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Abstract

Living in dynamic environments such as the social domain, where interaction with others

determines the reproductive success of individuals, requires the ability to recognize opportu-

nities to obtain natural rewards and cope with challenges that are associated with achieving

them. As such, actions that promote survival and reproduction are reinforced by the brain

reward system, whereas coping with the challenges associated with obtaining these

rewards is mediated by stress-response pathways, the activation of which can impair health

and shorten lifespan. While much research has been devoted to understanding mecha-

nisms underlying the way by which natural rewards are processed by the reward system,

less attention has been given to the consequences of failure to obtain a desirable reward.

As a model system to study the impact of failure to obtain a natural reward, we used the

well-established courtship suppression paradigm in Drosophila melanogaster as means to

induce repeated failures to obtain sexual reward in male flies. We discovered that beyond

the known reduction in courtship actions caused by interaction with non-receptive females,

repeated failures to mate induce a stress response characterized by persistent motivation to

obtain the sexual reward, reduced male-male social interaction, and enhanced aggression.

This frustrative-like state caused by the conflict between high motivation to obtain sexual

reward and the inability to fulfill their mating drive impairs the capacity of rejected males to

tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to

starvation and enhanced social arousal is mediated by the disinhibition of a small population

of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings
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demonstrate for the first time the existence of social stress in flies and offers a framework to

study mechanisms underlying the crosstalk between reward, stress, and reproduction in a

simple nervous system that is highly amenable to genetic manipulation.

Author summary

In this study we investigated the effects of failure to obtain reward on the behavioral

actions and physiology of male flies. We exposed Drosophila males to repeated sexual

encounters with non-receptive females that rejected their courtship efforts and tested the

effect on their behavioral responses using a collection of behavioral paradigms. These

responses encompass alterations in social behavior, increased aggression, heightened

motivation to mate, and a reduced capacity to cope with stressors. We further show

that the high motivational state and sensitivity to stress is mediated by the disinhibition of

a small population of neurons that express receptors for the fly homologue of neuropep-

tide Y.

Introduction

Living in a social environment involves diverse types of interactions between members of the

same species, the outcomes of which affect health, survival, and reproductive success [1]. Cop-

ing with the challenges and opportunities associated with this dynamic environment requires

individuals to rapidly process multiple sensory inputs, integrate this information with their

own internal state and respond appropriately to various social encounters [1–7]. Encounters

that hold opportunities to secure resources, mating partners, and a higher social status are con-

sidered rewarding and are, therefore, reinforced by the brain reward systems, whereas the fail-

ure to obtain such rewards due to high competition, lack of competence, or aggressive

encounters with competitors are perceived as stressors [8–10].

It has been appreciated for quite some time that stress-response mechanisms allow animals

to cope successfully with challenges encountered when living in social groups [8,11–14]. For

instance, high levels of stress hormones promote attentive care during maternal behavior in

humans [15], and the CRF-Receptor2 and its ligand Urocortin-3 are necessary for coping with

social engagement in mice [16–19]. Moreover, high levels of CRF are correlated with increased

motivation to obtain natural rewards, as documented in individual cichlid fish that ascend in

the hierarchy of their social group [20]. While these are examples of the ways by which stress

response mechanisms improve the ability of individuals to cope with social challenges, some

types of social stress can induce social defeat, increase drug consumption [21–26], impair

health and shorten lifespan [27–31].

There is considerable anatomical overlap between brain regions that process reward and

stress stimuli, as well as opposing functionality: exposure to natural rewards buffers the effect

of stressors, while stressors such as social defeat can alter sensitivity to reward and increase the

rewarding value of certain addictive drugs [27,32–38]. An example of such opposing functions

is seen in rodents where corticotropin-releasing factor (CRF) increases alcohol intake, and the

binding of Neuropeptide Y (NPY) to NPY receptor Y1 on CRF-positive neurons within the

bed nucleus of the stria terminalis (BNST) inhibits binge alcohol drinking [34,39,40].

Similar responses to social stress and reward-seeking behaviors can be seen in a variety of

animals, suggesting that the central systems facilitating survival and reproduction originated
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early in evolution and that similar ancient basic building blocks mediate these processes

[41,42]. In agreement with this concept, we and others showed that Drosophila melanogaster
can adjust its behavior and physiology to various social conditions [43–55] and that the brains

of mammals and fruit flies share similar principles in encoding stress and reward [43,56–58].

For example, the fly homologue of the NPY signaling system (i.e., NPY and its receptor) func-

tions in processing natural and drug rewards, decreases aggressive behaviors and suppresses

responses to aversive stimuli such as harsh physical environments [43,59–69]. Moreover, simi-

lar to the essential role that NPY\Y1 signaling plays in various processes affecting health and

lifespan in mammals [70–74], activation of neuropeptide F (NPF) neurons in male flies leads

to decreased resistance to starvation and decreased lifespan [75,76].

We previously showed that successful mating, and, more specifically, ejaculation, is reward-

ing for male fruit flies and reduces the motivation to consume drug reward [43,77,78]. While

most research focuses on mechanisms that encode sexual reward [43,60,75,77,79–84], it

remains unknown whether failure to obtain sexual reward is simply a lack of reward or is per-

ceived as a stressor. Here we used the courtship suppression paradigm in Drosophila [45,85–
87] to model the effects of failures to obtain sexual reward on different aspects of male behav-

ior. We discovered that failure to mate induces a stress-like response characterized by a larger

investment in actions that can enhance the odds of obtaining sexual reward while, at the same

time, reduces the ability of rejected males to endure starvation and oxidative stressors via the

disinhibition of a small subset of NPF-receptor neurons.

Results

Failure to mate promotes social avoidance

To explore the way by which failure to obtain rewards affects behavior, and to ask whether fail-

ure to obtain reward is simply a lack of reward or is perceived as a challenge, we used the

courtship suppression paradigm to induce repeated events of sexual rejection and assayed vari-

ous aspects of male behavior. As a starting point, we employed the agnostic nature of the Fly-

Bowl system to compare multiple behavioral features of male flies that experienced repeated

failures to mate over the course of 4 days (“rejected”), to that of controls that experienced suc-

cessful mating (“mated”), or lack of any sexual and social experience (“naïve-single”). Follow-

ing the experience phase, 10 flies of each cohort were placed in circular arenas, and their

behavior was recorded for 30 min and analyzed using the FlyBowl suite of tracking and behav-

ior analysis softwares [88–90] (Fig 1A). The tracking data obtained was used to calculate vari-

ous kinetic features, including velocities, distances and angles between flies and their relative

differences across time, and to train 8 types of behavior classifiers using the Janelia Automatic

Animal Behavior Annotator (JAABA) (Figs 1B and S1, 88].

Examining features that reflect activity levels, such as time spent walking, number of turns,

time spent stopping, and average speed, revealed similar activity levels in rejected and naïve-

single males, which were significantly higher than those in mated males (Fig 1C–1F). Analysis

of specific social behaviors indicated an overall reduction in the degree of social interaction in

rejected males than in naïve-single males (Fig 1G–1J). This included a lower number of

approaches towards other males (Fig 1G), low levels of male-male chase behavior (Fig 1H),

reduced formation of chains composed of multiple chasing males (Fig 1I), and fewer close

touch encounters (Fig 1J). Taken together, the results indicate that rejected males are behavior-

ally distinct from both naïve and mated flies, marked by reduced levels of some behaviors asso-

ciated with social interaction.

To extend the analysis of their social behavior, we next investigated the network structures

of the various fly cohorts, by analyzing features that describe the properties of their respective
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Fig 1. Failure to mate modifies action selection upon encounters with rival male flies. A. Schematic representation of sexual experience and behavioral

analysis. Rejected males experienced 1h long interaction with non-receptive female flies, 3 times a day for 4 days. Mated males experienced 1h long interactions

with a receptive virgin female, 3 times a day for 4 days. Male flies with no sexual experience were kept in social isolation (naïve-single). The social group

interaction of the 3 cohorts was recorded for 30 min using the FlyBowl system. B. List of kinetic features, 8 behaviors and network parameters produced using

the FlyBowl system. C-J Average percentage of time mated (blue) naive (green) and rejected (red) took to perform walk (C), turn (D), stop (E), change

orientation (F), approach (G), chase (H), chain (I) and touch (J) behaviors. n = 15, 8, 15 for mated, naïve-single and rejected respectively. One-way ANOVA

followed by Tukey’s and FDR correction for multiple tests *p< 0.05, **p< 0.01, ***p < 0.001. Error bars signify SEM.

https://doi.org/10.1371/journal.pgen.1011054.g001
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social networks and the individuals within them, including the density of the network and the

strength of individuals within it (Fig 2A) [88]. Interaction events were defined using the fol-

lowing parameters: focal fly can see the other fly (requirement: at least 2 seconds in which the

focal fly was at a distance of>8mm from the other fly and in which the visual field of view of

the focal fly was occupied by the other fly (angle subtended>0); and network weights, i.e., the

overall duration of interactions (emphasizing long-lasting interactions) or overall number of

interactions (emphasizing short interactions) between each pair of flies (Fig 2B–2E). Analysis

by duration indicated that the social networks of rejected males are less dense (Fig 2B) and

that the average strength of individual flies in these networks is lower compared to mated and

naive male flies (Fig 2C). Likewise, analyzing network features by number of interactions iden-

tified reduced density and low strength of the individuals than naive males (Fig 2D and 2E).

These findings suggest that rejection promotes the formation of sparser groups containing

individuals with reduced social interaction. The reduced network density of rejected male flies

prompted us to compare the average distance between individuals of each group along the

experiment, as indicated by the average field of view occluded by another fly (anglesub), a fea-

ture that increases as the distance between individuals decreases (Fig 2F). This analysis

revealed that rejected male flies maintained significantly low values of anglesub, suggesting
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Fig 2. Sexual rejection promotes social avoidance. A. Illustration of network parameters. Density of networks represents how

saturated they are compared to the maximum possible. Strength is proportional to vertex size (high in red individual). B-E. Social

network analysis of groups composed of mated (blue) naïve-single (green) and rejected (red). Network density, and strength

calculated by network weights according to duration (B-C) or number of interactions (D-E). Kruskal–Wallis test followed by

Wilcoxon signed-rank test and FDR correction for multiple tests *p< 0.05, **p< 0.01, ***p< 0.001, Box plot with median IQR. F.

Rejected male flies maintain large distances between flies along as measured by anglesub which is the Maximum total angle of

animal’s field of view (fov) occluded by another animal, statistical significance was tested on averages across time. one-way ANOVA

followed by Tukey’s and FDR correction for multiple tests *p< 0.05, **p< 0.01, ***p< 0.001. Error bars signify SEM. G. Average

number of flies close to a focal fly. n = 15, 8, 15 for mated, naïve and rejected respectively. One-way ANOVA followed by Tukey’s and

FDR correction for multiple tests *p< 0.05, **p< 0.01, ***p< 0.001. Error bars signify SEM.

https://doi.org/10.1371/journal.pgen.1011054.g002
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that rejected males maintain long distances between one another across the experiment. This

finding is also supported by a reduced number of flies near a focal rejected fly compared to

mated and naive male flies (Fig 2G). Given that rejected male flies exhibit similar activity levels

as naive male flies, and presumably a higher probability to encounter other flies, their reduced

network density and high inter-individual distance suggest that rejected individuals actively

avoid social interactions with other flies, resulting in low-density groups.

The behavioral signatures of the three cohorts across all 60 parameters (kinetic features,

velocities, distances and angles between flies, scores for 8 behaviors, their frequencies as well as

network features), are summarized in a scatter plot of normalized differences and are divided

into 4 main categories: activity, interaction, coordination between individuals and social clus-

tering, i.e., the aggregation of males to form clusters (S2 Fig). The existing similarities and dif-

ferences between the three cohorts indicate that sexual rejection induces a discrete behavioral

state that differs from successful mating and lack of mating and point to sexual rejection as the

major contributor to reduced social interaction.

Failure to mate promotes stress responses that can increase the odds of

obtaining a sexual reward

The similarity between some of the behavioral features exhibited by sexually rejected male flies

to stress responses in other animals, including social avoidance, enhanced activity/arousal, and

increased consumption of drug rewards [43], suggests that failure to mate induces a stress

response in male flies. This prompted us to investigate whether failure to mate induces the

loser-like state observed in socially defeated animals [16,91] or, rather, a high motivation to

obtain a sexual reward, as described in several species upon the omission of an expected

reward [92–102]. To discriminate between these two options, we analyzed the behavioral

responses of rejected males in aggressive and mating encounters. If rejection promotes a loser-

like state, rejected males are expected to exhibit low levels of aggression towards other male

flies and reduced investment in mating. Conversely, if it promotes a high motivational state,

rejected males should display enhanced aggression and higher investment in mating-related

behaviors.

We compared the aggression levels of rejected and mated male flies, as both cohorts experi-

enced interaction with females, unlike naïve-single flies, which were socially isolated, a condi-

tion known by itself to promote aggression. We discovered that when paired together, rejected

male flies exhibited significantly higher displays of aggression in comparison to pairs of mated

male flies (Fig 3A). In mixed pairs, the rejected male exhibited a far greater number of lunges

compared to its mated opponent (Fig 3B and 3C), indicating that failure to mate does not

induce a loser-like state. To extend this analysis to mating-related actions, we compared the

mating duration of rejected males to that of control naïve/virgin male flies, as the investment

in mating of the mated cohort is shaped by their previous mating events. When allowed to

mate with virgin female flies, the copulation duration of rejected male flies was 25% longer

(3.5 minutes longer) than the control males (Fig 3D). This was accompanied by an increase in

the expression levels of genes associated with reproductive success compared to control males,

including a two-fold increase in the transcript levels of Sex-Peptide (Acp70A) and Acp-63, both

of which facilitate post-mating responses and fertility in female flies (Fig 3E) [103]. Taken

together, these findings suggest that repeated events of sexual rejection promote a high motiva-

tional state rather than a loser-like state.

To further explore the effects of rejection on mating drive, we performed a detailed analysis

of the action selection exhibited by males towards mated females during the first day of the

training phase that was used to generate the rejected cohort (three one-hour training
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interactions spaced by one-hour resting intervals). As controls we used in each training session

virgin males that interacted with virgin females (S3A Fig). The behavior of both cohorts during

the first 10 min of each session was manually analyzed. In line with previous studies, the

rejected cohort displayed marked courtship suppression, reflected by a reduction in the overall

time spent courting in all 3 sessions (S3B Fig) [45,85,104]. Yet, the overall number of males

exhibiting courtship action did not decline over the course of two days (S3C Fig), and interest-

ingly, other aspects of their courtship, such as the overall number of licking actions and num-

ber of copulation attempts, were no less vigorous (S3B Fig). Notably, although the rejected

males depicted longer latency to court mated females during the first encounter (consistent

with an innate aversion to the male pheromone cVA [104,105]), they overcame this aversion
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https://doi.org/10.1371/journal.pgen.1011054.g003
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in subsequent sessions and initiated courtship at the same time as males that courted virgin

females (S3B Fig). Another feature that may reflect their surprising persistence is the duration

of copulation attempts, which was 6 times longer compared to the controls (Fig 3F). This find-

ing is suggestive of a conflict between high motivation to mate and repeated inability to fulfill

this mating drive. Taken together, the behavioral responses of rejected males towards male

and female flies imply that repeated failures to mate induce a “frustration-like” state where

rejected males experience a conflict between their high motivation and inability to fulfill their

mating drive.

Sexual rejection increases sensitivity to stressors

Next, we assessed whether there is a cost for this “frustration-like” state by testing the ability of

rejected males to endure starvation and oxidative stress. Rejected, mated and naïve-single

males were conditioned over the course of two days, and each cohort was subsequently

exposed to starvation (1% agarose) or oxidative stress (20mM paraquat), and the rate of sur-

vival over time was documented (Fig 4A). If deprivation of sexual reward is a stressor, rejected

male flies should be more sensitive to other stressors. Indeed, rejected males exhibited higher

sensitivity to both starvation and oxidative stress compared to controls (Fig 4B and 4C). While

the survival of mated and naïve-single cohorts declined to 50% after 22–24h of starvation, in

the rejected male flies this was reached after less than 18h (Fig 4B). Exposure to paraquat led to

a 50% decline in survival after more than 17h for both the mated and naïve-single cohorts vs.

less than 14 hours for rejected males (Fig 4C). This demonstrates that sexual rejection pro-

motes sensitivity to starvation and oxidative stress, further suggesting that multiple rejection

events serve as a stressor, compromising the ability of male flies to cope with other stressors.

Importantly, complete deprivation of both social and sexual interactions (i.e., naïve-single

cohort) did not result in the same effect as active rejection, suggesting that the deprivation of

an expected sexual reward, but not the lack of mating, increases sensitivity to additional stress-

ors. The overall lifespan of rejected males was not affected by sexual deprivation (S4A Fig).

The sensitivity of rejected males to starvation was not due to the increased activity of the

rejected cohort, as there was no difference in the circadian activity and sleep patterns between

rejected males and the other two cohorts (S4B–S4D Fig). It also implies that the enhanced

activity in the FlyBowl experiments does not reflect an inherent increase in the activity of indi-

vidual flies, but rather an emergent property of their response to the presence of other males.

Additionally, no difference was documented in body triglycerides (TAGs), glucose levels, or

body weight between the cohorts (S5A–S5D Fig), suggesting that rejected male flies do not suf-

fer from an energetic deficit that increases their sensitivity to starvation. Although targeted

metabolite analysis of head tissues using liquid chromatography–mass spectrometry (LC-MS)

revealed a unique profile for each cohort (S5E Fig), we did not document any significant accu-

mulation or depletion of metabolites such as oxidative agents or in antioxidant activity and

glucose levels. Thus, sexual rejection decreases the ability of males to cope with additional

stressors, but this is not simply explained by metabolic deficits.

Disinhibition of NPFR neurons increases sensitivity to starvation in male

flies

The sensitivity of rejected males to acute stressors implies the existence of a link between the

inability to obtain rewards and the stress response. Given the causal link between sexual rejec-

tion, NPF/R signaling and ethanol consumption in flies [43,63], and the role of the mammalian

NPY in mediating the crosstalk between reward and stress by inhibiting downstream neurons

[34], we postulated that rejection leads to disinhibition of NPFR neurons, which in turn

PLOS GENETICS Rejection induces sensitivity to stress via NPF

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011054 January 18, 2024 8 / 29

https://doi.org/10.1371/journal.pgen.1011054


sensitizes males to starvation. To test this hypothesis, we knocked down NPF-receptor in

NPFR neurons (S6A Fig) and compared the sensitivity of naïve-single, rejected, and mated

male flies to starvation stress. If sexual rejection reduces NPF signaling, which in turn disinhib-

its NPFR neurons, mated male flies should exhibit similar responses as rejected male flies. Our

findings show that this manipulation abrogated the differences between mated and rejected

cohorts (Fig 4D), implying that the release of NPF and binding to its receptor on NPF-receptor

neurons (NPFR) is necessary for the resistance of mated males to starvation stress, and pre-

sumably that NPFR neurons are disinhibited in rejected males, resulting in enhanced
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Fig 4. Repeated sexual rejection events increase sensitivity to stressors via NPFR neurons. A. Schematic representation of

courtship conditioning: control males were introduced to either virgin, sexually receptive or sexually non-receptive females. As

a result, males were either mated or rejected. The third cohort consisted of control single housed males that did not experience

any social or sexual event (naïve-single). Encounters with females were repeated 3x a day for two days. B. Starvation resistance

assay: rejected males (red, n = 91) compared to mated (blue, n = 102) and single housed (green, n = 110) males, ***p< 2E-16;

mated vs single males, *p<0.05. C. Resistance to oxidative stress (20mM Paraquat): rejected males (red, n = 50) compared to
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(red, n = 68) and naïve-single (green, n = 63) male flies. *p<0.05 rejected vs naïve-single, **p<0.01 mated vs naïve-single.

Pairwise log-rank with FDR correction E. Activation of NPFR neurons promotes sensitivity to starvation. NPFR>csChrimson

flies underwent three times a day (5 minutes each) optogenetic activation for two days (pink), NPFR>csChrimson w/o

activation (grey) serve as controls. Starvation resistance of experimental (n = 55) and control flies (n = 72) was assayed. Log-

rank test was performed, ***p< 0.001. F. Male flies expressing UAS-csChrimson and UAS-Shibirets in NPFR neurons were

subjected to three 5 min long optogenetic activations for three days, and their synaptic signaling was blocked at 28–29˚C (light

+ heat, orange, n = 52). Positive control males (light+cold, pink, n = 52), synaptic release block control (dark+heat, light gray,

n = 52), negative control (dark+cold, dark gray, n = 50). Experimental and positive control flies showed no significant difference

in resistance to starvation (p>0.05). Both experimental and positive control flies were significantly more sensitive to starvation

than ‘dark+heat’, and ‘dark+cold’ flies (**p<0.01). Pairwise log-rank test with FDR correction for multiple comparisons was

performed.

https://doi.org/10.1371/journal.pgen.1011054.g004
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sensitivity. To further test this conclusion, we next attempted to mimic rejection in naïve-sin-

gle males using optogenetic activation of NPFR neurons (three, 5 minutes long activation/

day). And indeed, this short activation protocol significantly increased their sensitivity to star-

vation compared to control flies (Fig 4E), further demonstrating that the disinhibition of

NPFR in rejected males induces sensitivity to starvation stress. Interestingly, neurotransmitter

release may not be required for starvation sensitivity triggered by the activation of NPFR neu-

rons, as the same NPFR neurons activation protocol (three 5 minutes/day) and simultaneous

inhibition of their synaptic transmission (using temperature sensitive Shibire), yielded similar

levels of sensitivity to starvation as that of activation of NPFR neurons alone (Fig 4F). These

results suggest that sexual-deprivation-induced sensitivity to starvation may involve neuropep-

tide based signaling and not neurotransmitter release that depend on functional dynamin.

To assess whether the activation of NPFR neurons can also mediates other behavioral phe-

notypes observed in rejected males, we assayed the behavior of NPFR>csChrimson flies dur-

ing optogenetic activation in FlyBowl arenas. Interestingly, we observed minor differences in

the behavior of the experimental flies compared to genetic controls (S6B Fig), indicating that

disinhibition of all NPFR neurons is sufficient to increase sensitivity to starvation, but not to

induce changes in male-male social interactions.

Activation of a small subpopulation of NPFR neurons increases sensitivity

to starvation and promotes social arousal

We next sought to determine which subset of the 100 NPFR neurons is responsible for the

enhanced sensitivity to starvation. Given the possibility that sensitivity to starvation is medi-

ated via neuropeptide release, we focused our attention to neuropeptide expressing neurons

with shared expression with NPFR such as NPF [106], Dh44 [61], and Tachykinin [107]. Acti-

vation of NPFRNPF mutual cells (P1 and L1-l neurons as in Shao et al., [106]) did not affect

either the sensitivity to starvation or male-male social interactions (S6C and S6D Fig), suggest-

ing that NPF-expressing NPFR neurons, which presumably have the capacity for autoinhibi-

tion, are not responsible for these effects. Next, we tested Dh44 expressing neurons, as we

previously documented similarity between Dh44 and NPFR transcriptional programs [61].

We first validated the overlap between the two populations and discovered that all six pars

intercerebralis (PI) Dh44 neurons are NPFR neurons as well (Fig 5A). Activating Dh44 neu-

rons did not affect sensitivity to starvation, nor did it lead to apparent effects on male-male

behavioral responses (Figs 5B and S7A). In addition, knocking down the expression of Dh44

in NPFR neurons did not change the sensitivity to starvation (S7B Fig). Altogether, these find-

ings suggest that although Dh44 neurons are the functional homologue of mammalian CRF,

Dh44 signaling does not mediate the sexual reward deprivation stress response in flies.

Lastly, activation of a small neuronal population consisting of 22–26 cells that co-express

the neuropeptide Tachykinin (NPFRTK, Fig 5C and S1 Movie), induced starvation sensitivity

that was similar in its extent to the activation of the entire NPFR population (Fig 5D). The

effects do not depend on the TK neuropeptide itself, as its knockdown did not affect starvation

rates (S8A and S8B Fig), suggesting that activation by itself is responsible for the enhanced sen-

sitivity. Remarkably, acute activation of these neurons mimics also the heightened arousal and

some of the aggression-related features associated with the frustrative-like state. This included

high ratios of male-male touch and chase events (Fig 5E and 5F), higher frequency of chase

events (Fig 5I), higher persistence reflected by longer duration of touch and chase actions

(Fig 5G and 5H) and as a result, reduced formation of social clusters (S8C Fig). In addition,

the activation of NPFRTK neurons resulted in increased coordination between pairs of flies as

seen by lower values of features that measure relative changes in angle and speed between two
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Fig 5. A subset of 12–16 NPFR neurons regulate both sensitivity to starvation and male-male social interaction. A.

A portion of NPFR neurons co-express the neuropeptide DH44. Colocalization of DH44 using rabbit anti DH44

(magenta) in GFP expressing NPFR neurons. B. No effect for activation of Dh44 neurons on starvation resistance.

p>0.05, n = 56 for all cohorts. C. Shared NPFRTK neurons as visualized using genetic interaction between NPFR and

TK drivers: NPFRG4;+, TK-LexA;+, +;LexAop-FlpL, +;UAS<dsFRT>cs-Chrimson-mVenus flies. Green marks

NPFRTK neurons, magenta marks nc-82. D. Activation of NPFRTK neurons enhances sensitivity to starvation

(NPFRTK, red, n = 51) compared to genetic control flies (TK-LexA;LexAop-FLPL, black, n = 44; and NPFR G4;

UAS<dsFRT>csChrimson-mVenus, gray, n = 51). *p<0.05, **p<0.01. E-I. Analysis of male-male social interaction

during optogenetic activation of NPFRTK neurons compared to genetic controls using the FlyBowl system. Activation

of NPFRTK neurons induces higher rates of touch behavior (E), chase events (F), longer duration of touch events (G),

longer duration of chase events (H), and higher frequency of chase as reflected by linger inter-bout intervals between

chase events (I). n = 13 for NPFRTK (red). n = 13 TK-LexA;LexAop-FLPL (black), and n = 12 NPFRG4;

UAS<dsFRT>csChrimson-mVenus (gray). *p<0.05, **p<0.01, ***p<0.001. ANOVA or Kruskal-Wallis with post-

hoc Tukey’s or Dunn’s test, and FDR correction for multiple comparisons were performed. J. Schematic

representation of brain NPFR neurons that intersect with TK, Ilp2, DH44, and NPF neurons. K. Summary of main

findings according to which deprivation of sexual reward induces a stress-like response and increases sensitivity to

subsequent acute stressors. This is mediated by a neuronal response: Sexual deprivation decreases NPF signaling,

thereby disinhibits NPFR neurons and induces a dynamin-independent activity, which increases sensitivity to

starvation.

https://doi.org/10.1371/journal.pgen.1011054.g005
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close individuals (absanglefrom1to2, absphidiff and absthetadiff; S8C Fig), presumably sug-

gesting that flies engage more persistently with others when interacting. In many cases the

high arousal and persistence resulted in the formation of long chains containing 4–8 flies (S8C

Fig). Given the overlap between some NPFRTK neurons and Dh44 or NPF neurons (S8D and

S8E Fig), the activation of which does not promote starvation sensitivity or enhanced social

arousal, we suspect the rest of NPFRTK neurons (12–16 cells which are negative to NPF and

DH44), to regulate both sensitivity to starvation and the observed social responses (Fig 5J and

S8D–S8F Fig). Taken together, these results suggest that the disinhibition of a small subset of

NPFR neurons in rejected males promotes behavioral responses that may serve to increase the

odds of obtaining a sexual reward, and at the same time impair the ability of male flies to resist

starvation stress.

Discussion

In this study, we discovered that the NPF/NPFR system serves as a junction that integrates the

crosstalk between reward and stress, and showed for the first time that Drosophila males per-

ceive failures to obtain sexual reward as social stress. We used a collection of behavioral para-

digms to explore responses altered by sexual interaction and discovered that repeated events of

failure to mate lead to complex behavioral and physiological responses, encoded in part by the

disinhibition of a subset of NPFR neurons. This includes avoiding interaction with other male

flies and, at the same time, competing over mating partners via increased aggression and pro-

longed copulation (known as mate guarding); the latter is strengthened by the increased pro-

duction of certain seminal fluid proteins that facilitate stronger post-mating responses in

female flies. The regulation of ejaculate composition and mating duration were previously

described in Drosophila males in response to perceived competition with rival male flies as a

strategy to transfer a higher amount of accessory gland proteins (Acps) to intensify the females’

post-mating responses [47,108,109]. Although rejected males were not exposed directly to

other male flies, the observed extension of copulation events and increased expression of sex-
peptide suggest that failure to mate induces responses like those following the perception of

competing male flies, presumably by evaluating the quality of their sexual interaction with

female flies. It remains to be tested whether the enhanced investment in mating-related ele-

ments promotes mating success.

While most studies focus on mechanisms that encode reward on a scale of zero to one, our

findings demonstrate the existence of negative values, where failure to obtain rewards is differ-

ent than its lack, as shown by the clear differences between rejected and virgin males who

never experienced mating or rejection. This provides a conceptual framework for investigating

mechanisms that regulate deprivation or omission of an expected reward which is located at

the negative part of the scale, when organisms fail to obtain a reward they expect to receive

despite signals for its presentation [92]. This condition is known to induce a frustrative-like

state, characterized by increased motivation to obtain the reward [93,95,99], increased levels of

arousal [99,100], agitation [94], grooming [92,100], stress-associated behaviors [93,94], drug

consumption [95,101], locomotion [94], and aggression [95]. The use of courtship suppression

to deprive male flies of the inherent expectation of a sexual reward provides a possible model

for frustration-like stress responses in Drosophila. While courtship suppression is associated

with reduced courtship and presumably a defeat-like state, we discovered that rejected males

are rather persistent in their attempts to obtain a sexual reward. This finding is not completely

surprising considering the innate nature of mating motivation and the presence of female aph-

rodisiac pheromones. It can also be attributed to measuring various courtship actions rather

than to the overall percentage of time spent courting, which is the usual indicator for the
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quantification of courtship. In response to repeated failures to mate, rejected males exhibit fea-

tures characteristic of a frustration-like state, such as persistent mating actions (some of which

are elongated), increased arousal, increased aggression, as well as longer mating duration upon

successful mating encounters, all of which are reminiscent of a high motivational state.

The presumed discrepancy in the experience of rejected males where their innate expecta-

tion to obtain mating reward when perceiving female associated cues is unmet, resembles a

well-studied neuronal mechanism known as error predication. This associative learning-based

mechanism was largely studied in mammals and serves to encode a discrepancy between

expected and actual rewards by sub-second-fast dopaminergic signals [110–112]. A recent

model suggests that the Drosophila dopaminergic system harbors the capacity to encode for

error prediction in a similar fashion to its mammalian counterparts [113]. Although the sexual

rejection paradigm used in this study does not completely fit the error prediction hypothesis,

as the tested males did not learn to associate females with mating reward, it may still be a useful

paradigm to study error prediction in flies. This idea is strengthened by the functional interac-

tion between NPF expressing neurons and subsets of dopaminergic neurons that express

receptors for NPF [60,62] and the established role of dopaminergic neurons in encoding the

negative valence of sexual rejection [60,87]. An interesting avenue for future research will be to

assess the behavioral and physiological trajectories of male flies that experienced successful

mating before undergoing sexual rejection.

While this motivational state may assist males in coping with social challenges associated

with failure to mate, it is perceived as a stressful experience manifested by temporal costs in

the form of sensitivity to acute stressors. This is the first example in flies that not obtaining a

sexual reward is not simply a case of reward deprivation but also a stressful experience. But

what mechanism governs the behavioral and physiological responses to deprivation of sexual

reward? In search of mechanisms that could explain the behavioral and physiological

responses to the failure of obtaining a sexual reward, we examined three possible directions:

(1) sleep and activity (2) energetic costs or modulation of metabolic pathways, and (3) disinhi-

bition of NPF target neurons.

Regarding the possibility that high motivational state is associated with high energetic costs,

and although Gendron et al. [75] showed that exposure to female pheromones lowers body tri-

glyceride levels in males, we did not detect metabolic changes that could explain sensitivity to

starvation or oxidative stress. Still, our findings that some metabolites, such as 5-Aminolevuli-

nic acid, are enriched in rejected flies may indicate a reduction in Heme synthesis and, conse-

quently, an elevation in protoporphyrin, as well as a possible reduction in heme oxygenase

(HO). While there is some evidence that protoporphyrin can act as an antioxidant [114,115], it

mainly functions as a pro-oxidative agent [116,117]. HO is a rate-limiting enzyme that

degrades heme into biliverdin, carbon monoxide (CO), and iron [118]. In Drosophila, the ho
gene is expressed in different brain tissues, including in the optic lobe, central brain, and glial

cells, and plays an important role in cell survival and protection against paraquat-induced oxi-

dative stress [119]. This is consistent with rejected males experiencing increased sensitivity to

oxidative stress, reflected in their heightened sensitivity to paraquat. However, this does not

explain why rejected males were also more sensitive to starvation. Five of the metabolites were

specifically enriched or depleted in rejected compared to both mated and naïve-single cohorts:

glycine, tryptophan, 5-aminolevulinic acid (5ALA), acetyl-glutamine, and stearic acid (S5E Fig

and S1 Table). Though tryptophan can be converted to serotonin or tryptamine, and most of

the tryptophan metabolizes to kynurenine pathway (KP) metabolites, which contribute to a

shorter lifespan [120–123], we did not document any significant accumulation or depletion of

metabolites in the KP, or a difference in the abundance of serotonin (S5E Fig). Similarly, no

difference was observed in oxidative agents or in antioxidant activity and glucose levels,
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though trehalose (the main circulating sugar in flies) levels declined in naïve-single males com-

pared to mated and rejected males, indicating a possible change in insulin signaling [124–127].

After eliminating the contribution of sleep or metabolic deficit to the inability of rejected

males to cope with stress, we demonstrated that their sensitivity to starvation stress is caused

by the disinhibition of NPF target neurons, mimicked in our experiments by optogenetic acti-

vation of NPFR neurons as well as knock-down (KD) of npfr. We mapped the relevant neurons

to a subset of 22–26 NPFRTK neurons, the activation of which is sufficient to induce sensitivity

to starvation and some of the behavioral phenotypes observed in rejected males. The identified

NPFR sub-population can be divided into smaller known subpopulations: six of these neurons

express the CRF-like DH44, and two pairs of NPFRTK neurons, L1-l and P1, colocalize with

NPF-expressing neurons. While CRF neurons in mammals mediate reward-seeking behaviors

and responses to social stress [13,14,128–134] and the fly Dh44 neurons are known to facilitate

aggressive behaviors [135], we did not find evidence to support their role in regulating

responses to social stress. We concluded that the activation of a subset of 12–16 neurons co-

expressing the Tachykinin neuropeptide governs both starvation sensitivity and enhanced

arousal and some features of aggressive behaviors. It should be noted that the effects of optoge-

netic activation of NPFRTK neurons was tested using the FlyBowl setup, a context that does

not allow for the expression of lunging behavior (due to low ceiling) but do support the expres-

sion of other forms of aggression such as chases and wing threats. Therefore, the activity of the

NPF\NPFR circuit alone is sufficient to facilitate a stress-like response caused by the depriva-

tion of a reward and increase subsequent sensitivity to acute stressors.

While the subset of NPFR neurons that mediate the behavioral and physiological response

shares expression with Tachykinin [61], the TK neuropeptide itself does not play a role in mod-

ulating the sensitivity to starvation upon sexual rejection. In addition, while Wohl et al., [136]

found that TK supports cholinergic synaptic transmission, our results suggest that the

increased sensitivity to starvation is mediated by a dynamin-independent signaling mecha-

nism, possibly bulk endocytosis for vesicle retrieval or neuropeptide release, which commonly

does not involve synaptic vesicle reuptake. Further dissection of the NPFR and NPFRTK neuro-

nal subpopulations is needed to better understand the role of each cell type in response to sex-

ual reward deprivation.

This is the first documentation of a frustration-like stress response in Drosophila, which is

caused by the innate expectation of a natural reward that is not achieved. Our findings offer a

paradigm shift in the perception that rejected males refrain from obtaining a sexual reward by

showing that their motivation to copulate increases, not declines, and thus can serve as a con-

ceptual framework to study the interplay between reward-seeking behaviors such as ethanol

consumption, stress, and addiction. The bi-directional role of the NPF system in mediating

reward and suppressing response to stressors [59] and the remarkable similarity to mamma-

lian NPY [137] suggest that it is possible to simplify the complexity of studying the crosstalk

between reward, stress, and reproduction in mammals by stripping it down to its most funda-

mental building blocks in fruit flies.

Materials and methods

Fly lines and culture

Drosophila melanogaster WT Canton S flies were kept at 25C˚, ~50% humidity, light/dark of

12:12 hours, and maintained on cornmeal, yeast, molasses, and agar medium. Most fly lines

were backcrossed to a Canton S background. NPFR-Gal4 flies were a gift from the Truman lab

(HHMI Janelia Campus collection). UAS-NPFR RNAi, NPF-LexA, UAS<dsFRT>cs-Chrim-

son-mVenus in attp2 and LexAop-FLPL flies were obtained from HHMI Janelia Campus
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collection. The following lines were obtained from the following collection centers: TK-LexA

(Bloomington #54080), UAS-tk RNAi (VDRC #103662), Dh44-Gal4 (VDRC #207474).

Sexual experience protocols

Males and females were collected within 2 h of eclosion on CO2, 3–4 days before courtship

conditioning. Males were collected into narrow glass vials (VWR culture glass tubes

10X75mm) containing food and kept single housed until the conditioning. To generate mated

females for the experiment, mature males were added to the females ~16 h before the experi-

ment. All flies were kept in the incubator at 25˚C, ~50% humidity, and light/dark of 12:12

hours. The mated females were separated from the males on the morning of the conditioning.

During the conditioning, the temperature was kept at about 25˚C, and humidity was ~55%.

Generation of rejected males. Individual males were placed with mated females for 3

one-h conditioning trials (separated by 1-h rests) a day for two or four consecutive days.

Females were removed after each trial. Males from the rejected cohort that managed to mate

and males from the mated cohort that did not end up mating during all sessions were dis-

carded. At the end of each session, the female fly was removed, and the males that experienced

rejection were kept in the original vial for one hour of rest. Males were monitored every 10

minutes to ascertain lack of mating, and when mentioned the number of males exhibiting

courtship action during training sessions was documented.

Generating mated males. To generate the “mated-grouped” cohort, individual males

were housed with virgin females for 3 one-h conditioning trials (separated by 1-h rests) a day

for two or four consecutive days. Females were removed after each trial.

Generating Naïve-single males. Virgin males were collected within 2 h of eclosion and

kept separately in small food vials during the entire trial. Gentle handling was performed paral-

lel to rejected and mated males conditioning sessions. The naïve-single male cohort was kept

in the behavior chamber during the training phase, and the vials containing the males were

handled as similarly as possible to the rejected and mated cohorts, without inserting female

trainers. Detailed protocol is previously described [86].

Behavioral, molecular, and metabolic analysis following experience phase

Analysis of social group interaction using the FlyBowl system. At the end of four days

of sexual experience, rejected, mated and naive-single male flies were inserted in groups of 10

into Fly Bowl arenas [89], and their behavior was recorded for 30 minutes and analyzed using

CTRAX, FixTrax [88] and JAABA [89]. For kinetic features, scripts were written in MATLAB

to use the JAABA code to generate the statistical features as specified in Kabra et al, [89]. Time

series graphs (per frame) were created using JAABA Plot [89]. Quantification of complex

behaviors was done using JAABA Classifiers [89] to identify specific behaviors: Walk, Stop,

Turn, Approach, Touch, Chase, Chain, Song, Social Clustering, and Grooming. Bar graphs

were created using JAABA Plot [89]. Network analysis was performed using an interaction

matrix according to the interaction parameters described previously [88]. Two interaction

matrices were created for each movie, one with the total number of frames each pair of flies

were interacting divided by the number of frames in the movie and another with the number

of separate interactions between each pair of flies divided by the maximum number of possible

interactions, calculated as:

maxofinteractionpossible
¼ ððofframes � minofframesforinteractionÞ=ðminofframesforinteractionþminofgapframesÞÞ þ 1
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The parameters to define an interaction are angle subtended by the other fly > 0, distance

between the nose of the current fly to any point on the other fly� 8 mm, number of frames for

interaction� 60 and number of gap frames� 120. Interaction end is defined when distance

or angle conditions are not maintained for 4 seconds. Networks and their features were gener-

ated from the interaction matrix in R using the igraph package. The function that was used to

generate the networks is “graph_from_adjacency_matrix” with parameters

“mode = undirected” and “weighted = TRUE”. Density was calculated on all movies with the

formula:

Density ¼ ðsumofweightsÞ=½numberofvertices∗ðnumberofvertices � 1Þ�∗0:5

Modularity was calculated using the “modularity” function on output from the

“cluster_walktrap” function65. Strength was calculated using “strength” function and SD

Strength was calculated on all movies using “sd” function on the strength value. Between-

ness Centrality was calculated on all flies using the “betweenness” function and SD

Betweenness Centrality was calculated on all movies using “sd” function on the Between-

ness Centrality value. Box plots were created using R.

Each feature of the FlyBwol experiment was standardized according to all values calculated

in our experiments for that feature to generate a z-score. Scatter plots were created using R.

Aggression assay. At the end of four days of sexual experience, pairs of rejected or mated

male flies were introduced into aggression arenas (circular chambers, about 0.08 cm3 in vol-

ume), which contained a mixture of agarose and apple juice (1% agarose, 50% apple juice) that

was placed in arenas to enhance aggressive behavior. Flies were filmed for 30 min with Point-

Grey Flea3 (1080×720 pixels) at 60 fps. Aggressive behavior was later quantified by counting

the number of lunges for each pair using CADABRA software [138], and validated by manual

scoring. The log2 ratio between the number of lunges in rejected and mated flies was calculated

for each pair, and then a one-sample t-test was performed to test whether the mean ratio is sig-

nificantly different from 0.

Copulation duration. At the end of four days of sexual experience, rejected and naive-sin-

gle male flies were inserted into courtship arenas (circular chambers, about 0.04 cm3 in vol-

ume) with virgin females and were allowed to mate for 1 hour. They were recorded for the

whole experiment using a Point-Grey firefly camera. Courtship arenas consist of 25 flat arenas

each arena containing only one pair of male-female flies. The copulation duration was mea-

sured from the moment the mating began until it ended. We calculated the time in seconds for

each fly and the average for each group.

Quantitative Real-Time PCR analysis. At the end of 4 days of sexual experience male

flies were flash frozen. Frozen flies were placed on ice and decapitated using a scalpel. Total

RNA was extracted from ~15 frozen bodies, using TRIZOL reagent according to the manufac-

turer’s protocol. mRNA was reverse transcribed using the BIORAD cDNA synthesis kit.

cDNA was analyzed by quantitative real-time PCR (BIORAD CFX96) using specific primers

for the head and for the body. Relative expression was quantified by ΔΔCT method using

RPL32 as a loading control. We run each sample in triplicates. Each experiment was repeated

four times using independent sets of experimental flies.

Sensitivity to starvation stress. Following two days of sexual experience or when men-

tioned after optogenetic activation, males were transferred to glass vials containing 1% agarose

and were kept singly throughout the experiments. The number of live flies were recorded

every couple of hours.

Sensitivity to oxidative stress. Following two days of sexual experience, single housed

male flies were introduced singly within glass vials containing standard food supplemented
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with 20mM paraquat (856177, Sigma-Aldrich), and their survival curve was monitored every 2

hours.

Longevity. Following two days of sexual experience, males were transferred to vials con-

taining food. Males were kept in isolation and the number of living flies was recorded every

day. Flies were transferred to new vials twice a week. Log-rank or Renyi-type test (REF) with

FDR correction was performed.

Sleep\locomotion assays. Following two days of experience mated, rejected and naïve-

single males were placed in a 48-well cell and tissue culture plate (TC plate) by gentle aspira-

tion. Each well contained 1% agar, 7% sucrose, and 0.7% yeast extraction. Locomotor data

were collected using DanioVision (Noduls) software and raw data files were analyzed with

EthoVision XT software. Activity was measured in 1-min bins and sleep was identified as 5

min of consolidated inactivity, defined as no movement [139,140]. Sleep and activity data were

analyzed using MATLAB. The training was completed at ZT5.5 and sleep was assessed from

ZT6 onwards in the DanioVision (Noduls) system owing to the time spent in introducing flies

into individual wells.

TAG, Glucose levels evaluation. TAG levels were assessed as described [75] with modifi-

cations: After two days of sexual experience, experimental males were divided into groups of 5

and were homogenized together in 100 μl NP40 substitute assay reagent from Triglyceride col-

orimetric assay kit 10010303 (Cayman JM-K622-100). Homogenate was centrifuged at 10,000

x g for 10 min at 4˚C, and the supernatant was collected. Triglyceride enzyme mixture

(10010511) was used to hydrolyze the triglycerides and subsequently measure glycerol by a

coupled enzymatic reaction. TAG concentrations were determined by the absorbance at

540nm and estimated by a known triglyceride standard. The absorbance was measured using a

SynergyH1 Hybrid Multi-Mode microplate Reader. Body and hemolymph glucose were

extracted as described [141]. Briefly (with modifications):

Whole bodies: After two days of sexual experience, 5 males were placed in each sample tube

and weighed using Fisher scientific ALF104 analytical balance scale. Then, flies were homoge-

nized in 100 ml cold PBS on ice. The supernatant was heated for 10 min at 70˚C, then centri-

fuged for 3 min at maximum speed at 4˚C. The supernatant was collected and transferred to a

new 1.5 ml tube. Hemolymph: After courtship conditioning, males were sedated on ice and

carefully punctured in the thorax using sharp stainless-steel tweezers. 40 punctured flies were

placed in each 0.5 ml microfuge tube with a hole at the bottom made by a 25G needle. The 0.5

microfuge tube was then placed in a 1.5 ml tube and centrifuged at 5000 rpm for 10 min at

4˚C. Hemolymph was collected, and samples were heated for 5 min at 70˚C. Glucose was mea-

sured using High sensitivity Glucose Assay kit (MAK181 Sigma-Aldrich). Glucose concentra-

tion is determined by coupled enzyme assay, which results in fluorometric (lex = 535/lem =

587nm) products and was assessed using SynergyH1.

Metabolite extraction and LC-MS metabolomic analysis. After two days of sexual expe-

rience, males were flash-frozen and decapitated using a microscalpel. For each sample, 5 heads

were transferred into soft tissue homogenizing CK 14 tubes containing 1.4 mm ceramic beads

(Bertin corp.) prefilled with 600 ul of cold (−20˚C) metabolite extraction solvent containing

internal standards (Methanol: Acetonitrile: H2O:50:30:20) and kept on ice. Samples were

homogenized using Precellys 24 tissue homogenizer (Bertin Technologies) cooled to 4˚C (3 ×
30 s at 6000 rpm, with a 30 s gap between each cycle). Homogenized extracts were centrifuged

in the Precellys tubes at 18,000 g for 10 min at 4˚C. The supernatants were transferred to glass

HPLC vials and kept at −75˚C prior to LC-MS analysis. LC-MS analysis was conducted as

described [142]. Briefly, Dionex Ultimate ultra-high-performance liquid chromatography

(UPLC) system coupled to Orbitrap Q-Exactive Mass Spectrometer (Thermo Fisher Scientific)

was used. The resolution was set to 35,000 at a 200 mass/charge ratio (m/z) with electrospray
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ionization and polarity switching mode to enable both positive and negative ions across a mass

range of 67–1000 m/z. UPLC setup consisted of ZIC-pHILIC column (SeQuant; 150 mm × 2.1

mm, 5 μm; Merck). 5 μl of cells extracts were injected and the compounds were separated

using a mobile phase gradient of 15 min, starting at 20% aqueous (20 mM ammonium carbon-

ate adjusted to pH 9.2 with 0.1% of 25% ammonium hydroxide):80% organic (acetonitrile)

and terminated with 20% acetonitrile. Flow rate and column temperature were maintained at

0.2 ml/min and 45˚C, respectively, for a total run time of 27 min. All metabolites were detected

using mass accuracy below 5 ppm. Thermo Xcalibur 4.1 was used for data acquisition. The

peak areas of different metabolites were determined using Thermo TraceFinder 4.1 software,

where metabolites were identified by the exact mass of the singly charged ion and by known

retention time, using an in-house MS library built by running commercial standards for all

detected metabolites. Each identified metabolite intensity was normalized to ug protein.

Metabolite-Auto Plotter [143] was used for data visualization during data processing.

Detailed analysis of courtship suppression. WT males and females were collected on

CO2 3–4 days before the recording. Males were kept in groups of 25 per vial. To generate

mated females for the experiment, virgin females were introduced to males ~16 hours before

the experiment. All flies were kept in the incubator at 25˚C, ~50% humidity, and light/dark of

12:12 hours. Prior to the conditioning, the mated females were separated from the males on

CO2 on the morning of the recording. During the recording, the temperature was kept at

~25˚C, and humidity was ~55%. Since the extent of courtship display is shaped by circadian

rhythmicity, where male flies depict the highest courtship activity closest to the onset of light,

and their general activity declines towards noon, the first session started right after the onset of

light, and the other two sessions took place in the afternoon. Virgin male flies were exposed to

either a mated or virgin female for three one-hour sessions, and their behavior was recorded

using a Point Grey Firefly camera and analyzed in detail during the first 10 minutes of each

interaction. At the end of each session, female flies were removed, and the males that experi-

enced rejection were kept isolated in narrow glass vials for one hour. At the end of the rest

hour, males were returned to their original location in the courtship arena for the recording.

To compare the courtship behavior of rejected and control males, virgin males from the con-

trol cohort were replaced at the beginning of each session. Different aspects of courtship

behavior were analyzed manually using “Lifesong” software.

Optogenetic Activation of NPFR, Dh44, and NPFRTK neurons. Light-induced activa-

tion of red-shifted Channel Rhodopsin UAS-CsCrimson was achieved by placing glass fly vials

containing one fly each over red LEDs (40 Hz, 650nm, 0.6 lm @20mA). Activation protocol

consisted of 3x5 min-long activation periods spaced by 1 h and 55 min resting intervals for 2

consecutive days.

Neuronal activation combined with inhibition of synaptic vesicle release. Flies express-

ing Cs-Chrimson and UAS-Shibirets in NPFR neurons were subjected to one of four condi-

tions for two days: (1) Three 5-min-long optogenetic activations spaced by 1 h and 55 min

resting intervals (under constant dark) at constant 18–20˚C served as a positive control. (2)

Three 10-min-long sessions at 28–29˚C under constant dark followed by 5 min-long optoge-

netic activations spaced by 1 h and 45 min resting intervals at 18–20˚C, also under constant

dark. (3) Three 15-min-long sessions at 28–29˚C under constant dark, spaced by 1 h and 45

min at 18–20˚C, also under constant dark, served as synaptic release block control. (4) Flies

kept at a constant 18–20˚C and constant dark served as a negative control. After the last activa-

tion, flies were transferred into glass vials containing 1% agarose.

Optogenetic activation using the FlyBowl setup. Flies expressing CsChrimson in various

neuros were introduced into the FlyBowl arenas and their behavior under optogenetic illumi-

nation was recorded as described in Bentzur et. al [88]. In brief: groups of 10 male flies, which
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were socially raised in groups of 10 for 3–4 days, were placed in FlyBowl arenas, and their

behavior was recorded at 30 fps for 15 min and tracked using Ctrax [90]. Automatic behavior

classifiers and Per-frame features were computed by JABBA [89] tracking system. Data of all

behavioral features were normalized to the percentage of difference from the average of each

experiment for visualization. Details about the different features are found in S4 Fig.

Immunostaining. Whole-mount brains were fixed for 20 min in 4% paraformaldehyde

(PFA) or overnight in 1.7% PFA. Preparations were blocked for 1h at 4˚C with gentle agitation

in 0.5% BSA, and 0.3% Triton in PBS. The following primary antibodies were used: Rabbit

anti-GFP (LifeTech 1:500), the neuropile-specific antibody NC82, (1:50, The Jackson Labora-

tory), mouse anti-GFP (1:100, Roche), Rabbit anti-DH44 (0.6:100), rabbit anti dILp2 (1:100, a

kind gift from Takashi Nishimura lab), rabbit anti tk (1:1000 a Kind gift from Wei Song) were

incubated overnight at 4˚C. Secondary antibodies, goat anti mouse-Alexa488 (1:200–1:100),

goat anti rabbit-Alexa568 (1:200–1:100), goat anti mouse-Alexa568 (1:1000) and goat anti rab-

bit-Alexa488 (1:1000) were incubated for 2hr at 4˚C. DAPI (1:20). The stained samples were

mounted with Gold antifade reagent (Thermo Fisher Scientific) and visualized using a Leica

SP8 confocal microscope.

Statistical analysis. Data of each behavioral feature per experiment were tested for nor-

mality, and consequently, normally distributed data were tested by student’s t-test, one-way

ANOVA followed by Tukey’s post-hoc. Non-parametric data were tested by Mann-Whitney

or Kruskal-Wallis tests followed by Dunn’s or Friedman’s post-hoc tests. FDR correction for

multiple comparisons was performed for all Flybowl experiments features. Statistical overrep-

resentation was generated using PANTHER [144,145] (http://pantherdb.org/citePanther.jsp).

Statistical significance of qRT-PCR analysis was determined by Student’s T-test with Bonfer-

roni correction for multiple comparisons. Statistical analysis of the metabolite amounts was

performed by ANOVA or Kruskal-Wallis with post-hoc Tukey’s or Friedman test. Starvation

resistance and longevity experiments were tested by Log-rank or Renyi-type test [146] using R

package version 3.2–11. FDR correction for multiple comparisons was performed for experi-

ments with more than two experimental groups. Repeated measures ANOVA with Tukey’s

multiple comparisons test was performed to quantify sleep and activity.

Raw data of this manuscript is deposited at Dryad Digital Repository [147].

Dryad DOI

https://doi.org/10.5061/dryad.pzgmsbctg [147]

Supporting information

S1 Fig. List of behavioral features presented in Figs 1, 2, 5, S2, and S6–S8.

(TIFF)

S2 Fig. Behavioral signatures of mated, rejected, and naïve WT male flies. Data is repre-

sented as normalized Z scores of 60 behavioral parameters, n = 15, 8, 15 for mated, naïve-sin-

gle, and rejected respectively. Statistical significance was determined by one-way ANOVA

followed by Tukey’s range test for experiments that were distributed normally, and by Krus-

kal–Wallis test followed by Dunn’s test for experiments that were not distributed normally.

FDR correction was used for multiple tests. LOI: calculated according to the length of interac-

tions. NOI: calculated according to the number of interactions. Features marked in yellow

exhibit statistically significant differences among the 3 cohorts. Features colored in blue are

different between mated and the two other conditions. Features colored in red are different

between rejected and the two other conditions. Features colored in green are different between
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naive and the two other conditions.

(EPS)

S3 Fig. A. Schematic representation of courtship suppression analysis along repeated expo-

sure to mated females. Virgin male flies were exposed to either mated or virgin females for

three 1h sessions, and their behavior was recorded. At the end of each session, the females and

males from the naive cohort (top) were removed, and the males that experienced rejection

(bottom) were kept isolated in narrow glass vials for 1h. Illustration was generated using Bior-

ender B. % difference from average courtship behaviors performed by rejected (blue circle)

and naïve-single (gray square) males in the first (I), second (II), and third (III) sessions. Stu-

dent’s t-test or Mann-Whitney was performed with FDR correction for multiple comparisons.

*p<0.05, ***p<0.001. C. Naive males were repeatedly introduced to sexually non-receptive

females over two consecutive days. The number of courting males was documented for each

session. Males that did not initiate courtship, or that succeeded to copulate were excluded

from further analysis. Total n of males for day I = 97 first session (97 courted), 97 second ses-

sion (95 courted), 95 third session (88 courted), n for day II = 86 first session (86 courted), 86

second session (82 courted), 82 third session (77 courted). Bar graph represents % of courting

males in each session.

(EPS)

S4 Fig. Rejected males did not exhibit a difference in sleep and activity patterns compared

to both mated and naïve-single males. A. Longevity assay: single males (yellow, n = 80) com-

pared to mated (blue, n = 86) and rejected (red, n = 80) males. *p<0.05. Rényi test with FDR

corrections for multiple comparisons was performed. B-D. Rejected males do not exhibit a dif-

ference in sleep and activity compared to both mated and single males. Sleep profiles depicting

sleep amounts in 60 minutes binned intervals for single (green circles), mated (blue rectangles)

and rejected (red triangles) males. Sleep and activity profile of naïve-single (green), mated

(blue) and rejected (red) males. B and C. Sleep behavior illustrated as a sleep profile depicting

sleep amounts in 1-hour binned intervals (B) and a stacked bar chart showing total sleep

amount (C). Naive-single males exhibited decreased amounts of sleep during the light phase

compared to mated and rejected males **p<0.01, no significant difference was observed

between rejected and mated males P>0.05. D. Activity data represented as 1-minute binned

amount of movement. Mated males exhibited decreased activity compared to rejected and

naive-single males ***p<0.0001. No significant difference was observed between rejected and

naive-single males p>0.05. Repeated measures ANOVA with Tukey’s multiple comparisons

test was performed in B-D. n = 32(naïve-single, rejected), 31(mated).

(EPS)

S5 Fig. Courtship conditioning did not affect TAG and glucose levels and most head

metabolites in males. A-D. Metabolic indices of rejected males (red) compared to naïve-single

(green) or mated (blue) males. No differences were observed for measurements of (A) triglyc-

erides (TAG, n = 11 for all groups, 5 males/ sample). (B) weight (n = 10 naïve-single, 9 mated,

9 rejected, 5 males/sample). (C) hemolymph, or (D) body glucose (n = 3 for all groups, 5

males/body sample, and 40 males/hemolymph sample). ANOVA or Kruskal-Wallis with post-

hoc Tukey’s or Friedman test were performed. NS p>0.05. E. % difference from average (peak

area/ total measurable ions) of metabolites detected using LC-MS in rejected, mated, and

naïve-single males’ heads. 5-aminolevulinic acid, acetyl-glutamine, glycine, tryptophan, and

stearic acid levels were higher in rejected males’ heads (red triangles, n = 17) compared to

naïve-single (green circles, n = 17) and mated (blue squares, n = 16, 5 heads/sample). Metabo-

lites of the kynurenine pathways are highlighted in orange; serotonin is highlighted in yellow.
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NS p>0.05, *p<0.05, **p<0.01, ***p<0.001. Statistical analysis was performed by ANOVA or

Kruskal-Wallis with post-hoc Tukey’s or Friedman test.

(EPS)

S6 Fig. A. Expression pattern of NPFR driver (NPFR>mCD8-GFP). B. Behavioral signatures

of male-male social interaction within the FlyBowl system during the optogenetic activation of

all NPFR neurons. Data is represented as normalized Z scores of 60 behavioral parameters.

NPFRG4/+;UAS-csChrimson/+ males (green, n = 14) and their genetic controls NPFR G4/+,

UAS-csChrimson/+ (black and grey, respectively, n = 10 each). ANOVA or Kruskal-Wallis

with post-hoc Tukey’s or Dunn’s test with FDR correction for multiple comparisons was per-

formed. C. Behavioral signatures of male-male social interaction within the FlyBowl system

during the optogenetic activation of all NPFR-NPF neurons. Data is represented as normalized

Z scores of 60 behavioral parameters. (purple, n = 22) and their genetic controls NPFR G4/+;

NPF LexA/+ (grey, n = 22), LexAop-FLPL/+;UAS<dsFRT>cs-Chrimson-mVenus/+, (black,

n = 21). p>0.05. ANOVA or Kruskal-Wallis with post-hoc Tukey’s or Dunn’s test, and FDR

correction for multiple comparisons were performed. D. Starvation resistance assayed on

NPFRNPF neurons by crossing NPFRG4;+, NPF-LexA;+, +;LexAop-FlpL, +;UAS<dsFRT>cs-

Chrimson-mVenus flies. Naïve experimental males (Light, pink), n = 52 and their genetic con-

trols (NPFR G4/+;NPF LexA/+, grey, n = 52; LexAop-FLPL/+;UAS<dsFRT>cs-Chrimson-

mVenus/+, dark blue, n = 58) were exposed to red light three times a day for two days.

NPFR-NPF flies that were not exposed to light served as a third control (Dark, black, n = 50).

Experimental flies (pink) did not exhibit significantly different resistance to starvation com-

pared to control flies (gray) p>0.05.

(EPS)

S7 Fig. A. Behavioral signatures of male-male social interaction within the FlyBowl system

during the optogenetic activation of Dh44 neurons. Data is represented as normalized Z scores

of 60 behavioral parameters. Dh44 G4/+;UAS-csChrimson/+ males (green, n = 8) and their

genetic controls Dh44 G4/+, UAS-csChrimson/+ (black, n = 7 and grey, n = 8, respectively).

**p<0.01. ANOVA or Kruskal-Wallis with post-hoc Tukey’s or Dunn’s test, and FDR correc-

tion for multiple comparisons were performed. B. Starvation resistance assayed on Dh44 G4/

NPFR RNAi (green, n = 70) flies and their genetic controls Dh44 G4/+ (blue, n = 66) and

NPFR RNAi/+ (black, n = 64). No significant difference was observed among experimental

flies and the controls, p>0.05. Pairwise log-rank test with FDR correction for multiple com-

parisons was performed.

(EPS)

S8 Fig. A. Knock down of tk in NPFR neurons does not affect sensitivity to starvation of na.

ve-single. Experimental single housed NPFRG4/+;tkRNAi/+ (orange, n = 50) and the genetic

controls TK RNAi/+ (gray, n = 33) and NPFR G4/+ (black, n = 45). B. NPFRG4/+; tkRNAi/

+ males and their genetic controls were subjected to rejection and their resistance to starvation

was assayed. No significant difference in resistance to starvation in NPFR Gal4;tk RNAi flies

(orange, n = 79) compared to genetic controls (gray, n = 90 and black, n = 70) was observed.

Pairwise log-rank test with FDR correction for multiple comparisons was performed for A,B.

C. Behavioral signatures of male-male social interaction within the FlyBowl system during the

optogenetic activation of NPFR-TK neurons. n = 13 for NPFRTK(red). n = 13 TK-LexA;Lex-

Aop-FLPL (black), and n = 12 NPFRG4;UAS<dsFRT>csChrimson-mVenus (gray). *p<0.05,

**p<0.01, ***p<0.001. ANOVA or Kruskal-Wallis with post-hoc Tukey’s or Dunn’s test with

FDR correction for multiple comparisons was performed. D. Right: colocalization of NPFRTK

neurons (green) and NPF+ neurons (magenta, endogenous NPF expression), indicated by
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arrows. White arrows indicate L1-l neurons, yellow arrows indicate P1 neurons. Left: A

closeup to two NPFRTK NPF+ neurons (P1). E. Six NPFRTK (green) neurons colocalize with

DH44 (magenta, endogenous Dh44 expression). F. Colocalization of NPFR neurons

(NPFR>mCD8-GFP marked in green) with Dilp2 peptide (magenta anti-Dilp2 antibodies).

(TIFF)

S1 Table. LC-MS metabolite results. Compound averaged peak area/total measurable ions

results are presented for mated (n = 16), rejected (n = 17), and naïve-single (n = 17)

cohorts.

(XLSX)

S1 Movie. A movie of the confocal stacks of the shared NPFRTK neurons (Fig 5C). Shared

NPFRTK neurons were visualized using genetic interaction between NPFR and TK drivers:

NPFRG4;+, TK-LexA;+, +;LexAop-FlpL, +;UAS<dsFRT>cs-Chrimson-mVenus flies. Green

marks NPFRTK neurons, magenta marks nc-82.
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87. Keleman K, Vrontou E, Krüttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ. Dopamine neurons modu-

late pheromone responses in Drosophila courtship learning. Nature. 2012; 489: 145–149. https://doi.

org/10.1038/nature11345 PMID: 22902500

88. Bentzur A, Ben-Shaanan S, Benichou JIC, Costi E, Levi M, Ilany A, et al. Early Life Experience Shapes

Male Behavior and Social Networks in Drosophila. Curr Biol. 2021; 31: 670. https://doi.org/10.1016/j.

cub.2020.11.036 PMID: 33561401

89. Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. JAABA: interactive machine learning for

automatic annotation of animal behavior. Nat Methods. 2013; 10: 64–67. https://doi.org/10.1038/

nmeth.2281 PMID: 23202433

90. Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large groups

of Drosophila. Nat Methods. 2009; 6: 451–457. https://doi.org/10.1038/nmeth.1328 PMID: 19412169

PLOS GENETICS Rejection induces sensitivity to stress via NPF

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011054 January 18, 2024 26 / 29

https://doi.org/10.2174/156802607782340993
https://doi.org/10.2174/156802607782340993
http://www.ncbi.nlm.nih.gov/pubmed/17979776
https://doi.org/10.1038/srep04517
https://doi.org/10.1038/srep04517
http://www.ncbi.nlm.nih.gov/pubmed/24682105
https://doi.org/10.1161/01.HYP.0000066623.64368.4E
https://doi.org/10.1161/01.HYP.0000066623.64368.4E
http://www.ncbi.nlm.nih.gov/pubmed/12668588
https://doi.org/10.1126/science.1243339
https://doi.org/10.1126/science.1243339
http://www.ncbi.nlm.nih.gov/pubmed/24292624
https://doi.org/10.1016/j.celrep.2017.05.085
http://www.ncbi.nlm.nih.gov/pubmed/28636933
https://doi.org/10.1016/j.cub.2018.03.039
http://www.ncbi.nlm.nih.gov/pubmed/29681474
https://doi.org/10.1007/s12264-020-00604-5
https://doi.org/10.1007/s12264-020-00604-5
http://www.ncbi.nlm.nih.gov/pubmed/33174166
https://doi.org/10.1210/endo-117-6-2435
http://www.ncbi.nlm.nih.gov/pubmed/3840737
https://doi.org/10.1016/j.jsxm.2020.11.004
http://www.ncbi.nlm.nih.gov/pubmed/33419705
https://doi.org/10.1016/j.yhbeh.2017.10.015
http://www.ncbi.nlm.nih.gov/pubmed/29111331
https://doi.org/10.1016/j.bbr.2014.04.026
https://doi.org/10.1016/j.bbr.2014.04.026
http://www.ncbi.nlm.nih.gov/pubmed/24768642
https://doi.org/10.1016/j.neuron.2016.05.020
http://www.ncbi.nlm.nih.gov/pubmed/27292538
https://doi.org/10.1073/pnas.76.7.3430
http://www.ncbi.nlm.nih.gov/pubmed/16592682
https://doi.org/10.3791/54910
https://doi.org/10.3791/54910
http://www.ncbi.nlm.nih.gov/pubmed/28060352
https://doi.org/10.1038/nature11345
https://doi.org/10.1038/nature11345
http://www.ncbi.nlm.nih.gov/pubmed/22902500
https://doi.org/10.1016/j.cub.2020.11.036
https://doi.org/10.1016/j.cub.2020.11.036
http://www.ncbi.nlm.nih.gov/pubmed/33561401
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1038/nmeth.2281
http://www.ncbi.nlm.nih.gov/pubmed/23202433
https://doi.org/10.1038/nmeth.1328
http://www.ncbi.nlm.nih.gov/pubmed/19412169
https://doi.org/10.1371/journal.pgen.1011054


91. Peña CJ, Nestler EJ, Bagot RC. Environmental Programming of Susceptibility and Resilience to

Stress in Adulthood in Male Mice. Front Behav Neurosci. 2019; 13: 40. https://doi.org/10.3389/fnbeh.

2019.00040 PMID: 30881296

92. Papini MR, Dudley RT. Consequences of surprising reward omissions. Rev Gen Psychol. 1997; 1:

175–197.

93. Do-Monte FH, Minier-Toribio A, Quiñones-Laracuente K, Medina-Colón EM, Quirk GJ. Thalamic Reg-

ulation of Sucrose Seeking during Unexpected Reward Omission. Neuron. 2017; 94: 388–400.e4.

https://doi.org/10.1016/j.neuron.2017.03.036 PMID: 28426970

94. Zimmerman PH, Koene P. The effect of frustrative nonreward on vocalisations and behaviour in the

laying hen, Gallus gallus domesticus. Behav Processes. 1998; 44: 73–79. https://doi.org/10.1016/

s0376-6357(98)00035-7 PMID: 24896729

95. Burokas A, Gutiérrez-Cuesta J, Martı́n-Garcı́a E, Maldonado R. Operant model of frustrated expected

reward in mice. Addict Biol. 2012; 17: 770–782. https://doi.org/10.1111/j.1369-1600.2011.00423.x

PMID: 22264360

96. Duncan IJ, Wood-Gush DG. Frustration and aggression in the domestic fowl. Anim Behav. 1971; 19:

500–504. https://doi.org/10.1016/s0003-3472(71)80104-5 PMID: 5167834

97. Dantzer R, Arnone M, Mormede P. Effects of frustration on behaviour and plasma corticosteroid levels

in pigs. Physiol Behav. 1980; 24: 1–4. https://doi.org/10.1016/0031-9384(80)90005-0 PMID: 7189887

98. de Almeida RMM, Miczek KA. Aggression escalated by social instigation or by discontinuation of rein-

forcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsycho-

pharmacology. 2002; 27: 171–181. https://doi.org/10.1016/S0893-133X(02)00291-9 PMID: 12093591

99. Amsel A, Roussel J. Motivational properties of frustration. I. Effect on a running response of the addi-

tion of frustration to the motivational complex. J Exp Psychol. 1952; 43: 363–366. https://doi.org/10.

1037/h0059393 PMID: 14946348

100. Miller NE, Stevenson SS. Agitated Behavior of Rats During Experimental Extinction and a Curve of

Spontaneous Recovery.

101. Manzo L, Gómez MJ, Callejas-Aguilera JE, Fernández-Teruel A, Papini MR, Torres C. Anti-anxiety

self-medication induced by incentive loss in rats. Physiol Behav. 2014; 123: 86–92. https://doi.org/10.

1016/j.physbeh.2013.10.002 PMID: 24148853

102. Vindas MA, Johansen IB, Vela-Avitua S, Nørstrud KS, Aalgaard M, Braastad BO, et al. Frustrative

reward omission increases aggressive behaviour of inferior fighters. Proc Biol Sci. 2014; 281:

20140300. https://doi.org/10.1098/rspb.2014.0300 PMID: 24759861

103. Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, et al. Molecular social interac-

tions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet. 2009; 68: 23–56.

https://doi.org/10.1016/S0065-2660(09)68002-0 PMID: 20109658

104. Ejima A, Smith BPC, Lucas C, Levine JD, Griffith LC. Sequential learning of pheromonal cues modu-

lates memory consolidation in trainer-specific associative courtship conditioning. Curr Biol. 2005; 15:

194–206. https://doi.org/10.1016/j.cub.2005.01.035 PMID: 15694302

105. Mehren JE, Ejima A, Griffith LC. Unconventional sex: fresh approaches to courtship learning. Curr

Opin Neurobiol. 2004; 14: 745–750. https://doi.org/10.1016/j.conb.2004.10.012 PMID: 15582378

106. Shao L, Saver M, Chung P, Ren Q, Lee T, Kent CF, et al. Dissection of the neuropeptide F circuit

using a high-throughput two-choice assay. Proc Natl Acad Sci U S A. 2017; 114: E8091–E8099.

107. Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, et al. Fly Cell Atlas: A single-

nucleus transcriptomic atlas of the adult fruit fly. Science. 2022; 375: eabk2432. https://doi.org/10.

1126/science.abk2432 PMID: 35239393
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