hendrikx et al., 2019). Indole-3-acetic acid induced intestinal 

interleukin-22 (Il22) in type 3 innate lymphoid cells (ILC3) and subsequently increased 

expression of the antimicrobials Regenerating islet derived 3 (Reg3) b and Reg3g in the 

intestine (Hendrikx et al., 2019). Whether Ahr is involved in this protective mechanism is 

not known.

The current study investigated the effect of Escherichia coli Nissle 1917- engineered to 

produce Ahr agonists (EcN-Ahr), on ethanol-induced liver disease in mice. EcN-Ahr lack 

two key enzymes and include two synthetic operons resulting in production of Ahr ligands, 

including indole-3-acetic acid. In addition, mice with Il22+ cell-specific Ahr deficiency were 

created to examine the role of the Ahr-Il22 axis in mediating the effect of EcN-Ahr.
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Methods

Mice

Male and female C57BL/6 mice were purchased from Charles River. To obtain Il22 

expressing cell-specific Ahr deficient mice, which are homozygous for the floxed allele and 

hemizygous for the Cre transgene, Ahrfl/fl mice (C57BL/6; The Jackson Laboratories, Strain 

#006203) were bred with Il22-Cre+/− mice (The Jackson Laboratories, Strain #027524) to 

create AhrΔIL22+cells. Cre+/− and Cre−/− genotypes were assessed by Hot Shot DNA PCR 

assay. Mice that do not carry the Cre transgenes (Ahrfl/fl) were used as a control.

For a chronic-binge ethanol feeding model, male C57BL/6 mice from Charles River were 

fed with Lieber-DeCarli diet for the first 5 days and then with ethanol containing diet 

(36% of total calories) from day 6 until the end of the study period. At day 16, mice 

were gavaged with a single binge of ethanol (5 g/kg body weight) and sacrificed 9 hours 

later (Bertola et al., 2013). Mice fed a control diet were given an isocaloric substitution of 

dextrose. Daily gavage of 200μl of PBS, isogenic Escherichia coli Nissle 1917 (EcN, 107 

CFU/day), or engineered Escherichia coli Nissle 1917-Ahr (EcN-Ahr, 107 CFU/day) started 

from day 8 to day 15. Male and female Ahrfl/fl mice and AhrΔIl22+cells mice were fed with 

32% ethanol containing diet (based on calories), since this strain showed increased mortality 

with higher concentrations of ethanol. To measure tryptophan metabolites in colon contents, 

female C57BL/6 mice from Charles River were gavaged once with PBS, EcN (1010 CFU), 

or EcN-Ahr (1010 CFU) and harvested 2 hours later. All mice were between age 7–12 weeks 

at the time the experiment started. All animal studies were reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of California, San Diego 

(UCSD).

Bacterial strain construction

Escherichia coli Nissle 1917 (EcN) was purchased from the German Collection of 

Microorganisms and Cell Cultures (DSMZ Braunschweig, E. coli DSM 6601). The deletion 

of trp operon repressor gene, trpR and tryptophanase gene, tnaA was carried out by the 

lambda red recombineering method (Datsenko and Wanner, 2000). For deletion of the trpR 
and tnaA genes, a PCR amplification was performed using pKD3 or pKD4 as the template 

DNA. The primers were designed to generate a dsDNA fragment that contained homology 

adjacent to the target gene locus in the EcN chromosome and a chloramphenicol or 

kanamycin resistance gene flanked by flippase recognition target (frt) sites. EcN containing 

pKD46 was transformed with the trpR or tnaA knockout fragment by electroporation. 

Colonies were selected on LB agar containing chloramphenicol (30 μg/ml) or kanamycin 

(50 μg/mL). Finally, pCP20 was used to remove the chloramphenicol and kanamycin 

cassettes, to generate the final, antibiotic-free strain. Gene knockouts were verified by sanger 

sequencing.

The plasmids were made using isothermal assembly method (HiFI DNA Assembly 

Master Mix, NEB). For constructing plasmid harboring the trpEfbrDCBA operon, the 

trpEDCBA genomic fragment from EcN with an addition of C119T mutation resulting 

in S40F substitution in TrpE under the control of PfnrS promoter was synthesized by 
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Gen9 and cloned into a low copy number, pSC101 origin and ampicillin resistant 

vector. For constructing plasmid harboring the aroGfbr-trpDH-ipdC-iad1 operon, aroG 
from EcN with a C1549T (P150L subs), trpDH from Nostoc punctiforme (GenBank 

accession number AGQ45832.1), ipdC from Enterobacter cloacae (GenBank accession 

number WP_073396207.1), and iad1 from Ustilago maydis (GenBank accession number 

XP_011388928.1) were codon optimized, synthesized by IDT and cloned into a medium 

copy number, p15A origin and kanamycin resistant vector. To make EcN-Ahr, these 

plasmids were transformed into the EcN containing the trpR and tnaA gene knockouts by 

electroporation. Colonies were selected on LB agar containing carbenicillin (100 μg/ml) and 

kanamycin (50 mg/mL).

E. coli Nissle 1917 culture

EcN and EcN-Ahr strains were cultured overnight at 37°C in Luria-Bertani (LB) medium 

containing 300 μg/ml of streptomycin and 100 μg/ml of ampicillin, respectively, and 

sub-cultured for 3 hours in LB medium without antibiotics. Bacteria were centrifuged at 

8,000g for 3 minutes. Bacteria were resuspended with PBS for the animal experiments and 

plated on antibiotics containing culture plates (streptomycin and ampicillin for EcN and 

EcN-Ahr strains, respectively) for estimating colony forming units (CFUs). After plates 

were incubated overnight at 37°C, the number of colonies was counted. To make 107 CFU in 

200 μL, suspended bacteria were diluted with PBS.

Measurement of indoles in supernatant of bacteria

Indoles in culture supernatants of bacteria were measured by targeted LC-MS as described 

(Hendrikx et al., 2019).

Measurement of indoles in mouse serum or colon contents

Mouse serum was extracted with methanol to 80% v/v, vortexed, and centrifuged at 

4000 g for 5 minutes. Supernatants were collected for analysis. Mouse colon contents 

were extracted using 1 mL 80% methanol with 0.1% formic acid in acid-washed steel 

homogenizer bead tubes then homogenized using a Fastprep-24 (MP bio) at 4 m/s for 40 

seconds. Homogenized samples were spun down at 5000 g for 10 minutes. Supernatants 

were collected for analysis.

Tryptophan, indole-3-lactic acid, and indole-3-acetic acid were measured in mouse serum, 

cecum, or colon content extracts by targeted LC-MS/MS using a Thermo Vanquish UHPLC-

Fortis TSQ MS/MS system. Extracted samples were diluted 10 fold with 10 mM ammonium 

acetate containing 1 ug/mL tryptophan-d5 and 5 ug/mL indole-3-acetic acid-d5 as internal 

standards. Analytes were separated on a Waters Acquity HSS T3 C18, 2.1 × 100 mm column 

running a gradient from 10 to 98% B over 2 minutes after a 2 uL injection. Mobile phase 

A was 10 mM ammonium acetate while mobile phase B was 90% acetonitrile with 10 mM 

ammonium acetate. Compounds were detected by selected reaction monitoring (SRM) using 

the following ion pairs in electrospray positive mode: Tryptophan 205/188; Tryptophan-d5 

210/192; or electrospray negative mode: indole-3-lactic acid 204/158; indole-3-acetic acid 

174/130; indole-3-acetic acid-d5 179/135. SRM chromatograms were integrated and analyte/
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internal standard peak area ratios used to calculate unknown concentrations relative to 

standard dilutions analyzed concurrently as above.

Histological analysis of liver tissues

Liver was embedded in OCT compound, 10 μm frozen sections were stained with freshly 

prepared Oil Red O solution (Sigma-Aldrich, USA) for 15 minutes, washed with 60% 

isopropanol, and mounted in glycerol.

Biochemical analysis

Serum ALT level was determined using Infinity ALT kit (Thermo Scientific). Hepatic 

triglycerides were measured using Triglyceride Liquid Reagents Kit (Pointe Scientific). 

Serum concentration of ethanol was measured using Ethanol Assay kit (BioVision). Serum 

LPS was measured by ELISA (Cusabio).

Real-time quantitative PCR

RNA was extracted from liver and ileum using TRIzol (Invitrogen), and cDNA was 

generated using the high-capacity cDNA reverse transcription kit (Applied Biosystems). 

Gene expression was determined with SYBR Green (Bio-Rad Laboratories) using ABI 

StepOnePlus real-time PCR system. Relative gene expression was determined by CT value 

and normalized to 18S as housekeeping gene. Primer sequences are as follows:

Mouse 18S

Forward: AGTCCCTGCCCTTTGTACACA, Reverse: CGATCCGAGGGCCTCACTA

Mouse Cxcl1

Forward: TGCACCCAAACCGAAGTC, Reverse: GTCAGAAGCCAGCGTTCACC

Mouse Ccl2

Forward: ATTGGGATCATCTTGCTGGT, Reverse: CCTGCTGTTCACAGTTGCC

Mouse Adh1

Forward: GGGTTCTCAACTGGCTATGG, Reverse: ACAGACAGACCGACACCTCC

Mouse Cyp2e1

Forward: GGGACATTCCTGTGTTCCAG, Reverse: CTTAGGGAAAACCTCCGCAC

Mouse Cyp1a1

Forward: GGGTTTGACACAGTCACAACT, Reverse: GGGACGAAGGATGAATGCCG

Mouse Nrf2

Forward: TCTATGTCTTGCCTCCAAAGG, Reverse: CTCAGCATGATGGACTTGGA
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Mouse Il22

Forward: GCTCAGCTCCTGTCACATCA, Reverse: TCGCCTTGATCTCTCCACTC

Mouse Reg3b

Forward: GGCTTCATTCTTGTCCTCCA, Reverse: TCCACCTCCATTGGGTTCT

Mouse Reg3g

Forward: AAGCTTCCTTCCTGTCCTCC, Reverse: TCCACCTCTGTTGGGTTCAT

Mouse Ahr

Forward: GGCTTTCAGCAGTCTGATGTC, Reverse: CATGAAAGAAGCGTTCTCTGG

Mouse Cldn1

Forward: ATGCCAATTACCATCAAGGC, Reverse: GAGGGACTGTGGATGTCCTG

16S

Forward: GTGSTGCAYGGYTGTCGTCA, Reverse: ACGTCRTCCMCACCTTCCTC

Ahr reporter assay

HepG2-Lucia™ Ahr Cells (InvivoGen) were treated with 0.5 μg/mL of FICZ (Med 

Chem Express, HY-12451) as Ahr ligand/positive control, or EMEM containing 10% of 

supernatant of bacteria for 24 hours. Luciferase activity was analyzed using QUANTI-Luc™ 

solution.

To prepare the supernatant of bacteria, EcN and EcN-Ahr strains were cultured overnight 

at 37°C in LB medium containing 300 μg/ml of streptomycin and 100 μg/ml of ampicillin, 

respectively, and sub-cultured for 3 hours in LB medium without antibiotics. 4 × 107 

CFU/mL of EcN or EcN-Ahr were centrifuged at 8,000g for 3 minutes, and supernatants 

were used for reporter assay.

Lamina propria cell isolation

Lamina propria cells were isolated from the small intestine of mice as described previously 

(15). Cells were used for qPCR or flow cytometry.

Flow cytometry

Lamina propria cells isolated from small intestine were incubated with 40 ng/mL of 

IL23 and BD GogiStop™ (BD Bioscience) at 37°C for 4 hours. Cells were blocked with 

CD16/32 (1:4000, BioLegend) and stained with CD3-FITC (1:400, BD Biosciences) and 

FVS575V (1:1000, BD Bioscicences) for 30 minutes. Intracellular staining was performed 

using RORgt-PE (1:200, eBioscience), Il22-APC (1:100, eBioscience), and Ahr-PE-Cy7 

(1:200, eBioscience). Flow cytometry analysis was performed using NovoCyte (ACEA 
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Biosciences Inc.). Percentage of Ahr and Il22-expressing cells gated on CD3−RORgt+ cells 

were analyzed using FlowJo software.

Statistical analysis

All data are expressed as mean±S.E.M. For comparison of 2 groups, unpaired student 

t-test was performed. For multiple groups comparison within one experimental setting, 

one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test or Turkey’s post-hoc 

test was performed. A p value < 0.05 was considered to be statistically significant. Statistical 

analyses were conducted with GraphPad Prism (V.9.3.1).

Results

Engineered bacteria produce Ahr ligands

EcN was engineered to increase the production and secretion of Ahr ligands. First, 

modifications were made for EcN to overproduce tryptophan. This involved deletion 

of trpR, a transcriptional repressor controlling the endogenous tryptophan biosynthetic 

genes, and a deletion of tnaA, to ensure that EcN was unable to convert tryptophan to 

indole. Additionally, a feedback resistant tryptophan biosynthetic operon, trpEfbrDCBA was 

expressed from a plasmid to provide additional biosynthetic enzyme. The feedback resistant 

trpE variant ensured that tryptophan production was not subject to allosteric inhibition. 

A second set of modifications was made to facilitate the conversion of tryptophan to 

indole metabolites, and included the expression of the operon aroGfbr-trpDH-ipdC-iad1 
(Figure 1a). The concentration of tryptophan metabolites in culture medium of the isogenic 

control strain EcN and engineered bacteria, Escherichia coli Nissle 1917-Ahr (EcN-Ahr) 

was investigated by targeted LC-MS. EcN-Ahr had higher levels of indole-3-acetic acid 

(Figure 1b), indole-3-lactic acid (Figure 1c), and tryptophol (Figure 1d) than EcN. There 

was no significant difference in other metabolites between the groups, including tryptophan 

(Figure 1e), xanthurenic acid, indole-3-acetamide, kynurenic acid, indole-3-aldehyde, 

tryptamine, tryptophan, kynurenine, picolinic acid, indole-3-sulfate, quinolinic acid and 

5-OH-tryptophan (not shown). Mice gavaged with EcN-Ahr once showed similar levels 

of indole-3-acetic acid (Figure 1f) and increased indole-3-lactic acid (Figure 1g) and 

tryptophan (Figure 1h) in colon contents. Ahr reporter assay indicated that both supernatant 

of EcN and EcN-Ahr activated Ahr, but EcN-Ahr showed significantly higher Ahr activity 

than EcN (Figure 1i).

EcN-Ahr protect mice against ethanol-induced liver disease

The effect of EcN-Ahr was examined in a mouse model of chronic-plus-binge ethanol-

induced liver disease. There was no significant difference in body weight or food intake 

between the groups (Figure 2a, b). Ethanol-induced liver injury was significantly reduced in 

mice supplemented with EcN-Ahr compared with PBS and EcN gavaged mice as assessed 

by serum ALT level (Figure 2c). Hepatic triglycerides were also reduced in the EcN-Ahr 

group (Figure 2d), which was confirmed by Oil red O staining (Figure 2e). Gene expression 

of inflammatory chemokines such as C-X-C motif chemokine ligand 1 (Cxcl1) and C-C 

motif chemokine ligand 2 (Ccl2) was reduced in mice treated with EcN-Ahr (Figure 2f, 

g). Serum level of ethanol and hepatic expression of two enzymes that metabolize ethanol, 
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alcohol dehydrogenase 1 (Adh1) and cytochrome P450 family 2 subfamily e polypeptide 

1 (Cyp2e1), were unchanged (Figure 3), indicating that ethanol metabolism is not affected 

by the treatment with engineered bacteria. CFUs of EcN and EcN-Ahr were similar in the 

cecum (Supplemental Fig. 1). These results indicate that EcN-Ahr reduce ethanol-induced 

liver disease.

EcN-Ahr activate Ahr in the intestine and prevent bacterial translocation to the liver

Since EcN-Ahr activates Ahr in vitro (Figure 1i), the gene expression of Ahr target genes 

was examined following chronic–binge ethanol diet. Gene expression of cytochrome P450, 

family 1, subfamily a, polypeptide 1 (Cyp1a1), nuclear factor, erythroid derived 2, like 2 

(Nfe2l2, also known as Nrf2), and Il22 was significantly upregulated in the small intestine of 

mice gavaged with EcN-Ahr (Figure 4a–c), whereas no significant difference was observed 

in the hepatic expression of Cyp1a1 or Nrf2 (Figure 4f–g). Serum indole-3-acetic acid 

(Supplemental Figure 2a), indole (Supplemental Figure 2b) and tryptophan (Supplemental 

Figure 2c) were similar in all groups suggesting that the effect of EcN-Ahr is restricted 

to the intestine. We have previously demonstrated that Il22 secreted by type 3 innate 

lymphoid cells (ILC3) induces the expression of antimicrobials Reg3b and Reg3g in the 

intestine (Hendrikx et al., 2019, Wang et al., 2016). The proportion of Ahr+ Il22+ ILC3 

(gated on CD3−RORgt+) was increased in the intestinal lamina propria of ethanol-fed mice 

treated with EcN-Ahr. (Figure 4h). EcN-Ahr supplementation was associated with increased 

gene expression of antimicrobials Reg3b and Reg3g in the small intestine (Figure 4d, e). 

Translocation of gut bacteria to the liver was reduced following the gavage of EcN-Ahr 

as determined by qPCR for 16S rDNA (Figure 4i). Claudin-1 (Cldn1) is a tight junction 

molecule and is mainly expressed in epithelial cells (Garcia-Hernandez et al., 2017), and 

Ahr activation increases the expression of cldn1 (Yu et al., 2018). Intestinal Cldn1 mRNA 

was similar in EcN-Ahr treated as compared with PBS or EcN treated mice after ethanol 

feeding (Fig. 4j). We also measured serum LPS levels as marker for paracellular intestinal 

permeability. Serum LPS levels were similar in EcN-Ahr treated as compared with PBS or 

EcN treated and ethanol-fed mice (Fig. 4k). These results indicate that intestinal epithelial 

cells are not the primary target for Ahr ligands secreted from engineered bacteria; EcN-

Ahr activates intestinal Ahr-Il22-Reg3 pathway to prevent bacterial translocation from the 

intestine to the liver.

The beneficial effect of EcN-Ahr on ethanol-induced steatohepatitis is abrogated in mice 
lacking Ahr in Il22 producing cells

To further demonstrate that secreted Ahr ligands from our engineered bacteria activate Ahr 

and induce Il22, we generated mice lacking Ahr in Il22 producing cells (AhrΔIl22+cells). 

Immune cells, but not epithelial cells produce Il22 (Parks et al., 2015). There was no 

significant difference in the expression of Ahr in the intestinal epithelial cells (IECs) 

between AhrΔIl22+cells and littermate Ahrfl/fl mice, but mice lacking Ahr in Il22 producing 

cells had lower gene expression of Ahr in immune cells of the lamina propria compared 

with control Ahrfl/fl mice (Figure 5a). Lamina propria cells were isolated from the small 

intestine, and the frequency of Il22-expressing cells was examined. The frequency of Il22+ 

ILC3 (gated on CD3−RORgt+) was reduced in AhrΔIl22+cells mice (Figure 5b). To investigate 

whether the effect of EcN-Ahr on ethanol-induced liver disease is mediated via the Ahr-Il22 
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axis, AhrΔIl22+cells mice were subjected to the chronic-binge ethanol-induced liver disease 

model, and gavaged with PBS, EcN, or EcN-Ahr. As a result, there were no significant 

differences in liver injury or steatosis between the groups (Figure 5c–e). EcN-Ahr failed to 

induce the gene expression of Cyp1a1, Nrf2, Il22, Reg3b, or Reg3g in the small intestine 

(Figure 5f–j). Bacterial translocation was not significantly reduced by EcN-Ahr (Figure 5k). 

EcN-Ahr significantly reduced the serum ALT and hepatic triglycerides in control Ahrfl/fl 

mice (Supplemental Fig. 3). These results indicate that the Ahr/Il22 pathway in lamina 

propria immune cells mediates the beneficial effect of EcN-Ahr.

Discussion

Ahr is ubiquitously expressed throughout the body, and activation of the Ahr pathway plays 

an important role in improving liver disease (Hendrikx et al., 2019) (Wrzosek et al., 2021). 

The current study is the first to show that engineered bacteria, EcN-Ahr, producing indoles 

as Ahr agonists protect against ethanol-induced liver disease by activating the Ahr pathway 

specifically in the gut.

EcN-Ahr activated the Ahr pathway in the intestine and increased the expression of Il22. 

This effect was abrogated in mice lacking Ahr in Il22+ cells. Although Ahr interacts with 

RORgt to promote Il22 expression in ILC3 (Qiu et al., 2012), we cannot rule out that 

the beneficial effect of EcN-Ahr is mediated via Il22+ immune cells other than ILC3. EcN-

Ahr increased the expression of antimicrobial expression Reg3b and Reg3g, and reduced 

bacterial translocation to the liver. This is consistent with the findings that Il22 production 

maintains the epithelial barrier integrity (Li et al., 2021) and prevents bacterial infection 

by upregulating antimicrobial peptides (Moyat et al., 2017, Zheng et al., 2008). Bacterial 

translocation to the liver contributes to liver inflammation (Ponziani et al., 2018, Rodríguez-

Laiz et al., 2019), which is a likely a contributing mechanism by which EcN-Ahr reduces 

ethanol-induced liver disease. Changes in the gut microbiota composition associated with 

EcN-Ahr supplementation might also contribute to the activation of IL-22 signaling and 

protection from ethanol-induced liver disease.

We supplemented engineered bacteria to obtain an intestine specific and gut restricted effect 

without activating Ahr in the liver. Hepatic expression of Ahr target genes, Cyp1a1 or Nrf2, 
was not increased in EcN-Ahr treated mice. Similarly, hepatic expression of Adh1 and 

Cyp2e1, and ethanol metabolism in the liver were not affected by EcN-Ahr supplementation. 

This is important as AhR activation in the liver reduces ethanol-induced liver disease 

via lowering ethanol-induced ROS generation and peroxidation, which contributes to a 

reduction of serum ethanol concentration (Dong et al., 2021).

EcN are safe and commercially available probiotics, which show some benefit for ulcerative 

colitis (Kruis et al., 2004, Kruis et al., 1997, Matthes et al., 2010, Schultz, 2008), infectious 

GI diseases (Boudeau et al., 2003, Henker et al., 2007), constipation (Möllenbrink and 

Bruckschen, 1994), and irritable bowel syndrome (Kruis et al., 2012). In our study, EcN 

showed a tendency to reduce liver disease as indicated by serum ALT. Since culture 

supernatant of EcN had higher level of AhR activity than control condition (Figure 1i), 

EcN have the potential to activate AhR. This observation is supported by the findings that 
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EcN elevates the level of serotonin (5-HT) in the gut (Nzakizwanayo et al., 2015), and 

5-HT can potentiate the AhR activity to induce Cyp1a1 (Manzella et al., 2018), (Manzella 

et al., 2020). Importantly, EcN-Ahr designed to efficiently produce indoles activated the Ahr 

more than EcN did (Figure 1i). Different level of Ahr activation may contribute to the effect 

of probiotics on alcohol-associated liver disease. Although we have previously shown that 

supplementation with indole-3-acetic acid reduces ethanol-induced steatohepatitis in mice 

(Hendrikx et al., 2019), the use of orally administered probiotics has the potential advantage 

of delivering Ahr agonists in a local, more continuous and sustained fashion as opposed to a 

once daily oral administration of the metabolite itself. Considering that sustained activation 

of Ahr in the whole body might cause unintended side effects (Wang et al., 2020), an 

intestine specific Ahr activation in a controllable way can be a promising treatment for liver 

disease and possibly other diseases.

In conclusion, engineered bacteria EcN-Ahr protect against liver disease induced by ethanol. 

EcN-Ahr specifically activate the Ahr pathway in the intestine to regulate the expression of 

antimicrobial proteins, thereby preventing bacterial translocation to the liver.
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Figure 1. Characterization of EcN-Ahr.
(a) Schematic of the engineered EcN-Ahr in tryptophan metabolism. EcN-Ahr lack 

tryptophan transcriptional receptor (TrpR), and tryptophanase A (TnaA), and the aroGfbr-
trpDH-ipdC-iad1 operon was added. Concentrations of indole-3-acetic acid (b), indole-3-

lactic acid (c), tryptophol (d), and tryptophan (e) in culture medium. (f-h) To measure 

tryptophan metabolites in colon contents, mice were gavaged once with PBS (n = 8), EcN 

(1010 CFU) (n = 17), or EcN-Ahr (1010 CFU) (n = 17) and harvested 2 hours later. (f) 

indole-3-acetic acid, (g) indole-3-lactic acid, and (h) tryptophan. (i) A luciferase reporter 

Kouno et al. Page 14

Alcohol Clin Exp Res (Hoboken). Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assay in HepG2-Lucia™ Ahr cells treated with 0.5 μg/mL of the Ahr agonist FICZ, or 

10% supernatant of bacteria for 24 hours. Data are presented as mean±S.E.M. *p<0.05 and 

**p<0.01 denotes the significant difference between the groups.
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Figure 2. Engineered EcN-Ahr reduce ethanol-induced steatohepatitis.
Male C57BL/6 mice were gavaged with PBS (n = 5), EcN (n = 6), or EcN-Ahr (n = 6) 

during the control (isocaloric) diet or with PBS (n = 14), EcN (n = 23), or EcN-Ahr (n = 18) 

during chronic–binge ethanol diet. Body weight (a) and food intake (b) of mice subjected 

to chronic-plus-binge ethanol feeding. (c) Serum level of ALT. (d) Hepatic triglycerides 

content. (e) Representative Oil red O-stained liver sections. (f, g) Gene expression of Cxcl1 
and Ccl2 in the liver of mice fed with ethanol diet. Data are presented as mean±S.E.M. of 

3 technical replicates. *p<0.05 and **p<0.01 denotes the significant difference between the 

groups. Bar size = 100 μm.
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Figure 3. Effect of EcN-Ahr on ethanol metabolism in a chronic-plus-binge ethanol feeding 
model.
Male C57BL/6 mice were gavaged with PBS (n = 14), EcN (n = 23), or EcN-Ahr (n = 18) 

during chronic–binge ethanol diet. Serum concentration of ethanol (a) and gene expression 

of Adh1 and Cyp2e1 in the liver (b, c) of mice subjected to chronic-plus-binge ethanol 

feeding. Data are presented as mean±S.E.M. of 3 technical replicates.
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Figure 4. Effect of EcN-Ahr on intestinal Ahr-Il22 pathway and bacterial translocation in a 
chronic-plus-binge ethanol feeding model.
Male C57BL/6 mice were gavaged with PBS (n = 14), EcN (n =23), or EcN-Ahr (n = 

18) during chronic–binge ethanol diet. Gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and 

Reg3g in the ileum (a-e). Gene expression of Cyp1a1 and Nrf2 in the liver (f, g). (h) 

Frequency of Il22- and Ahr-expressing ILC3 (gated on CD3−RORgt+) after stimulation with 

IL23 for 4 hours in lamina propria cells. (i) Total bacteria in the liver of mice subjected to 

chronic-plus-binge ethanol feeding as determined by qPCR. (j) Gene expression of Cldn1 
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in the ileum. (k) Serum level of LPS. Data are presented as mean±S.E.M. of 3 technical 

replicates. *p<0.05 and **p<0.01 denotes the significant difference between the groups.
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Figure 5. Effect of EcN-Ahr in mice lacking Ahr in Il22+ immune cells in a chronic-plus-binge 
ethanol feeding model.
(a) Gene expression of Ahr in small intestinal epithelial cells and lamina propria cells 

isolated from Ahrfl/fl or AhrΔIl22+cells mice. (b) Frequencies of Il22-expressing and Ahr-

expressing cells in the gated ILC3 population (CD3−RORgt+) after stimulation with IL23 for 

4 hours in lamina propria cells of Ahrfl/fl or AhrΔIl22+cells mice. (c-k) Male and female 

AhrΔIl22+cells mice were gavaged with PBS (n = 6), EcN (n = 6), or EcN-Ahr (n = 

9) during chronic–binge ethanol diet. Serum level of ALT (c), hepatic triglycerides (d), 

representative Oil red O-stained liver sections (e), gene expression of Cyp1a1, Nrf2, Il22, 

Reg3b, and Reg3g in the ileum (f-j), and total bacteria in the liver (k). Data are presented as 
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mean±S.E.M. of 2 technical replicates. *p<0.05 denotes the significant difference between 

the groups. Bar size = 100 μm.
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Figure 6. Model for the effects of Ahr agonists producing engineered bacteria.
Engineered EcN-Ahr produce Ahr agonists such as indole-3-acetic acid (IAA) or indole-3-

lactic acid (ILA), which bind to Ahr+ immune cells in the lamina propria and increase Il22 

production. Il22 induces the expression of antimicrobials Reg3b and Reg3g in intestinal 

epithelial cells, which reduce bacteria in the mucus layer, suppress bacterial translocation 

and ameliorate ethanol-induced liver disease. Cartoon was created with a license from 

BioRender.com
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