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Abstract

We present a novel weak formulation and discretization for discovering governing equations from 

noisy measurement data. This method of learning differential equations from data fits into a new 

class of algorithms that replace pointwise derivative approximations with linear transformations 

and variance reduction techniques. Compared to the standard SINDy algorithm presented in [S. L. 

Brunton, J. L. Proctor, and J. N. Kutz, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932–3937], 

our so-called weak SINDy (WSINDy) algorithm allows for reliable model identification from 

data with large noise (often with ratios greater than 0.1) and reduces the error in the recovered 

coefficients to enable accurate prediction. Moreover, the coefficient error scales linearly with 

the noise level, leading to high-accuracy recovery in the low-noise regime. Altogether, WSINDy 

combines the simplicity and efficiency of the SINDy algorithm with the natural noise reduction 

of integration, as demonstrated in [H. Schaeffer and S. G. McCalla, Phys. Rev. E, 96 (2017), 

023302], to arrive at a robust and accurate method of sparse recovery.
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1. Problem statement.

Consider a first-order dynamical system in D dimensions of the form

d
dtx(t) = F(x(t)), x(0) = x0 ∈ ℝD, 0 ≤ t ≤ T,

(1.1)

and measurement data y ∈ ℝM × D given at M timepoints t = t1, …, tM
T  by

ymd = xd tm + ϵmd, m ∈ [M], d ∈ [D],
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where throughout we use the bracket notation [M]: = 1, …, M . The variable ϵ ∈ ℝM × D

represents a matrix of independent and identically distributed measurement noise. The focus 

of this article is the reconstruction of the dynamics (1.1) from the measurements y.

The SINDy algorithm (sparse identification of nonlinear dynamics [4]) has been shown to 

be successful in solving this problem for sparsely represented nonlinear dynamics when 

noise is small and dynamic scales do not vary across multiple orders of magnitude. This 

framework assumes that the function F:ℝD ℝD in (1.1) is given componentwise by

Fd(x(t)) = ∑
j = 1

J
wjd

⋆ fj(x(t))

(1.2)

for some known family of functions fj j ∈ [J] and a sparse weight matrix w⋆ ∈ ℝJ × D. The 

problem is then transformed into solving for w⋆ by building a data matrix Θ(y) ∈ ℝM × J

given by

Θ(y)mj = fj ym , ym: = ym1, …, ymD ,

so that the candidate functions are directly evaluated at the noisy data. Solving (1.1) for F
then reduces to identifying a sparse weight matrix w such that

ẏ ≈ Θ(y)w,

(1.3)

where ẏ is the numerical time derivative of the data y. Sequential-thresholding least squares 

is then used to arrive at a sparse solution.

1.1. Background.

Research into statistically rigorous selection of mathematical models from data can be 

traced back to Akaike’s seminal work in the 1970s [1, 2]. In the last 20 years, there has 

been substantial work in this area at the interface between applied mathematics, computer 

science, and statistics (see [3, 11, 12, 19, 22, 23] for both theory and applications). More 

recently, the formulation of system discovery problems in terms of a candidate basis of 

nonlinear functions (1.2) and subsequent discretization (1.3) was introduced in [21] in the 

context of catastrophe prediction. The authors of [21] used compressed sensing techniques 

to enforce sparsity. Since then there has been an explosion of interest in the problem of 

identifying nonlinear dynamical systems from data, with some of the primary techniques 

being Gaussian process regression [15], deep neural networks [16], Bayesian inference [26, 

27], and classical methods from numerical analysis [7, 9, 25]. These techniques have been 

successfully applied to the discovery of both ordinary and partial differential equations.

The variety of discovery algorithms qualitatively differ in the interpretability of the resulting 

data-driven dynamical system, the scope and efficiency of the algorithm, and the robustness 
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to noise, scale separation, etc. For instance, a neural network based data-driven dynamical 

system does not easily lend itself to physical interpretation, while the SINDy algorithm 

identifies governing equations which can be analyzed directly. Moreover, it is also well-

known that the training stage for neural networks and other iterative learning algorithms 

can be computationally costly. Concerning the scope of an algorithm, several methods 

have been independently developed to discover models under the assumption of some prior 

knowledge of the governing equations, notably for low-degree polynomial chaotic systems, 

cyclic ODEs, interacting particles, and Hamiltonian dynamics [20, 18, 13, 24]. In each of 

these cases the authors derive probabilistic recovery guarantees depending on the number of 

available trajectories, the size of the candidate model library, the level of incoherence of the 

data, and/or the sparsity of the governing equations.

The vast majority of algorithms and recovery guarantees assume that pointwise derivatives 

of the data either are available or can be reliably computed. This severely limits an 

algorithm’s robustness to noise and hence its applicability to real world data. Here we 

relax this assumption and provide rigorous justification for the weak formulation of the 

dynamics as a means to circumvent this ubiquitous problem in model selection. Building 

off of the SINDy framework, we present the robust discovery algorithm WSINDy (weak 

SINDy), which operates under the assumption that the time derivative is unavailable and 

that the only prior knowledge of the governing equations is their inclusion in a large model 

library. We also focus on the realistic scenario where only a single noisy trajectory of the 

state variable is available; however, extension to multiple trajectories is of course possible. 

For simplicity, we restrict numerical experiments to autonomous ODEs for their amenability 

to analysis. Natural next steps are to explore identification of PDEs and nonautonomous 

dynamical systems. We note that the use of integral equations for system identification was 

introduced in [17], where compressed sensing techniques were used to enforce sparsity, and 

that this technique can be seen as a special case of the method introduced here.

In section 2 we introduce the algorithm with analysis of the resulting error structure. Section 

3 contains numerical results showing identification of six ODE systems over a range of noise 

levels and parameter regimes. In section 4, we provide concluding remarks as well as natural 

next directions for this line of research. In Appendix A we include a detailed comparison 

between WSINDy and SINDy as well as further information on the generalized least squares 

method.

2. WSINDy.

We approach the problem of system identification (1.3) from a nonstandard perspective by 

utilizing the weak form of the differential equation. Recall that for any smooth test function 

ϕ:ℝ ℝ (absolutely continuous is sufficient) and interval (a, b) ⊂ [0, T ], (1.1) admits the 

weak formulation

ϕ(b)x(b) − ϕ(a)x(a) − ∫
a

b
ϕ′(u)x(u)du = ∫

a

b
ϕ(u)F(x(u))du, 0 ≤ a < b ≤ T .

(2.1)
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With ϕ = 1, we arrive at the integral equation of the dynamics explored in [17]. If we instead 

take ϕ to be nonconstant and compactly supported in (a, b), we arrive at

−∫
a

b
ϕ′(u)x(u)du = ∫

a

b
ϕ(u)F(x(u))du .

(2.2)

Assuming a representation of the form (1.2), we then define the generalized residual R(w; ϕ)
for a given test function ϕ by replacing F with a candidate element from the span of fj j ∈ [J]

and x with y as follows:

R(w; ϕ): = ∫
a

b
ϕ′(u)y(u) + ϕ(u) ∑

j = 1

J
wjfj(y(u)) du .

(2.3)

Clearly, with w = w⋆ and y = x(t) we have R(w; ϕ) = 0 for all ϕ compactly supported in 

(a, b); however, y is a discrete set of data, so (2.3) can at best be approximated numerically. 

Measurement noise then presents a significant barrier to accurate indentification of w⋆.

2.1. Method overview.

For analogy with traditional Galerkin methods, consider the forward problem of solving 

a dynamical system such as (1.1) for x. The Galerkin approach is to seek a solution x
represented in a chosen trial basis fj j ∈ [J] such that the residual R, defined by

R = ∫ ϕ(t)(ẋ(t) − F(x(t)))dt,

is minimized over all test functions ϕ living in the span of a given test function basis 

ϕk k ∈ [K]. If the trial and test function bases are known analytically, inner products of the form 

fj, ϕk  appearing in the residual can be computed exactly. Thus, the computational error 

results only from representing the solution in a finite-dimensional function space.

The method we present here can be considered a data-driven Galerkin method of solving for 

F where the trial “basis” is given by the set of gridfunctions fj(y) j ∈ [J] evaluated at the data 

and only the test function basis ϕk k ∈ [K] is known analytically. In this way, inner products 

appearing in R(w; ϕ) must be approximated numerically, implying that the accuracy of the 

recovered weights w is ultimately limited by the quadrature scheme used to discretize inner 

products. Using Lemma 2 below, we show that the correct coefficients w⋆ may be recovered 

to effective machine precision accuracy (given by the tolerance of the forward ODE solver) 

from noise-free trajectories y by discretizing (2.2) using the trapezoidal rule and choosing 

ϕ to decay smoothly to zero at the boundaries of its support. Specifically, in this article 

we demonstrate this fact by choosing test functions from a particular family of unimodal 

piecewise polynomials S defined in (2.6).
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Having chosen a quadrature scheme, the next accuracy barrier is presented by measurement 

noise, introducing randomness into the residuals R(w; ϕ). Numerical integration then 

couples residuals R w; ϕ1  and R w; ϕ2  whenever ϕ1 and ϕ2 have overlapping support. In this 

way, R(w; ϕ) does not have an ideal error structure for least squares but may be amenable 

to generalized least squares. Below we analyze the distribution of the residuals R(w; ϕ) to 

arrive at a generalized least squares approach where an approximate covariance matrix can 

be computed directly from the test functions. This analysis also suggests that placing test 

functions near steep gradients in the dynamics may improve recovery; hence we develop a 

derivative-free method for adaptively clustering test functions near steep gradients.

Remark 1.—The weak formulation of the dynamics introduces a wealth of information: 

given M timepoints t = tm m ∈ [M], (2.2) affords K = M(M − 1)/2 residuals over all possible 

supports (a, b) ⊂ t × t with a < b. Of course, one could also assimilate the responses of 

multiple families of test functions ϕk
1

k ∈ K1 , ϕk
2

k ∈ K2 , … ; however, the computational 

complexity of such an exhaustive approach quickly becomes intractable. We stress that even 

with large noise, our proposed method identifies the correct nonlinearities with accurate 

weight recovery while keeping the number of test functions lower than the number of 

timepoints (K < M).

2.2. Algorithm: WSINDy.

We state here the WSINDy algorithm in full generality. We propose a generalized least 

squares approach with approximate covariance matrix Σ. Below we derive a particular 

choice of Σ which utilizes the action of the test functions ϕk k ∈ [K] on the data y. Sequential 

thresholding on the weight coefficients w with thresholding parameter λ is used to enforce 

sparsity, where λ ≤ minw⋆ ≠ 0 w⋆  is necessary for recovery. Lastly, an ℓ2-regularization term 

with coefficient γ is included for problems involving rank deficiency. Methods of choosing 

optimal values of λ and γ directly from a given dataset do exist, for instance, by selecting the 

optimal position in a Pareto front [5]; however, this is not the focus of our current study, and 

thus we select values that work across multiple examples. Specifically, in the experiments 

below we set γ = 0 with the exception of the nonlinear pendulum and the five-dimensional 

linear system, examples which show that regularization can be used to discover dynamics 

from excessively large libraries. For noise-free data the algorithm is only weakly dependent 

on λ and so we use λ = 0.001, while for noisy data we set λ = 1
4minw⋆ ≠ 0 w⋆

w = WSINDy y, t; ϕk k ∈ [K], fj j ∈ [J], Σ, λ, γ :

1. Construct matrix of trial gridfunctions Θ(y) = f1(y) |…|fJ(y) .

2. Construct integration matrices V, V′ such that

Vkm = Δtϕk tm , Vkm
′ = Δtϕk

′ tm .

3. Compute Gram matrix G = VΘ(y) and right-hand side b = − V′y so that 

Gkj = ϕk, fj(y)  and bkd = − ϕk
′ , yd .
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4. Solve the generalized least squares problem with ℓ2-regularization

w = argminw (Gw − b)TΣ−1(Gw − b) + γ2 ∥ w ∥2
2 ,

using sequential thresholding with parameter λ to enforce sparsity.

With this as our core algorithm, we can now consider a residual analysis (section 2.3) 

leading to a generalized least squares framework. We can also develop theoretical results 

related to the test functions (section 2.4), yielding a more thorough understanding of the 

impact of using uniform (section 2.4.1) and adaptive (section 2.4.2) placement of test 

functions along the time axis.

2.3. Residual analysis.

Performance of WSINDy is determined by the behavior of the residuals

R w; ϕk : = (Gw − b)k ∈ ℝ1 × D,

denoted R(w) ∈ ℝK × D for the entire residual matrix. Here we analyze the residual for 

autonomous F to highlight key aspects for future analysis, as well as to arrive at an 

appropriate choice of approximate covariance ∑. We also provide a heuristic argument in 

favor of placing test functions near steep gradients in the dynamics.

A key difficulty in recovering the true weights w⋆ is that for nonlinear systems the residual 

evaluated at the true weights w⋆ is biased: E R w⋆ ≠ 0. Any minimization of R thus 

introduces a bias in the recovered weights w. Nevertheless, we can understand how different 

test functions impact the residual by linearizing around the true trajectory x(t) and isolating 

the dominant error terms :

R w; ϕk = ϕk, Θ(y)w + ϕk
′ , y

= ϕk, Θ(y) w − w⋆ + ϕk, Θ(y)w⋆ + ϕk
′ , y

= ϕk, Θ(y) w − w⋆ + ϕk, F(y) − F(x) + ϕk
′ , ϵ + Ik

= ϕk, Θ(y) w − w⋆

R1

+ ϕk, ϵ∇F(x)
R2

+ ϕk
′ , ϵ

R3

+ Ik + O ϵ2 ,

where ∇F(x)dd′ = ∂Fd′
∂xd

(x). The errors manifest in the following ways:

• R1 is the misfit between w and w⋆.

• R2 results from measurement error in trial gridfunctions: fj(y) = fj(x + ϵ) ≠ fj(x).

• R3 results from replacing x with y = x + ϵ in the left-hand side of (2.2).

• Ik is a deterministic integration error.

• O ϵ2  is the remainder term in the truncated Taylor expansion of F(y) around x:
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F ym = F x tm + ϵm ∇F x tm + O ϵm
2 .

Clearly, recovery of F when ϵ = 0 is straightforward: R1 and Ik are the only error terms; 

thus one only needs to select a quadrature scheme that ensures that the integration error 

Ik is negligible and w = w⋆ will be the minimizer. A primary focus of this study is the 

use of a specific family of piecewise polynomial test functions S defined below for which 

the trapezoidal rule is highly accurate (see Lemma 2). Figure 3.1 demonstrates this fact on 

noise-free data.

For ϵ > 0, accurate recovery of F requires one to choose hyperparameters that exemplify 

the true misfit term R1 by enforcing that the other error terms are of lower order. We look 

for ϕk k ∈ [K] and Σ = CCT  that approximately enforce C−1R w⋆ ∼ N 0, σ2I , justifying the 

least squares approach. In the next subsection we address the issue of approximating the 

covariance matrix, providing justification for using Σ = V′ V′ T . The following subsection 

provides a heuristic argument for how to reduce corruption from the error terms R2 and R3 by 

placing test functions near steep gradients in the data.

2.3.1. Approximate covariance Σ.—Neglecting the deterministic integration error, 

which can be made small (see Lemma 2 below), and higher-order noise terms, the residual 

evaluated at the true weights is approximately

R w⋆; ϕk ≈ R2 + R3,

where E R2 = E R3 = (0, …, 0) implies that E R w⋆ = 0 to leading order. Given the 

variances

V R2 = V ϕk, ϵ∇F(x) = Δtσ2 ϕk ∇F1(x) 2
2, …, ϕk ∇FD(x) 2

2

and

V R3 = V ϕk
′ , ϵ = Δtσ2 ϕk

′
2
2, …, ϕk

′
2
2 ,

the true distribution of R w⋆  depends on F, which is not known a priori. If it holds that 

ϕk
′

2 ≫ ϕk ∇Fd(x) 2, d ∈ [D], a leading order approximation to Cov R w⋆  is

Σ: = V′ V′ T ∝ Cov R3 ,

using that Cov R3 ij = Δtσ2 ϕi
′, ϕj

′ . For this reason, we employ localized test functions and 

adopt the heuristic Σ = V′ V′ T  below.
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2.3.2. Adaptive refinement.—Next we show that by localizing ϕk around large |ẋ|, we 

get an approximate cancellation of the error terms R2 and R3. Consider the one-dimensional 

case (D = 1) where m is an arbitrary time index and ym = x tm + ϵ is an observation. When 

ẋ tm  is large compared to ϵ, we approximately have

ym = x tm + ϵm ≈ x tm + δt ≈ x tm + δtF x tm

(2.4)

for some small δt, i.e., the perturbed value ym lands close to the true trajectory x at the 

time tm + δt. To understand the heuristic behind this approximation, let tm + δt be the point of 

intersection between the tangent line to x(t) at tm and x tm + ϵ. Then

δt = ϵ
ẋ tm

;

hence ẋ tm ≫ ϵ implies that x tm + ϵ will approximately lie on the true trajectory. As well, 

regions where ẋ tm  is small will not yield accurate recovery in the case of noisy data, since 

perturbations are more likely to exit the relevant region of phase space. If we linearize F
using the approximation (2.4) we get

F ym ≈ F x tm + δtF′ x tm F x tm = F x tm + δtẍ tm .

(2.5)

Assuming ϕk is sufficiently localized around tm, (2.4) also implies that

ϕk
′ , x + ϕk

′ , ϵ
R3

= ϕk
′ , y ≈ ϕk

′ , x + δt ϕk
′ , F(x) ;

hence R3 ≈ δt ϕk
′ , F(x) , while (2.5) implies

ϕk, Θ(y)w = ϕk, Θ(y) w − w⋆

= R1

+ ϕk, F(y)

≈ ϕk, Θ(y) w − w⋆ + ϕk, F(x) + δt ϕk, ẍ
≈ R2

= ϕk, Θ(y) w − w⋆ + ϕk, F(x) − δt ϕk
′ , F(x) ,

having integrated by parts. Collecting the terms together yields that the residual takes the 

form

R w; ϕk = ϕk
′ , y + ϕk, Θ(y)w ≈ R1,

and we see that R2 and R3 have effectively cancelled. In higher dimensions this interpretation 

does not appear to be as illuminating, but nevertheless, for any given coordinate xd, it does 
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hold that terms in the error expansion vanish around points tm where ẋd  is large, precisely 

because xd tm + ϵ ≈ xd tm + δt .

2.4. Test function basis ϕk k ∈ [K]

Here we introduce a test function space S and quadrature scheme to minimize integration 

errors and enact the heuristic arguments above, which rely on ϕk having fast decay to its 

support boundaries and being sufficiently localized to ensure ϕk
′

2
2 ≫ ϕk 2

2. We define the 

space S of unimodal piecewise polynomials of the form

ϕ(t) = C(t − a)p(b − t)q t ∈ [a, b],
0 otherwise,

(2.6)

where (a, b) ⊂ t × t satisfies a < b and p, q ≥ 1. The normalization

C = 1
ppqq

p + q
b − a

p + q

ensures that ∥ ϕ ∥∞ = 1. Functions ϕ ∈ S are nonnegative, unimodal, and compactly 

supported in [0, T ] with min p, q − 1 continuous derivatives. Larger p and q imply faster 

decay towards the endpoints of the support. For p = q, we refer to p as the degree of ϕ.

To ensure the integration error in approximating inner products fj, ϕk  is negligible, we 

rely on the following lemma, which provides a bound on the error in discretizing the weak 

derivative relation

−∫ ϕ′fdt = ∫ ϕf′dt

(2.7)

using the trapezoidal rule for compactly supported ϕ. Following the lemma we introduce two 

strategies for choosing the parameters of the test functions ϕk k ∈ [K] ⊂ S.

LEMMA 2 (numerical error in weak derivatives).—Let f, ϕ have continuous derivatives 

of order p, and define tj = a + jb − a
N = a + jΔt. If ϕ has roots ϕ(a) = ϕ(b) = 0 of multiplicity p, 

then

Δt
2 ∑

j = 0

N − 1
g tj + g tj + 1 = O Δtp + 1 ,

(2.8)

where g(t) = ϕ′(t)f(t) + ϕ(t)f′(t). In other words, the composite trapezoidal rule discretizes 
the weak derivative relation (2.7) to order p + 1.
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Proof.: This is a simple consequence of the Euler-Maclaurin formula. If g: [a, b] ℂ is a 

smooth function, then the following asymptotic expansion holds:

Δt
2 ∑

j = 0

N − 1
g tj + g tj + 1 ∼ ∫

a

b
g(t)dt + ∑

k = 1

∞ Δt2kB2k
(2k)! g(2k − 1)(b) − g(2k − 1)(a) ,

where B2k are the Bernoulli numbers. The asymptotic expansion provides corrections to the 

trapezoidal rule that realize machine precision accuracy up until a certain value of k, after 

which terms in the expansion grow and the series diverges [6, Chapter 3]. In our case, 

g(t) = ϕ′(t)f(t) + ϕ(t)f′(t), where the root conditions on ϕ imply that

∫
a

b
g(t)dt = 0 and g(k)(b) = g(k)(a) = 0, 0 ≤ k ≤ p − 1.

So for p odd, we have that

Δt
2 ∑

j = 0

N − 1
g tj + g tj + 1 ∼ ∑

k = (p + 1)/2

∞ Δt2kB2k
(2k)! g(2k − 1)(b) − g(2k − 1)(a)

= Bp + 1
(p + 1)! ϕ(p)(b)f(b) − ϕ(p)(a)f(a) Δtp + 1 + O Δtp + 2 .

For even p, the leading term is O Δtp + 2  with a slightly different coefficient.

For ϕ ∈ S with p = q, the exact leading order error in term in (2.8) is

2pBp + 1
p + 1 (f(b) − f(a))Δtp + 1,

(2.9)

which is negligible for a wide range of reasonable p and Δt values. The Bernoulli numbers 

eventually start growing like pp, but for smaller values of p they are moderate. For instance, 

with Δt = 0.1 and f(b) − f(a) = 1, this error term is o(1) up until p = 85, where it takes the 

value 0.495352, while for Δt = 0.01, the error is below machine precision for all p between 

7 and 819. For these reasons, in what follows we choose test functions ϕk k ∈ [K] ⊂ S and 

discretize all integrals using the trapezoidal rule. Unless otherwise stated, each function ϕk

satisfies p = q and so is fully determined by the tuple pk, ak, bk  indicating its polynomial 

degree and support. In the next two subsections we propose two different strategies for 

determining ϕk using the data y.

2.4.1. Strategy 1: Uniform grid.—The simplest strategy for choosing a basis of test 

functions ϕk k ∈ [K] ⊂ S is to place ϕk uniformly on the interval [0, T ] with fixed degree p and 

fixed support size

L: = # t ∩ supp ϕk
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(i.e., L is the number of timepoints in t that ϕk is supported on). The triple (L, p, K) then 

defines the scheme, where each piece effects the distribution of the residual R(w).

Step 1: Choosing L.: Heuristically, the support size of ϕk relates to the Fourier transform of 

the data. If supp ϕk  is small compared to the dominant wavemodes in the dynamics, then 

high-frequency noise will dominate the values of the inner products ϕk
′ , y . If supp ϕk  is 

much larger than the dominant wavemodes, then too much averaging may occur, leading to 

unresolved dynamics. A natural choice is then to set L equal to the period of a known active 

wavemode1 k:

L = 1
Δt

2π
(2πT /k) = M

k .

In the noise-free and small-noise experiments below we set L = M
25  and leave optimal 

selection of L based on Fourier analysis to future work.

Step 2: Determining p.: In light of the derivation above of the approximate covariance 

matrix Σ = V′ V′ T , we define the parameter ρ: = ϕk
′

2/ ϕk 2, which serves as an estimate 

for the ratio V R3 /V R2  between the standard deviations of the two dominant error terms 

R3 and R2 in the residual R w⋆ . Larger ρ indicates better agreement with the approximate 

covariance matrix Σ, since Σ ∝ Cov R3 . Furthermore, for ϕk ∈ S we have the exact formula

ρ2 = 8p2

(b − a)2
Γ(2p − 1)Γ 2p + 1

2
Γ(2p + 1)Γ 2p + 3

2
= p

(b − a)2
4p + 1
p − 1

2
,

where Γ(z) = ∫0
∞tz − 1e−tdt is the gamma function. Given ρ2 ≥ (5 + 2 6)/(b − a)2, a 

polynomial degree p may be selected from ρ using the formula

p = 1
8 (b − a)2ρ2 − 1 + (b − a)2ρ2 − 1 2 − 8(b − a)2ρ2 .

Step 3: Determining K.: Next we introduce the shift parameter s ∈ [0, 1] defined by

s: = ϕk t∗ s.t. ϕk t∗ = ϕk + 1 t∗ ,

which determines K from p and L. In words, s is the height of intersection between ϕk and 

ϕk + 1 and measures the amount of overlap between successive test functions. More overlap 

increases the correlation between rows in the residual R(w) and hence leads to larger off-

diagonal elements in the covariance matrix Σ. Larger s implies that neighboring functions 

1Such that Fk(y): = ∑j = 0
M − 1yme−2πijk/M is not negligible.
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overlap on more points, with s = 1 indicating that ϕk = ϕk + 1. Specifically, neighboring test 

functions overlap on L 1 − 1 − s1/p  timepoints. In Figures 3.2 and 3.3 we vary the 

parameters ρ and s and observe that results agree with intuition: larger ρ (better agreement 

with Σ) and larger s (more test functions) lead to better recovery of w⋆. We summarize the 

uniform grid algorithm below.

w = WSINDy_UG y, t; fj j ∈ [J], L, ρ, s, λ, γ :

1. Construct matrix of trial gridfunctions Θ(y) = f1(y) |…|fJ(y) .

2. Construct integration matrices V, V′ such that

Vkm = Δtϕk tm , Vkm
′ = Δtϕk

′ tm

with the test functions ϕk k ∈ [K] determined by L, ρ, s as described above.

3. Compute Gram matrix G = VΘ(y) and right-hand side b = − V′y so that 

Gkj = ϕk, fj(y)  and bkd = − ϕk
′ , yd .

4. Compute approximate covariance and Cholesky factorization Σ = V′ V′ T = CCT .

5. Solve the generalized least squares problem with ℓ2-regularization

w = argminw (Gw − b)TΣ−1(Gw − b) + γ2 ∥ w ∥2
2 ,

using sequential thresholding with parameter λ to enforce sparsity.

2.4.2. Strategy 2: Adaptive grid.—Motivated by the arguments above, we now 

introduce an algorithm for constructing a test function basis localized near points of large 

change in the dynamics. This occurs in three steps: (1) construct a weak approximation to 

the derivative of the dynamics v ≈ ẋ, (2) sample K points c from a cumulative distribution ψ
with density proportional to the total variation |v|, and (3) construct test functions centered 

at c using a width-at-half-max parameter rwℎm to determine the parameters pk, ak, bk  of each 

function ϕk. Each of these steps is numerically stable and carried out independently along 

each coordinate of the dynamics. A visual diagram is provided in Figure 2.1.

Step 1: Weak derivative approximation.: Define v: = − Vw
′ y, where the matrix −Vw

′  enacts 

a linear convolution with the derivative of a chosen test function ϕ ∈ S of degree pw and 

support size Lw so that

vm = − ϕ′, y = ϕ, ẏ ≈ ẏm .

The parameters Lw and pw are chosen by the user, with Lw = 5 and pw ≥ 2 corresponding 

to taking a centered finite difference derivative with a 3-point stencil. Smaller pw results 

in more smoothing and minimizes the corruption from noise while still accurately locating 
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steep gradients in the dynamics. For the examples below we arbitrarily2 use pw = 2 and 

Lw = 17.

Step 2: Selecting c.: Having computed v, define ψ to be the cumulative sum of |v|
normalized so that max ψ = 1. In this way ψ is a valid cumulative distribution function 

with density proportional to the total variation of y. We then find c by sampling from ψ. 

Let U = 0, 1
K , 2

K , …, K − 1
K  with K being the number of the test functions; we then define 

c = ψ−1(U), or numerically,

ck = min t ∈ t:ψ(t) ≥ Uk .

This stage requires the user to select the number of test functions K.

Step 3: Construction of test functions ϕk k ∈ [K].: Having chosen the location ck of the 

centerpoint for each test function ϕk, we are left to choose the degree pk of the polynomial 

and the supports ak, bk . The degree is chosen according to the width-at-half-max parameter 

rwℎm, which specifies the difference in timepoints between each center ck and argt ϕk(t) = 1/2 , 

while the supports are chosen such that ϕk bk − Δt = 10−16. This gives us a nonlinear 

system of two equations in two unknowns which can be easily solved (i.e., using fzero 

in MATLAB). This can be done for one reference test functions and the rest of the weights 

obtained by translation. The optimal value of rwℎm depends on the timescales of the dynamics 

and can be chosen from the data using the Fourier transform as in the uniform grid case; 

however, for simplicity we set rwℎm = M/100  in the large-noise examples below.

The adaptive grid WSINDy algorithm is summarized as follows: 

w = WSINDy_AG y, t; fj j ∈ [J], pw, Lw, K, rwℎm, λ, γ :

1. Construct matrix of trial gridfunctions Θ(y) = f1(y) |…|fJ(y) .

2. Construct integration matrices V, V′ such that

Vkm = Δtϕk tm , Vkm
′ = Δtϕk

′ tm ,

with test functions ϕk k ∈ [K] determined by pw, Lw, K, rwℎm as described above.

3. Compute Gram matrix G = VΘ(y) and right-hand side b = − V′y so that 

Gkj = ϕk, fj(y)  and bkd = − ϕk
′ , yd .

4. Compute approximate covariance and Cholesky factorization Σ = V′ V′ T = CCT

5. Solve the generalized least squares problem with ℓ2-regularization

w = argminw (Gw − b)TΣ−1(Gw − b) + γ2 ∥ w ∥2
2 ,

2We find that a lower-degree test function with small support effectively locates steep gradients in noisy trajectories.
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using sequential thresholding with parameter λ to enforce sparsity.

3. Numerical experiments.

We now show that WSINDy is capable of recovering the correct dynamics to high accuracy 

over a range of noise levels. We examine the systems in Table 1 which exhibit several 

canonical dynamics, namely growth and decay, nonlinear oscillations and chaotic dynamics, 

in dimensions D ∈ 2, 3, 5 . To generate true trajectory data we use ode45 in MATLAB 

with absolute and relative tolerance 10−10 and collect M samples uniformly3 in time with 

sampling rate Δt. The parameters M and Δt are chosen to provide a balance between 

illustrating ODE behaviors and avoiding an overabundance of observations. Gaussian white 

noise with mean zero and variance σ2 is added to the exact trajectories, where σ is computed 

by specifying a noise ratio σNR and setting

σ = σNR
∥ x ∥F

MD ,

(3.1)

where the Frobenius norm of a matrix x ∈ ℝM × D is defined by

∥ x ∥F : = ∑
m = 1

M
∑

d = 1

D
xmd

2 .

The ratio of noise to signal is then approximately equal to the square root of the variance: 

∥ ϵ ∥F / ∥ x ∥F ≈ σ.

We measure the accuracy in the recovered dynamical system using the relative ∥ ⋅ ∥F error 

in the recovered coefficients,

E2(w) = w − w⋆
F

w⋆
F

,

(3.2)

and the relative ∥ ⋅ ∥F error between the noise-free data x and the data-driven dynamics xdd

along the same timepoints:

E2 xdd =
xdd − x F
∥ x ∥F

.

(3.3)

The collection of ODEs in Table 1 are all first-order autonomous systems; however, they 

exhibit a diverse range of dynamics. The Linear 5D system (for β < 0) and Duffing’s 

3We leave a detailed study of nonuniform time sampling to future work.
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equation are both examples of damped oscillators, showing that WSINDy is able to discern 

whether such motion is governed by linear or nonlinear coupling between variables. For 

β > 0, the Linear 5D system exhibits exponential growth. The van der Pol oscillator, 

Lotka–Volterra system, and nonlinear pendulum demonstrate that a stable limit cycle with 

abrupt changes may manifest from vastly different nonlinear mechanisms, which turn out 

to be identifiable using the weak form. Finally, the Lorenz system exhibits deterministic 

chaos, and hence the dynamics cover a wide range of Fourier modes, which easily become 

corrupted with noise.

3.1. Noise-free data.

The goal of the following noise-free experiments is to demonstrate convergence of the 

recovered weights w to the true weights w⋆ to within the accuracy tolerance of the ODE 

solver (fixed 10−10 throughout). In light of Lemma 2, this should occur as the decay rate 

of the test functions ϕk k ∈ [K] is increased, which for test functions in class S (see (2.6)) is 

realized by increasing the polynomial degree p. Hence, over the range of parameter values 

in Table 2, for each system we test convergence as p increases. We use the uniform grid 

approach with shift parameter s chosen such that the number of test functions equals to 

the number of trial functions (K = J), resulting in square Gram matrices G = VΘ(y). The 

support of the basis functions along the timegrid t is set to L = M
25  points. The data-driven 

trial basis fj j ∈ [J] includes all monomials in the state variables up to degree 5 as well as 

the trigonometric terms cos nyd , sin nyd  for n = 1, 2 and d ∈ [D]. We set the regularization 

parameter to zero (γ = 0), with the exception of the nonlinear pendulum, where γ = 10−8, and 

the sparsity threshold to λ = 0.001. We note that a nonzero γ is always necessary to discover 

the nonlinear pendulum from combined trigonometric and polynomial libraries since sin x1

is well-approximated by polynomial terms; however, the same is not true for low-order 

polynomial systems. In cases considered here, sequential thresholding successfully removes 

trigonometric library terms for ODE systems with polynomial dynamics despite initially 

ill-conditioned Gram matrices G resulting from combining polynomial and trigonometric 

terms.

Figure 3.1 shows that in the limit of large p, WSINDy recovers the correct weight matrix 

w⋆ of each system in Table 1 to an accuracy of O 10−10 . For the Linear 5D system, we 

vary the growth/decay parameter, showing that the system is identifiable to high accuracy 

despite an excessively large trial library (252 terms). For Duffing’s equation and the van der 

Pol oscillator, the same convergence trend is observed for β values spanning several orders 

of magnitude. Accuracy is slightly worse for the Lotka–Volterra equation when β = 0.005, 

which corresponds to highly infrequent predator-prey interactions and leads to solutions 

with large amplitudes and gradients. For the nonlinear pendulum, we test that WSINDy is 

able to identify the sin x1  nonlinearity for both large and small initial amplitudes, noting that 

x1(0) = 15
16π ≈ π produces strongly nonlinear oscillations, while x1(0) = 1

16π produces small-

angle oscillations where sin x1 ≈ x1. In addition, for the pendulum we use fewer samples 

(M = 501) and a larger time step Δt = 0.1 and hence observe a decreased convergence 
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rate. For the Lorenz equations we vary the initial conditions, generating 40 random initial 

conditions from a region covering the strange attractor, and show convergence over all cases.

3.2. Small-noise regime.

We now turn to the case of low to moderate noise levels, examining a noise ratio σNR in 

the range 10−5, 0.04  for the van der Pol oscillator and Duffing’s equation. We examine 

ρ ∈ [1, 7] and s ∈ [0.3, 0.95], where ρ: = ϕk
′

2/ ϕk 2 and s is the height of intersection of 

two neighboring test functions ϕk and ϕk + 1 (with s = 1 leading to ϕk = ϕk + 1 and s = 0
indicating supp ϕk ∩ supp ϕk + 1 = ϕ. Using the analysis from section 2.3, increasing ρ affects 

the distribution of the residual R(w) by magnifying the portion R3 = ϕk
′ , ϵ  that is linear in 

the noise. For ϕ ∈ S, larger ρ corresponds to a higher polynomial degree p, with ρ ∈ [1, 7]
leading to p ∈ [2, 98]. Larger shift parameter s corresponds to more test functions (higher 

K) but also to higher correlation between rows in G, as ϕk, fj(y) ≈ ϕk + 1, fj(y)  when the 

supports of ϕk and ϕk + 1 sufficiently overlap. Here s ∈ [0.3, 0.95] corresponds to K ∈ [14, 451]. 

We again use the uniform grid approach with γ = 0 and λ = 1
4minwj⋆ ≠ 0 wj

⋆ . For each system we 

generate 200 instantiations of noise and record the coefficient error over the range of s and ρ
values.

From Figures 3.2 and 3.3 we observe two properties. Firstly, the coefficient error E2(w)
monotonically deceases with increasing s and ρ; hence accurate recovery re quires sufficient 

overlap between test functions (large enough shift parameter s) and sufficiently localized 

test functions that amplify the portion of the residual that is linear in the noise. Secondly, 

for large enough ρ and s, the error in the coefficients scales linearly with σNR, leading to an 

accuracy of E2(w) ≈ 0.1σNR, or −log10 0.1σNR  significant digits in the recovered coefficients. 

In Appendix A we show that this second property does not hold for standard SINDy; in 

particular, the method of differentiation must change depending on the noise level in order to 

reach a desired accuracy.

3.3. Large-noise regime.

Figures 3.4 to 3.9 show that adaptive placement of test functions (Strategy 2) can be 

employed to discover dynamics in the large-noise regime with fewer test functions. We test 

that each system in Table 1 can be discovered under σNR = 0.1 (10% noise) from only 250 

test functions distributed near steep gradients in y, which are located using the scheme in 

section 2.4.2 with pw = 2 and Lw = 17. We set the width-at-half-max of the test functions 

to rwℎm = M/100  timepoints. To exemplify the separation of scales and the severity of the 

corruption from noise, the noisy data y, true data x, and trajectories xdd from the learned 

dynamical systems are shown in dynamo view and in phase space (for D ≤ 3). We extend 

xdd by 50% to show that the data-driven system captures the true limiting behavior. We set 

the sparsity to λ = 1
4minw⋆ ≠ 0 w⋆  and γ = 0 except in the Linear 5D and nonlinear pendulum 

examples, where γ = σNR ≈ 0.32. For the trial basis we use all monomials up to degree 5 in 

the state variables, and for the pendulum we include the trigonometric terms sin kyd , cos kyd

for k = 1, 2 and d = 1, 2.
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In each case the correct terms are identified with coefficient error E2(w) < 10−2, in agreement 

with the trend E2(w) ≈ 0.1σNR observed in the small-noise regime. For the Linear 5D, 

Duffing, and Lotka–Volterra systems (Figures 3.4, 3.5, and 3.7) the data-driven trajectory 

xdd is indistinguishable from the true data to the eye, with trajectory error E2(w) < 0.02. For 

the van der Pol oscillator and nonlinear pendulum (Figures 3.6 and 3.8), xdd follows a limit 

cycle with an attractor that is indistiguishable from the true data (see phase plane plots); 

however, an error in the period of oscillation of roughly 0.6% leads to a larger trajectory 

error. The data-driven trajectory for the Lorenz equation diverges from the true trajectory 

around t = 2.5 (Figure 3.9), which is expected from chaotic dynamics, but still remains close 

to the Lorenz attractor.

4. Concluding remarks.

We have developed and investigated a data-driven model selection algorithm based on the 

weak formulation of differential equations. The algorithm utilizes the reformulation of the 

model selection problem as a sparse regression problem for the weights w⋆ of a candidate 

function basis fj j ∈ [J] introduced in [21] and generalized in [4] as the SINDy algorithm. 

Our WSINDy algorithm can be seen as a generalization of the sparse recovery scheme 

using integral terms found in [17], where dynamics were recovered from noisy data using 

the integral equation. We have shown that by extending the integral equation to the weak 

form and using test functions with certain localization and smoothness properties, one may 

discovery the dynamics over a wide range of noise levels, with accuracy scaling favorably 

with noise: E2(w) ≈ 0.1σNR.

A natural line of inquiry is to consider how WSINDy compares with conventional SINDy. 

There are several notable advantages of WSINDy; in particular, by considering the weak 

form of the equations, WSINDy completely avoids approximation of pointwise derivatives 

which significantly reduce the accuracy in conventional SINDy. When using SINDy, one 

must choose an appropriate numerical differentiation scheme depending on the noise level 

(e.g., finite differences are not robust to large noise but work well for small noise). For 

WSINDy, test functions from the space S (see section 2.4) together with the trapezoidal rule 

are effective in both low-noise and high-noise regimes. We demonstrate these observations 

in Appendix A by comparing WSINDy to SINDy under several numerical differentiation 

schemes. On the other hand, it may be the case that less data is required by standard SINDy. 

For the examples shown here, WSINDy works optimally for test functions supported on at 

least 15 timepoints, while many derivative approximations require fewer consecutive points.

WSINDy also utilizes the linearity of inner products with test functions to estimate the 

covariance structure of the residual, performing model selection in a generalized least 

squares framework. This is a much more appropriate setting given that residuals are 

neither independent nor uniformly distributed; however, we note that our implementations 

in this article employ approximate covariance matrices and could benefit from further 

refinements and investigation. In Appendix B we show that using generalized least squares 

with approximate covariance improves some results over ordinary least squares, but 

not significantly. We leave incorporation of more detailed knowledge of the covariance 
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structure to future work. In addition, generalized least squares could potentially improve 

traditional model selection algorithms that rely on pointwise derivative estimates by 

similarly exploiting linear operators. Ultimately, a thorough analysis of the advantages of 

generalized least squares for model selection deserves further study.

Lastly, the most obvious extensions lie in generalizing the WSINDy method to 

spatiotemporal datasets. WSINDy as presented here in the context of ODEs is an exciting 

proof of concept with natural extensions to spatiotemporal and multiresolution settings 

building upon the extensive results in numerical and functional analysis for weak and 

variational formulations of physical problems.
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Appendix A.: Comparison between WSINDy and SINDy.

Here we compare WSINDy and SINDy using the van der Pol oscillator, Lotka–Volterra 

system, and Lorenz equation. For WSINDy we place test functions along the time axis 

according to the uniform grid strategy. For SINDy, we examine three differentiation 

methods: total variation regularized derivatives (SINDy-TV), centered second-order finite 

difference (SINDy-FD-2), and centered fourth-order finite difference (SINDy-FD-4). For 

SINDy-TV we use default settings and set the regularization parameter equal to the time 

step.

For each system and noise level we generate 200 independent instantiations of noise and 

record the average coefficient error E2(w) (3.2) as well as the average true positivity ratio 

(TPR) [10]:

TPR(w) = TP(w)
TP(w) + FP(w) + FN(w) ,

(A.1)

where TP(w) is the number of correctly identified nonzero terms, FP(w) is the number of 

falsely identified nonzero terms, and FN(w) is the number of terms that are falsely identified 

as having a coefficient of zero. Since the feasible range of sparsity thresholds λ depends on 

the noise level, we adopt the selection methodology in [14] to choose an appropriate λ value 
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for each instantiation of noise: λ is chosen from the set 10 −5 + i
10, i ∈ 0, …, 50  (i.e., the 51 

values from 10−5 to 1 equally spaced log10) as the minimizer of the loss function

L(λ) = Awλ − Aw0
2

Aw0
2

+ # j:wj
λ ≠ 0

J ,

where A = VΘ(y) for WSINDy and A = Θ(y) for SINDy;wλ is the sequential-thresholding 

least squares solution for sparsity threshold λ, and J is the number of terms in the model 

library (for further details see [14]).

From Figures A.1, A.2, and A.3 we observe that for small noise (up to σNR = 10−1), 

the coefficient error for WSINDy follows the linear trend E2(w) ≈ 0.1σNR (observed in the 

text) and that SINDy-FD-4 behaves similarly but with slightly worse accuracy. For larger 

noise, SINDy diverges in accuracy and identification of the correct nonzero terms for each 

differentiation scheme, while WSINDy maintains a TPR of at least 0.8 up to 40% noise 

for each system. WSINDy thus provides an advantage across the entire noise spectrum 

examined, all while employing the same weak discretization scheme.
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FIG. A.1. 
Comparison between WSINDy and SINDy: van der Pol. Clockwise from top left: small-
noise TPR(w) (defined in (A.1)), large-noise TPR(w), large-noise E2(w) (defined (3.2)), 

small-noise E2(w).
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FIG. A.2. 
Comparison between WSINDy and SINDy: Lotka–Volterra. Clockwise from top left: small-
noise TPR(w) (defined in (A.1)), large-noise TPR(w), large-noise E2(w) (defined (3.2)), 

small-noise E2(w).

MESSENGER and BORTZ Page 21

Multiscale Model Simul. Author manuscript; available in PMC 2024 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. A.3. 
Comparison between WSINDy and SINDy: Lorenz system. Clockwise from top left: small-
noise TPR(w) (defined in (A.1)), large-noise TPR(w), large-noise E2(w) (defined (3.2)), 

small-noise E2(w).
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Appendix B.: Generalized least squares vs. ordinary least squares.

FIG. B.1. 
Comparison between WSINDy with GLS and WSINDy with ordinary least squares using 
the Duffing equation. Results are averaged over 200 instantiations of noise.

Generalized least squares (GLS) aims to account for correlations between the residuals [8]. 

Given a linear model y = Xβ + ϵ, where Cov(ϵ) = Σ and E[ϵ ∣ X] = 0, the GLS estimator of the 

parameters β upon observing y is

β = XTΣ−1X −1XTΣ−1y .

This provides the best linear unbiased estimator of β in the sense that if β is any other 

unbiased estimator, then β has lower variance: V β i ≤ V βi , i = 1, …, n.

Above we derived an approximate covariance matrix Σ ≈ V′ V′ T  to use in the GLS 

implementation of WSINDy, although the true covariance depends on the underlying 

unknown dynamical system and hence is unattainable. In addition, since in our case 

X = G = VΘ(y) depends on the noise ϵ, the assumption E[ϵ ∣ X] = 0 is violated. Nevertheless, 

we find that the noise regime σNR ∈ [0.01, 0.3] does benefit from using GLS over ordinary 

least squares. Figure B.1 shows that for the Duffing equation, GLS extends the region 

σNR ∣ TPR(w) > 0.95  from σNR ≤ 0.05 to σNR ≤ 0.15, as well as increases the accuracy in the 

recovered coefficients. This suggests that further improvements can be made with a more 

refined covariance matrix.
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FIG. 2.1. 
Adaptive grid construction used on data from the Duffing equation with 10% noise 
(σNR = 0.1). As desired, the centers c are clustered near steep gradients in the dynamics 

despite large measurement noise. (Note−ϕ(t)′/10 is plotted in the upper-left instead of ϕ(t)′ in 
order to visualize both ϕ and ϕ′.)
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FIG. 3.1. 
Noise-free data (σNR = 0): plots of relative coefficient error E2(w) (defined in (3.2)) vs. p. V1-

V4 indicate different ODE parameters (see Table 2). For the Lorenz system the parameters 
are fixed, and 40 different initial conditions are sampled from a uniform distribution. In each 
case, the recovered coefficients w rapidly converge to within the accuracy of the ODE solver 
(10−10).
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FIG. 3.2. 
Small-noise regime: dynamic recovery of the Duffing equation with β = 1. Top: heat map 
of the log10 average error E2(w) (left) and sample standard deviation of E2(w) (right) over 

200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom:E2(w). ρ for fixed 

s = 0.5 and various σNR. For ρ > 3 the average error is roughly an order of magnitude below 

σNR.
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FIG. 3.3. 
Small-noise regime: dynamic recovery of the van der Pol oscillator with β = 4. Top: heat 
map of the log10 average error E2(w) (left) and sample standard deviation of E2(w) (right) over 

200 instantiations of noise with σNR = 0.04 (4% noise) vs. ρ and s. Bottom: E2(w) vs. ρ for 

fixed s = 0.5 and various σNR. Similar to the Duffing equation, average error falls to roughly 

an order of magnitude below σNR, although for van der Pol this regime is reached when ρ ≈ 6.
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FIG. 3.4. 
Large-noise regime: Linear 5D system with damping β = − 0.2. All correct terms were 
identified with an error in the weights of E2(w) = 0.0064 and a trajectory error of 

E2(w) = 0.013.
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FIG. 3.5. 
Large-noise regime: Duffing equation, β = 1. All correct terms were identified with an error 
in the weights of E2(w) = 0.0075 and a trajectory error of E2(w) = 0.014.
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FIG. 3.6. 
Large-noise regime: van der Pol oscillator, β = 4. All correct terms were identified with 
coefficient error E2(w) = 0.0073 and trajectory error E2(w) = 0.32. The data-driven trajectory 

xdd has a slightly shorter oscillation period of 10.14 time units compared to the true 10.2, 

resulting in an eventual offset from the true data x and hence a larger trajectory error. 
Measured over the time interval [0, 8] the trajectory error is 0.065.
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FIG. 3.7. 
Large-noise regime: Lotka–Volterra system with β = 1. All correct nonzero terms were 
identified with an error in the weights of E2(w) = 0.0013 and trajectory error E2(w) = 0.0082.
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FIG. 3.8. 

Large-noise regime: nonlinear pendulum with initial conditions x(0) = (15π/16, 0)T . All 
correct nonzero terms were identified with an error in the weights of E2(w) = 0.0089 and 

an error between E2(w) = 0.076.
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FIG. 3.9. 

Large-noise regime: Lorenz system with x0 = ( − 8, 7, 27)T . All correct terms were identified 

with an error in the weights of E2(w) = 0.0084 and trajectory error E(w) = 0.56. The large 

trajectory error is expected due to the chaotic nature of the solution. Using data up until 
t = 1.5 (first 1500 timepoints) the trajectory error is 0.027.
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TABLE 1

ODEs used in numerical experiments. For Linear 5D, Duffing, van der Pol, and Lotka–Volterra we measure 
the accuracy in the recovered system as the parameter β varies (see Table 2).

Name Governing equations M Δt

Linear 5D

ẋ1 = − x5 + βx1 + x2,
ẋi = − xi − 1 + βxi + xi + 1, i = 2, 3, 4
ẋ5 = − x4 + βx5 + x1

1401 0.025

Duffing
ẋ1 = x2,
ẋ2 = − 0.2x2 − 0.2x1 − βx1

3 3001 0.01

Van der Pol
ẋ1 = x2,
ẋ2 = βx2 1 − x1

2 − x1
3001 0.01

Lotka–Volterra
ẋ1 = 3x1 − βx1x2,
ẋ2 = βx1x2 − 6x2

1001 0.01

Nonlinear pendulum
ẋ1 = x2,
ẋ2 = − sin x1

501 0.1

Lorenz

ẋ1 = 10 x2 − x1 ,
ẋ2 = x1 28 − x3 − x2,

ẋ3 = x1x2 − 8
3x3

10001 0.001
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TABLE 2

Specifications for parameters used in illustrating simulations in Figure 3.1.

ODE β x(0) L ΔL J( = K)
Linear 5D (−0.3, −0.2, −0.1,0.1) (10, 0, 0, 0, 0)T 57 5 252

Duffing (0.01,0.1,1,10) (0, 2)T 121 99 29

Van der Pol (0.01,0.1,1,10) (0, 1)T 121 99 29

Lotka–Volterra (0.005,0.01,0.1,1) (1, 1)T 41 33 29

Pendulum — x2(0) = 0,

x1(0) ∈ 15
16π, 10

16π, 5
16π, 1

16π

21 16 29

Lorenz — ∼ U[ − 15, 15]2 × [10, 40] 401 141 68
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