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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Genome-wide scans for signals of selection have become a routine part of the analysis of

population genomic variation datasets and have resulted in compelling evidence of selection

during recent human evolution. This Essay spotlights methodological innovations that have

enabled the detection of selection over very recent timescales, even in contemporary

human populations. By harnessing large-scale genomic and phenotypic datasets, these

new methods use different strategies to uncover connections between genotype, pheno-

type, and fitness. This Essay outlines the rationale and key findings of each strategy, dis-

cusses challenges in interpretation, and describes opportunities to improve detection and

understanding of ongoing selection in human populations.

Introduction

A central query in human evolutionary genetics is to understand the functions and evolution-

ary history of genes or genomic regions that are under natural selection. Selection favors

genetic variants that lead to advantageous phenotypic changes in specific environments, result-

ing in increases in allele frequency over time and distinctive patterns of genetic variation in

present-day populations (Figs 1, 2A and 2B). Beyond unraveling the origin and evolutionary

history of these selective genetic changes, it is of immense interest to gauge their contribution

to phenotypic diversity in present-day human populations, as well as their impacts on disease

risk and overall fitness (Box 1) in contemporary environments. Therefore, recent research

endeavors are increasingly shifted towards identifying and characterizing extremely recent

and even ongoing selection.

Numerous scans have been carried out in the human genome for targets under selection of

intermediate scales (e.g., over 1,000 generations), but it remains a challenging task to demon-

strate that selection on the identified targets is still ongoing or to detect selection that started

recently. Enabled by the recent availability of population-scale genomic data and the develop-

ment of efficient algorithms for inferring local genealogical trees, many new methods have

been developed in the past 20 years to detect signals of selection from the past few millennia

(e.g., [1–4]). Complementary to this approach, ancient DNA data provide direct estimates of

past allele frequencies in human populations across time and geography and have refined esti-

mation of the tempo and strength of selection in many instances of selection signals identified

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gao Z (2024) Unveiling recent and

ongoing adaptive selection in human populations.

PLoS Biol 22(1): e3002469. https://doi.org/

10.1371/journal.pbio.3002469

Published: January 18, 2024

Copyright: © 2024 Ziyue Gao. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work is supported by a Research

Fellowship (FG-2021-15702) from the Alfred P.

Sloan Foundation (https://sloan.org/) and a grant

(R35GM146810) from the National Institute of

General Medical Sciences to ZG. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: AU : Anabbreviationlisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:ASMC, ascertained sequentially

Markovian coalescent; GWAS, genome-wide

association study; IMR, infant mortality rate; MHC,

major histocompatibility complex; PGS, polygenic

score; SDS, singleton density score.

https://orcid.org/0000-0001-9244-0238
https://doi.org/10.1371/journal.pbio.3002469
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3002469&domain=pdf&date_stamp=2024-01-18
https://doi.org/10.1371/journal.pbio.3002469
https://doi.org/10.1371/journal.pbio.3002469
http://creativecommons.org/licenses/by/4.0/
https://sloan.org/


in modern genomes. Most recently, population-scale biobank-style datasets, encompassing

genomic information and phenotypic data on reproduction, disease, mortality, and other

quantitative traits, have pinpointed variants associated with various fitness components, at

times in a sex-specific manner. These findings signify the presence of ongoing selection occur-

ring within just one or a few generations.

This Essay aims to highlight growing evidence for very recent and ongoing genetic adapta-

tion in the human genome, with a focus on positive selection and directional selection on poly-

genic traits, as these modes of selection may potentially contribute to genetic and phenotypic

differences across populations. It is important to note that the effects of negative selection

(such as purifying selection and background selection; Box 1) are evident and prevalent in the

human genome. However, due to space limitations, this Essay does not discuss the advances

made in the past decade in identifying genomic regions and phenotypes subject to recent and

ongoing negative and stabilizing selection (e.g., [5–8]). Instead, it only briefly discusses the

challenges associated with detecting and interpretating signals of positive and directional selec-

tion in the context of pervasive negative selection. The Essay starts with the latest methodologi-

cal innovations in inference of positive selection at individual genomic loci, and then discusses

techniques for detecting aggregate selection signals across genetic loci that collectively influ-

ence a quantitative trait. Rather than delving deeply into the technical details, it emphasizes

Fig 1. Overall framework of selection bridging population genetics and quantitative genetics models. In this conceptual framework, selection on genotype

is mediated by fitness-relevant phenotype and manifests in allele frequency changes and genetic variation patterns. In any specific environment, genotype and

environment together shape the phenotype of an individual, which in turn determines the fitness. In addition to its direct effect on the phenotype (solid purple

arrow), the environment also modifies the genotype-to-phenotype mapping (i.e., genotype-by-environment interaction; indicated by the dotted purple arrow)

and phenotype-to-fitness mapping (dashed purple arrow). Through interactions with other evolutionary forces (indicated by the brown plus sign), natural

selection shapes the allele frequency trajectory over time and leaves footprints in genomic variation in present-day populations.

https://doi.org/10.1371/journal.pbio.3002469.g001
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Fig 2. Signals of recent positive selection in genetic variation and corresponding methods for selection inference. (A) The

hallmark of positive selection is faster allele frequency increase than would be expected under neutrality. (B) The rapid allele

frequency change leaves footprints in the surrounding genomic region, although the specific patterns depend on the strength, tempo,

and mode of selection (e.g., selection on standing variation versus on de novo variants). (C) Major methods for detecting positive

selection based on present-day genetic variation.

https://doi.org/10.1371/journal.pbio.3002469.g002
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Box 1. Glossary

Fitness

A measure of how well an individual can survive or reproduce; it consists of multiple

components such as viability, mating success, and fecundity.

Positive selection

An evolutionary process in which a genetic variant becomes more common in a popula-

tion because it increases the fitness of individuals who carry it.

Negative selection

An evolutionary process that weeds out fitness-reducing genetic variants from the popu-

lation. Purifying selection acts directly on the deleterious variants, whereas background

selection affects nearby variants linked to the deleterious variants.

Positive and negative selection

Two inseparable concepts that describe the same phenomenon from different angles. To

facilitate communication, population geneticists often adopt either of these terms focus-

ing on the impact of selection on the derived allele, such that positive selection tends to

speed up molecular evolution, whereas negative selection decelerates or prevents it.

Nonetheless, in many cases, identity of the derived allele is ambiguous or less relevant

(e.g., during transient selection), and the direction of selection often refers to the effect

of selection on the rare allele (for example, a scenario where the rare allele is beneficial is

often considered positive selection, although one could consider the same scenario as

negative selection against the more common allele).

Genetic adaptation

The process by which organisms evolve heritable characteristics or traits that help them

to better survive and reproduce in their specific environment. In many cases, adaptation

is used synonymously with positive selection, but adaptation also encompasses other

selection modes such as balancing selection and polygenic adaptation.

Stabilizing selection

A type of natural selection that favors individuals with an intermediate value of a fitness-

relevant trait. Individuals with deviation from the optimal trait value are selected against,

and the result is a stabilization of the trait around a specific value. Stabilizing selection

concerns the relationship between phenotype and fitness, regardless of the genetic basis.

Other types of phenotype-focused selection include disruptive selection, which favors

individuals with extreme trait values, and directional selection, which favors individuals

at only one end of the phenotypic spectrum.

Polygenicity

Polygenicity refers to a scenario in which variation in a trait within a population is con-

tributed to by genetic variants at multiple genes or genomic loci rather than by just one
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the connection and distinction among “genotype-focused,” “phenotype-focused,” and “fit-

ness-focused” strategies, as well as the advantages and limitations of each (Fig 3). Some major

findings stemming from these innovative approaches are discussed, along with challenges in

interpretation of the signals.

Positive selection at individual genomic loci

Genomic footprints in present-day genetic variation

Traditional methods for detecting selection take a genotype-focused approach (Fig 3A) by

adopting classic population genetics models. Specifically, these models predict changes in allele

frequency and patterns of surrounding genomic variation by assuming arbitrary fitness effects

of different genotypes at a single genetic locus. The obvious advantage of this modeling

approach is that it establishes expectations for genomic signatures of selection while requiring

very little phenotypic information, such as how genotypes map to phenotypes or which pheno-

types are under selective pressure.

Typical genomic signatures of positive selection include extreme differentiation in allele fre-

quencies across populations, extended haplotypes/linkage disequilibrium, or distortion in the

site frequency spectrum of segregating variants (reviewed in [9–11]; Fig 2C(i–iii)). These statis-

tics capture complementary features of genomic variation, but most are powerful in detecting

selection on intermediate timescales (i.e., hundreds of generations or longer). More recent

methods increase detection power by considering multiple summary statistics jointly. This

idea was initially implemented using a few basic summary statistics [12] and later expanded

through techniques such as Approximate Bayesian Computation [13] or supervised machine

learning (reviewed in [14]). Thanks to the recently available population-scale genomic data

and continuous theoretical and methodological developments, genome-wide scans based on

population genetic summary statistics have identified thousands of putative targets under

selection, largely independently of biological knowledge regarding the corresponding pheno-

type or selective pressure.

Despite being able to pick up selection signals over the past hundreds or thousands of gen-

erations, these scans are limited in power for detecting very recent selection because the nar-

row time window involved leaves very subtle genetic footprints in the site frequency spectrum

or haplotype structure. From the perspective of the local genealogical tree, very recent selection

only impacts branches near the leaf nodes but leaves most of the tree unchanged. Realizing

this, researchers have developed methods that explicitly leverage features of terminal branches

of the local genealogical tree. The singleton density score (SDS) is one such method that

detects recent allele frequency changes based on extremely rare variants [15]. Specifically, SDS

tests for deficiency of singletons (i.e., variants that appear exactly once in the entire sample) on

haplotypes carrying the putatively favored allele, which is indicative of a faster coalescent rate

in the recent past (Fig 2C(iv)). Along these lines, another method called ascertained

or a few. Many complex traits in humans, such as height and disease susceptibility, are

highly polygenic.

Pleiotropy

Pleiotropy occurs when a single genetic variant (or gene) influences two or more seem-

ingly unrelated phenotypes in an organism. Two traits are pleiotropically related when

certain variants exist that simultaneously affect them.

PLOS BIOLOGY
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sequentially Markovian coalescent (ASMC) detects targets of recent positive selection by infer-

ring pairwise coalescent times and looking for unusually high densities of coalescent events in

the recent past (Fig 2C(v)) [16,17]. When applied to whole-genome sequences of approxi-

mately 3,200 individuals of European ancestry, SDS detected selection signals in the past 2,000

to 3,000 years in the major histocompatibility complex (MHC) region and at variants associ-

ated with lactose tolerance and pigmentation [15]. In comparison, application of ASMC to

over 487,000 British individuals identified signals of selection in the past 1,500 years, including

those detected by SDS, as well as several new candidate loci harboring genes related to immune

response, tumor growth, and other phenotypes [17].

Fig 3. Common strategies for detecting signatures of recent or ongoing selection. (A) A “genotype-focused” strategy focuses on the cumulative effects of

historical selection on genetic variation patterns and relies on population genetics modeling to tease apart the influence of other evolutionary forces. Ancient

DNA data provide direct information on allele frequency changes, which helps reduce inference uncertainty and confounding by demographic history. (B) A

“fitness-focused” strategy focuses on direct association between genotype and fitness component(s) and utilizes allele frequency changes within one generation

to detect selection in contemporary populations. As a special case of this strategy, between-sex differences in adult allele frequency or effect size of association

to fitness components can be leveraged to detect sex-differential selection. (C) A “phenotype-focused” strategy relies on aggregation of selection signals

revealed by genotype-focused or fitness-focused strategies across trait-associated variants identified by genome-wide association studies (GWAS).

https://doi.org/10.1371/journal.pbio.3002469.g003
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With the recent development of algorithms for inference of the ancestral recombination

graph or its proxies, several tree-based statistics have been developed for detecting positive

selection (reviewed in [18]; Fig 2C(vi)). One of these methods, Relate, estimates local geneal-

ogy from sequence data and detects selection by searching for rapid propagation of lineages

carrying a putatively beneficial allele relative to other lineages, effectively testing for differences

in the coalescent rate between haplotypes carrying different alleles [19]. However, this selec-

tion metric is calculated on only one point estimate of the local genealogy. By contrast, a likeli-

hood method called CLUES leverages the posterior distribution of local genealogical trees to

infer selection coefficients and allele frequency trajectories at individual loci [20]. These new

methods have confirmed strong selection on variants associated with lactase persistence,

immune response, and pigmentation traits in Europeans in the past few thousand years and

some signals in other populations (such as the EDAR gene in East Asians), although very few

new signals have been detected.

Selection signals in ancient genomes

While modern genomes provide a snapshot of population evolution and allow for indirect

inference of past demographic and selective events, genomic sequences from ancient samples

enable direct glimpses into the genetic history of human populations. By providing estimates

of allele frequencies at multiple time points (Fig 2A and 2B), ancient DNA has shed valuable

insights on the evolutionary histories of multiple selected variants in human evolution during

the past 15,000 years (reviewed in [21–23]). Analysis based on ancient DNA has also been par-

ticularly helpful in detecting candidates under spatially or temporally restricted selection.

Ancient DNA transformed our understanding of selection in humans by resolving complex

interactions between selection and demographic history. As recent human history features

many episodes of population splits and admixture, signals of selection are often obscured by

changes in ancestry [24]. One instance is the evolutionary history of the FADS locus, which

contains genes encoding enzymes involved in the conversion of long-chain polyunsaturated

fatty acids. Using present-day genomic data, studies detected strong selection signals on FADS
genes in human populations from multiple continents, with different alleles being favored

across time and geography [25–29]. However, analysis of ancient DNA showed that the selec-

tion signal in Native Americans was largely an artifact driven by parallel selection in European

and Asian populations [30]. Another intriguing case is the evolution of pigmentation in west

Eurasia in the context of several major admixture events revealed by ancient DNA. The

derived alleles associated with lighter skin or eye color at several pigmentation-associated

genes exhibited distinct frequencies in different ancestral populations, potentially reflecting

differential selective pressures across geography prior to the Mesolithic period (i.e., before

9,000 to 10,000 years ago) [31,32]. Moreover, the observed allele frequencies and ancestry frac-

tions at these pigmentation-associated variants in later admixed populations significantly devi-

ated from neutral expectations, suggesting subsequent selection during the Neolithic, Bronze

Age, and historical periods [33–35]. These findings point to continued selective pressure for

light pigmentation over the past 2,000 years in west Eurasia and support the concept that

admixture may facilitate rapid adaptation by introducing advantageous alleles [34–37].

Ancient DNA data have also refined our knowledge of the onset, duration, and strength of

selection events. For example, selection on the variant conferring lactase persistence was ini-

tially estimated to begin around 7,500 years ago based on modern genomic data and archeolo-

gical evidence of dairy production [38]. Surprisingly, ancient DNA data have shown that the

selected allele was rare in Bronze Age Europe until 3,000 years ago, suggesting a much later

onset of positive selection than was previously inferred [31]. In addition, based on the allele
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frequency trajectory in ancient DNA samples, the positive selection for this allele was inferred

to be strong 100 to 150 generations ago but drastically reduced in the past 100 generations

[39]. Significant variation in selection strength has also been found at several other previously

identified selected loci [39]. Overall, ancient DNA studies have confirmed selection signals

near multiple genes associated with diet, pigmentation, and immune response revealed in

modern genomic data, and have provided fine-resolution insights into the temporal dynamics

and geographic distribution of the selected variants and the corresponding selection strengths

[26,34,39,40].

With recurrent observations of selection targeting genes in immune pathways, the quest to

discern the specific pathogens driving these selective pressures has been immensely captivat-

ing. A strategy to link selection signals with the causative pathogens is to search for variants

with unusual allele frequency changes during well-documented catastrophic pandemics. A

recent investigation scrutinized ancient genomes of roughly 200 individuals who died before,

during, and after the Black Death pandemic in the fourteenth century [41]. This study reported

an overall enrichment of allele frequency differentiation in immune genes as well as a handful

of potential targets under positive selection. However, serious skepticism has been raised

towards the findings due to technical concerns [42], and other studies adopting similar designs

(though with smaller sample sizes) failed to replicate the selection signals at immune genes

overall or at individual candidates [43,44]. These results suggest the selection effects of histori-

cal pandemics at individual genomic loci are relatively modest, necessitating expansive sample

sizes for detection.

Fitness-focused strategy for detecting selection in contemporary

populations

The fitness of an individual consists of several components such as viability, mating success,

and fecundity. A genetic variant that influences any of these components is subject to natural

selection unless its effects on all components cancel out. Based on this reasoning, one can iden-

tify loci under ongoing selection using a fitness-focused approach by performing GWAS on

proxies for fitness components (Fig 3B). However, traits closely associated with fitness are

expected to have low heritability [45], and fitness-related variants tend to be rare in frequency.

Therefore, identification of these variants via association requires exceedingly large sample

sizes, which only became feasible in the past decade. It is worth noting that, due to limited

power, this association approach is biased towards detecting common variants and does not

pick up fitness-influencing variants that are under strong negative selection.

One of the most studied proxies of fertility is the number of children ever born to or fathered

by an individual, because it can be easily surveyed and approximates the overall fitness well in

modern populations with low mortality. Using data from hundreds of thousands of individuals

born in the 1950s to 1970s, dozens of genomic loci have been associated with the number of chil-

dren [46–48]. Interestingly, among the top associations stands the FADS locus, which also harbors

strong signals of historical positive selection in both ancient and present-day DNA samples

[26,28,29,49]. By contrast, the two most significant association regions lack evidence of historical

positive selection but demonstrate signals of balancing selection, possibly due to pleiotropic effects

(Box 1) on other fitness components or temporally fluctuating selection [46,50,51].

Besides reproduction, viability is a key component of fitness. In principle, the number of

children closely reflects their contribution to the population gene pool of the next generation,

but current association studies for this trait include only individuals who survived to comple-

tion of their reproductive lifespan, leaving out those who did not reach adulthood. To detect

common variants linked to early-life survival, Wu and colleagues performed a clever GWAS
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on time- and location-matched infant mortality rate (IMR) for living individuals in the UK

Biobank [52]. The rationale is that individuals who survived in tougher environments during

infancy, as indexed by a higher local IMR in their birth years, tend have higher “relative viabil-

ity.” Interestingly, the two genome-wide significant loci identified by this approach, LCT and

TLR6-TLR1-TLR10, are both known targets of recent positive selection in Europeans, with the

survival-increasing alleles matching the evolutionarily favored allele [15,26].

A more direct approach for identifying variants that affect viability is by looking for shifts in

allele frequency across individuals of different ages [2]. Limited by the age distribution of partic-

ipating individuals in current cohorts, this method is underpowered to detect allele frequency

changes in early life, when selective pressure is expected to be strong. However, in humans,

even variants that exclusively affect viability late in life may be under selection, due to late male

reproduction, intergenerational resource transfer, and other reasons [53,54]. By testing for

changes in allele frequency with age, a study found and replicated two genome-wide significant

signals in 2 independent datasets: one overlaps with the APOE ε4 allele that is associated with

reduced lifespan and increased risk of Alzheimer’s disease and cardiovascular diseases [55,56];

the other locus contains variants that are close to a nicotine receptor gene CHRNA3 and associ-

ated with increased smoking quantity [57]. Intriguingly, the relatively common frequencies of

these survival-reducing variants in present-day populations suggest that they were not under

strong negative selection in the recent past. The authors interpreted the lack of abundant associ-

ations as evidence for purifying selection against variants with large effects on late-onset disease

and speculated that the APOE and CHRNA3 loci were found because their deleterious effects

have recently increased in humans due to environmental changes.

Fitness-focused strategy for detecting sex-differential selection

The extraordinary level of sexual dimorphism in many animal species, including humans,

reflects sex-specific phenotypic effects and sex differences in the fitness landscape. The fitness

effect of a genetic variant may differ between sexes in magnitude or sometimes in direction.

Such sex-differential selection is challenging to study because mendelian inheritance equalizes

autosomal allele frequencies between the 2 sexes at fertilization in each generation. Neverthe-

less, the special case of sex-differential selection on viability is expected to leave a distinctive

signature in population genetic variation: allele frequency differences between adult females

and males (Fig 3B, right). An early study seeking this signature reported signals at hundreds of

genetic regions and an enrichment of signals on the X chromosome compared to autosomes

[58]. Unfortunately, these findings turned out to be largely false positives driven by random

noise, sex-biased genotyping error, and biases due to hemizygosity of the X chromosome in

males. Later studies on much larger biobank datasets failed to detect robust signals at any auto-

somal loci [59] or enrichment on the X chromosome [60].

While signals of sex-differential viability selection are expected to be exceptionally weak at

individual loci [61,62], subtle between-sex allele frequency differences across many variants may

be detectable in aggregation. Leveraging the genomic and reproductive history data of approxi-

mately 250,000 adults in the UK Biobank, Ruzicka and colleagues developed new metrics to mea-

sure between-sex allele frequency differentiation over different stages of a life cycle. They found

significant shifts in the genome-wide distributions of these metrics, which is consistent with

effects of sex-differential selection on survival, reproductive success, and overall fitness [4].

Limitations of the fitness-focused strategy for selection detection

One curious observation from the studies described above is the limited overlap between fit-

ness-associated variants in contemporary populations and targets under historical positive
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selection. As the 2 approaches (i.e., fitness-focused and genotype-focused) capture selection

signals of very different timescales, one explanation is a highly dynamic selection landscape

during recent human evolution. However, the fitness-associated variants identified in bio-

bank-style datasets need to be taken with a grain of salt for several technical reasons.

First, the effect measured by association likely does not reflect the actual fitness effect. Fit-

ness effects that are “visible” to natural selection may be too subtle to be picked up by associa-

tion studies given current sample sizes, so many targets of ongoing selection might be missed.

On the other hand, proxy traits only capture certain aspects of fitness components, so the mea-

sured effect of a variant may be greater than its effect on overall fitness in the presence of

antagonistic pleiotropy (Box 1). In other words, there may be weaker or even no ongoing posi-

tive selection on variants with opposite effects on different fitness components.

Second, as for all GWAS in general, uncorrected population stratification remains a con-

cern for fitness-associated variants, especially for those with highly differentiated frequencies

across populations. For example, the lactase persistence variant near LCT, the top selection tar-

get identified by the IMR GWAS, is among the most differentiated variants across European

populations [63]. Despite the authors’ best effort in correcting for population structure, it is

still possible that the IMR association signal in UK Biobank data is driven by residual stratifica-

tion, so the claim of ongoing selection on this variant remains to be validated in independent

datasets or by family-based approaches [64].

A related yet different issue applies to analysis based on allele frequency differences between

sex. In addition to sex-biased viability selection, between-sex allele frequency differences can

also be interpreted as the result of subtly different population structures between sexes or sex-

biased participation [65]. The UK Biobank requires active participation, and the participants

are not representative of the general population in various sociodemographic and health-

related characteristics [66]. Should a genetic variant affect participation inclination in men and

women differentially, subtle allele frequency difference between sexes is expected. Consistent

with this hypothesis, a “GWAS of sex” performed in 5 biobank-style datasets found significant

positive autosomal single-nucleotide polymorphism heritability in those that require active

participation (including UK Biobank) but not those with relatively passive recruitment,

although this contrast is confounded by differences in sample size across datasets [65]. There-

fore, an important future step will be to replicate the findings in more population-representa-

tive datasets or family-based studies to rule out or quantify the contribution of sex-differential

participation bias.

Directional selection on quantitative traits

Integration of GWAS results with genetic variation patterns

GWAS have provided unprecedented insights into the genetic architecture of human pheno-

types, revealing significant heritability and high polygenicity (Box 1) of most traits, as well as

unexpectedly small effect sizes for most associated variants. These observations are surpris-

ingly close to the assumptions of classical quantitative genetics models [67]. In the context of

adaptation, the measurable heritability means that at least a portion of the phenotypic variation

within a population is attributed to existing genetic polymorphisms, which, in response to

changes in selective pressure on the phenotype, offer the materials for genetic adaptation with-

out having to await new mutations. In turn, the high polygenicity and tiny effect sizes of most

variants suggest that the selective pressure on any individual alleles may be too small to leave

discernible genomic footprints but may be detectable in aggregate. These considerations point

to the importance of examining polygenic signals of selection on traits during human evolu-

tion via a phenotype-focused strategy (Fig 3C) [68].
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If all or most trait-influencing variants can be identified in an unbiased manner, signals at

these loci can be interrogated jointly to uncover selection on the trait. The most straightfor-

ward idea for detecting polygenic adaptation is to directly combine GWAS results and popula-

tion genetic summary statistics (e.g., some in Fig 2C) [15,19,33–35,69]. Common approaches

include tests for shifts in distribution of single-locus summary statistics indicative of selection

(e.g., Fst) at GWAS hits [69] or correlation between GWAS summary statistics (such as effect

direction, magnitude, and significance level) and population genetic summary statistics. This

approach has been applied to both present-day and ancient DNA data, and several studies

explicitly leveraged population admixture events in recent human history to gain insights into

the timing of selection [15,19,33–35,70]. Overall, these studies found consistent evidence of

selection on variants underlying anthropometric, pigmentation, and immune-related trait var-

iation in human populations in the past 10,000 years.

Rooted in the classic quantitative genetics model, more direct tests for polygenic adaptation

have been devised around the concept of “genotypic value” (also known as the “breeding

value” in quantitative genetics when nonadditive genetic effects are ignored) that describes the

total contribution of all genetic variants of an individual to their phenotypic value. The poly-

genic score (PGS)—the sum of allele effect sizes across all independent GWAS loci—provides

a proxy for the genotypic value that can be applied at the individual or population level. In

addition to empirical comparison of observed PGS to a null distribution based on sets of

matching variants [71,72], formal tests for polygenic signals of selection on quantitative traits

have been developed in the population genetics framework [73,74]. In a way, these tests are

analogous to tests for single-locus selection, but instead of rapid change or differentiation of

allele frequency, signals for polygenic adaption come from unexpected changes or overdisper-

sion of PGS in the history of one or multiple populations [73,74].

GWAS results have also been explicitly incorporated into the coalescent framework. By

combining GWAS effect sizes and inferred local genealogical tree at GWAS loci, Edge and

Coop developed methods for reconstructing the trajectory of population-mean PGS over time

[75]. They applied these methods to test polygenic signals of selection for increased height in

the British population but only found very weak signals concordant with prior reports

[15,70,73,74]. Taking a different approach, Stern and colleagues extended their method

CLUES to estimate selection intensity on a polygenic trait by considering the allele frequency

trajectories of GWAS loci conditional on the inferred local coalescent trees [76]. Contrary to

the conclusion of prior studies, this method detected no signal of recent directional selection

on height or body mass index, but replicated some other traits previously reported to be under

recent selection, such as pigmentation traits, age at first birth, glycated hemoglobin, and educa-

tional attainment. By combining theory of quantitative genetics and population genetics and

incorporating empirical GWAS findings, these new methods unveiled many signals of selec-

tion on quantitative traits during recent human evolution and are paving the way for many

more future findings.

Correlation between phenotypes and fitness components

Analogous to the fitness-focused approach for detecting ongoing selection at individual loci,

selection effects on a polygenic trait can be estimated based on phenotypic or genetic correla-

tions between the trait and a proxy of fitness component [77]. Approaches include regression

of a measure of reproductive success on PGSs for traits of interest [78,79] or estimation of

genetic correlation between traits of interest and proxies for fitness [80,81]. Partially consistent

with previous epidemiological studies, these studies found selection in contemporary human

populations for genetic variants underlying earlier age at first birth and shorter stature in
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females, as well as for those underlying increased body mass index and reduced educational

attainment in both sexes.

Hypothesizing that variants influencing polygenic traits may be under sexually antagonistic

selection on viability, Zhu and colleagues developed a test based on between-sex allele fre-

quency differences and sex-specific phenotypic effect sizes from GWAS. They found suggestive

signals of selection on testosterone levels [82], which is consistent with the recent findings of

positive correlation between testosterone level and mortality in females and an inverse rela-

tionship in males [83]. Nonetheless, because the model makes some strong assumptions, such

as allele frequency under equilibrium and selection coefficient proportional to phenotypic

effect size, it remains questionable whether the detected signal is specific to sexually antagonis-

tic selection or can also reflect the effects of other evolutionary processes.

Challenges in validating and interpreting polygenic signals of selection on

quantitative traits

Despite significant progress in detecting polygenic adaptation in the past decade, serious concerns

quickly emerged regarding the validity and interpretation of the reported signals of polygenic

adaptation, for both technical and conceptual reasons [84]. First, technical biases in GWAS may

lead to false positive signals or biased effect size estimates at individual loci. For example, the

strong signals of selection on height in Europeans were found to largely result from uncorrected

population stratification and weakened considerably with effect size estimates from GWAS of

less-structured samples [75,85,86]. The inherent ascertainment bias and limited portability of

GWAS results cast additional uncertainty on the reliability of selection signals when applying

GWAS summary statistics from a study group to selection tests in other groups [84,87,88]. Fur-

thermore, although being intuitive and powerful for combining information across sites, PGSs,

especially those constructed with variants that do not reach genome-wide significance, further

exacerbate biases of GWAS results due to residual population stratification [89].

Moreover, most current methods fundamentally test for deviation from neutrality (i.e., no

selection on any trait or variant at all), so the detected signals may reflect effects of other

modes of selection. Despite the debate on the prevalence of polygenic adaptation, there is a

consensus that GWAS variants with large effect sizes are under negative selection, indicated by

the strong negative correlation between variant effect size and minor allele frequency (beyond

the expectation under detection bias) [90–92]. This phenomenon is consistent with the action

of stabilizing selection (Box 1) on quantitative traits: For a population centered around the

phenotypic optimum, mutations that affect fitness-relevant phenotypes tend to shift the popu-

lation away from the optimum and thus be deleterious [93]. The prevalence of stabilizing selec-

tion leads to challenges in detection and interpretation of population differences in PGS. First,

under stabilizing selection, adaptive genetic changes do not always mirror shifts in the pheno-

typic optimum. Environmental changes can alter not only the optimal trait level (Fig 1; dashed

purple arrow) but also the mean environmental contribution to the phenotype (Fig 1; solid

purple arrow), which induces “genetic compensation” in the opposite direction [84,94]. Sec-

ond, although stabilizing selection around the same trait optimum constrains phenotypic dif-

ferentiation between populations, it accelerates genetic differentiation at trait-influencing loci.

This counterintuitive effect of stabilizing selection, combined with incomplete and biased

ascertainment of GWAS loci, inflates differences in PGS between populations and may even

yield spurious signals of polygenic adaptation [95]. These considerations underscore the

importance of regarding stabilizing selection (with a constant trait optimum throughout time

and space) as a null model for devising and interpreting tests for polygenic adaptation, espe-

cially those reliant on inter-population comparisons.
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Even when the selection signals are technically sound and effects of stabilizing selection are

adequately considered, it remains a formidable challenge to tell which traits are directly under

selection, given the prevalent pleiotropy (Box 1) across human complex traits [96–98]. Aware

of this issue, researchers developed methods that aim to disentangle effects of selection on

genetically correlated traits and found evidence of indirect selection (e.g., signals of selection

on educational attainment due to selection on other traits) and opposing selection (e.g., selec-

tion for increased type 2 diabetes and decreased glycated hemoglobin), which helps with the

rejection of the hypothesis that a certain trait is under direct selection [76]. Yet, this study only

tested for correlated response of 137 pairs of traits and may have missed signals driven by

multi-way pleiotropy or unmeasured traits [96]. In other words, given current data and meth-

ods, one can at best conclude selection on variants associated with certain trait(s) but not selec-

tion on the trait(s).

Conclusion and future directions

Rapid growth in genomic datasets and advances in computational techniques have enabled

identification of parts of the human genome under very recent or ongoing adaptive selection.

Early genome-wide selection scans relied on the cumulative effects of selection over relatively

long timescales, but statistical innovations have enabled efficient computation using large

numbers of modern genomes to study selection over narrower time frames. The utilization of

ancient DNA data has further reduced inference uncertainty and confounding due to demo-

graphic history, providing valuable insights into the temporal dynamics and geographic distri-

bution of the selected variants. We now have lists of candidate targets with compelling

evidence of selection during the past 15,000 years, along with partial information regarding

variation in the selection strength.

As selection on genotypes is mediated by differences in fitness-relevant phenotypes (Fig 1),

a complete understanding of selective events involves not only the causal variants but also the

relevant phenotypes and selective forces [99]. Integrating rich phenotypic data with genomic

information in population-scale datasets has facilitated the establishment of associations

between variants and phenotypes. Following numerous association studies conducted for both

organismal and molecular phenotypes, it is increasingly clear that pleiotropy is widespread

across human traits [97,98,100]. It is possible that many inferred selective variants will be asso-

ciated with multiple phenotypes in future GWAS, so the new questions will become: which of

these phenotypes, if any, is mediating selection; where does the selection pressure come from;

and is selection still ongoing in present-day populations?

The expanding biobank datasets will be pivotal in addressing these questions. First, they

offer an opportunity to directly identify individual or groups of variants associated with fitness

components. The partial overlap between fitness-associated variants and those targeted by his-

torical positive selection may arise from limited power to detect subtle fitness effects, antago-

nistic effects on different fitness components (and/or between sex), or spatial or temporal

variation in fitness effects. With the anticipation of long-term longitudinal data, possibly span-

ning from birth to death, becoming available in the next few decades, it will be possible to

develop new statistics that better approximate various fitness components and integrate them

throughout a complete life cycle, thus enhancing power to identify variants that influence the

overall fitness. It is important to note that since such discoveries are associations in nature,

replication in additional biobank datasets or by family-based studies will be crucial.

Second, the rich phenotype data, coupled with theoretical advancements, can potentially

distinguish between traits directly or indirectly under selection. Although it remains uncertain

which and how many pleiotropically related traits collectively shape the fitness landscape,
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emerging evidence suggests that, at least for some traits, a model featuring many traits under

stabilizing selection aligns well the empirical GWAS results [3]. These considerations strongly

advocate for incorporating pleiotropy alongside stabilizing selection in future models and sim-

ulations that characterize genetic signatures of polygenic adaptation [101,102]. Findings from

such models, combined with variant-level pleiotropic effect size estimates from empirical asso-

ciation studies, may unveil clearer adaptation signals and help differentiate between traits

directly or indirectly influenced by selection.

Lastly, given the emerging evidence of sex differences in phenotypic and fitness effects of

the same variant [4,82], along with varying prediction accuracy of PGSs across different con-

texts (e.g., age, sex, income level) [88], more context-dependent effects will likely be unmasked.

These findings may imply gene-by-environment interactions on phenotype and fitness, hint-

ing at the environmental conditions that exert selective pressure. This information, when com-

bined with archeological data about past environments, diets, and lifestyles of human

populations, may aid in rejecting and formulating new hypotheses regarding recent selective

forces that have shaped the human genomic and phenotypic variation.

Acknowledgments

Thanks to Iain Mathieson for helpful discussion and critical feedback on the manuscript.

Author Contributions

Conceptualization: Ziyue Gao.

Funding acquisition: Ziyue Gao.

Visualization: Ziyue Gao.

Writing – original draft: Ziyue Gao.

Writing – review & editing: Ziyue Gao.

References
1. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human

genome. PLoS Biol. 2006; 4(3):e72. Epub 20060307. https://doi.org/10.1371/journal.pbio.0040072

PMID: 16494531; PubMed Central PMCID: PMC1382018.

2. Mostafavi H, Berisa T, Day FR, Perry JRB, Przeworski M, Pickrell JK. Identifying genetic variants that

affect viability in large cohorts. PLoS Biol. 2017; 15(9):e2002458. Epub 20170905. https://doi.org/10.

1371/journal.pbio.2002458 PMID: 28873088; PubMed Central PMCID: PMC5584811.

3. Simons YB, Bullaughey K, Hudson RR, Sella G. A population genetic interpretation of GWAS findings

for human quantitative traits. PLoS Biol. 2018; 16(3):e2002985. Epub 20180316. https://doi.org/10.

1371/journal.pbio.2002985 PMID: 29547617; PubMed Central PMCID: PMC5871013.

4. Ruzicka F, Holman L, Connallon T. Polygenic signals of sex differences in selection in humans from

the UK Biobank. PLoS Biol. 2022; 20(9):e3001768. Epub 20220906. https://doi.org/10.1371/journal.

pbio.3001768 PMID: 36067235; PubMed Central PMCID: PMC9481184.

5. Cassa CA, Weghorn D, Balick DJ, Jordan DM, Nusinow D, Samocha KE, et al. Estimating the selec-

tive effects of heterozygous protein-truncating variants from human exome data. Nat Genet. 2017; 49

(5):806–10. Epub 20170403. https://doi.org/10.1038/ng.3831 PMID: 28369035; PubMed Central

PMCID: PMC5618255.

6. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint

spectrum quantified from variation in 141,456 humans. Nature. 2020; 581(7809):434–43. Epub

20200527. https://doi.org/10.1038/s41586-020-2308-7 PMID: 32461654; PubMed Central PMCID:

PMC7334197.

7. Gardner EJ, Neville MDC, Samocha KE, Barclay K, Kolk M, Niemi MEK, et al. Reduced reproductive

success is associated with selective constraint on human genes. Nature. 2022; 603(7903):858–63.

Epub 20220323. https://doi.org/10.1038/s41586-022-04549-9 PMID: 35322230.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 14 / 20

https://doi.org/10.1371/journal.pbio.0040072
http://www.ncbi.nlm.nih.gov/pubmed/16494531
https://doi.org/10.1371/journal.pbio.2002458
https://doi.org/10.1371/journal.pbio.2002458
http://www.ncbi.nlm.nih.gov/pubmed/28873088
https://doi.org/10.1371/journal.pbio.2002985
https://doi.org/10.1371/journal.pbio.2002985
http://www.ncbi.nlm.nih.gov/pubmed/29547617
https://doi.org/10.1371/journal.pbio.3001768
https://doi.org/10.1371/journal.pbio.3001768
http://www.ncbi.nlm.nih.gov/pubmed/36067235
https://doi.org/10.1038/ng.3831
http://www.ncbi.nlm.nih.gov/pubmed/28369035
https://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
https://doi.org/10.1038/s41586-022-04549-9
http://www.ncbi.nlm.nih.gov/pubmed/35322230
https://doi.org/10.1371/journal.pbio.3002469


8. Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, et al. A genome-wide mutational

constraint map quantified from variation in 76,156 human genomes. bioRxiv. 2022. https://doi.org/10.

1101/2022.03.20.485034

9. Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. Recent and ongoing selection in the

human genome. Nat Rev Genet. 2007; 8(11):857–868. https://doi.org/10.1038/nrg2187 PMID:

17943193; PubMed Central PMCID: PMC2933187.

10. Hernandez M, Perry GH. Scanning the human genome for “signatures” of positive selection: Transfor-

mative opportunities and ethical obligations. Evol Anthropol. 2021; 30(2):113–21. Epub 20210331.

https://doi.org/10.1002/evan.21893 PMID: 33788352.

11. Fan S, Hansen ME, Lo Y, Tishkoff SA. Going global by adapting local: A review of recent human adap-

tation. Science. 2016; 354(6308):54–59. https://doi.org/10.1126/science.aaf5098 PMID: 27846491;

PubMed Central PMCID: PMC5154245.

12. Pavlidis P, Jensen JD, Stephan W. Searching for footprints of positive selection in whole-genome

SNP data from nonequilibrium populations. Genetics. 2010; 185(3):907–22. Epub 20100420. https://

doi.org/10.1534/genetics.110.116459 PMID: 20407129; PubMed Central PMCID: PMC2907208.

13. Peter BM, Huerta-Sanchez E, Nielsen R. Distinguishing between selective sweeps from standing vari-

ation and from a de novo mutation. PLoS Genet. 2012; 8(10):e1003011. Epub 20121011. https://doi.

org/10.1371/journal.pgen.1003011 PMID: 23071458; PubMed Central PMCID: PMC3469416.

14. Schrider DR, Kern AD. Supervised Machine Learning for Population Genetics: A New Paradigm.

Trends Genet. 2018; 34(4):301–12. Epub 20180110. https://doi.org/10.1016/j.tig.2017.12.005 PMID:

29331490; PubMed Central PMCID: PMC5905713.

15. Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, et al. Detection of human adaptation during

the past 2000 years. Science. 2016; 354(6313):760–4. Epub 20161013. https://doi.org/10.1126/

science.aag0776 PMID: 27738015; PubMed Central PMCID: PMC5182071.

16. Palamara PF, Terhorst J, Song YS, Price AL. High-throughput inference of pairwise coalescence

times identifies signals of selection and enriched disease heritability. Nat Genet. 2018; 50(9):1311–7.

Epub 20180813. https://doi.org/10.1038/s41588-018-0177-x PMID: 30104759; PubMed Central

PMCID: PMC6145075.

17. Nait Saada J, Kalantzis G, Shyr D, Cooper F, Robinson M, Gusev A, et al. Identity-by-descent detec-

tion across 487,409 British samples reveals fine scale population structure and ultra-rare variant asso-

ciations. Nat Commun. 2020; 11(1):6130. Epub 20201130. https://doi.org/10.1038/s41467-020-

19588-x PMID: 33257650; PubMed Central PMCID: PMC7704644.

18. Hejase HA, Dukler N, Siepel A. From Summary Statistics to Gene Trees: Methods for Inferring Posi-

tive Selection. Trends Genet. 2020; 36(4):243–58. Epub 20200115. https://doi.org/10.1016/j.tig.2019.

12.008 PMID: 31954511; PubMed Central PMCID: PMC7177178.

19. Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation for thousands

of samples. Nat Genet. 2019; 51(9):1321–9. Epub 20190902. https://doi.org/10.1038/s41588-019-

0484-x PMID: 31477933; PubMed Central PMCID: PMC7610517.

20. Stern AJ, Wilton PR, Nielsen R. An approximate full-likelihood method for inferring selection and allele

frequency trajectories from DNA sequence data. PLoS Genet. 2019; 15(9):e1008384. Epub

20190913. https://doi.org/10.1371/journal.pgen.1008384 PMID: 31518343; PubMed Central PMCID:

PMC6760815.

21. Skoglund P, Mathieson I. Ancient Genomics of Modern Humans: The First Decade. Annu Rev Geno-

mics Hum Genet. 2018; 19:381–404. Epub 20180425. https://doi.org/10.1146/annurev-genom-

083117-021749 PMID: 29709204.

22. Dehasque M, Avila-Arcos MC, Diez-Del-Molino D, Fumagalli M, Guschanski K, Lorenzen ED, et al.

Inference of natural selection from ancient DNA. Evol Lett. 2020; 4(2):94–108. Epub 20200318.

https://doi.org/10.1002/evl3.165 PMID: 32313686; PubMed Central PMCID: PMC7156104.

23. Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat

Rev Genet. 2017; 18(11):659–74. Epub 20170911. https://doi.org/10.1038/nrg.2017.65 PMID:

28890534.

24. Souilmi Y, Tobler R, Johar A, Williams M, Grey ST, Schmidt J, et al. Admixture has obscured signals

of historical hard sweeps in humans. Nat Ecol Evol. 2022; 6(12):2003–15. Epub 20221031. https://doi.

org/10.1038/s41559-022-01914-9 PMID: 36316412; PubMed Central PMCID: PMC9715430.

25. Mathias RA, Fu W, Akey JM, Ainsworth HC, Torgerson DG, Ruczinski I, et al. Adaptive evolution of

the FADS gene cluster within Africa. PLoS ONE. 2012; 7(9):e44926. Epub 20120919. https://doi.org/

10.1371/journal.pone.0044926 PMID: 23028684; PubMed Central PMCID: PMC3446990.

26. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, et al. Genome-wide pat-

terns of selection in 230 ancient Eurasians. Nature. 2015; 528(7583):499–503. Epub 20151123.

https://doi.org/10.1038/nature16152 PMID: 26595274; PubMed Central PMCID: PMC4918750.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 15 / 20

https://doi.org/10.1101/2022.03.20.485034
https://doi.org/10.1101/2022.03.20.485034
https://doi.org/10.1038/nrg2187
http://www.ncbi.nlm.nih.gov/pubmed/17943193
https://doi.org/10.1002/evan.21893
http://www.ncbi.nlm.nih.gov/pubmed/33788352
https://doi.org/10.1126/science.aaf5098
http://www.ncbi.nlm.nih.gov/pubmed/27846491
https://doi.org/10.1534/genetics.110.116459
https://doi.org/10.1534/genetics.110.116459
http://www.ncbi.nlm.nih.gov/pubmed/20407129
https://doi.org/10.1371/journal.pgen.1003011
https://doi.org/10.1371/journal.pgen.1003011
http://www.ncbi.nlm.nih.gov/pubmed/23071458
https://doi.org/10.1016/j.tig.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29331490
https://doi.org/10.1126/science.aag0776
https://doi.org/10.1126/science.aag0776
http://www.ncbi.nlm.nih.gov/pubmed/27738015
https://doi.org/10.1038/s41588-018-0177-x
http://www.ncbi.nlm.nih.gov/pubmed/30104759
https://doi.org/10.1038/s41467-020-19588-x
https://doi.org/10.1038/s41467-020-19588-x
http://www.ncbi.nlm.nih.gov/pubmed/33257650
https://doi.org/10.1016/j.tig.2019.12.008
https://doi.org/10.1016/j.tig.2019.12.008
http://www.ncbi.nlm.nih.gov/pubmed/31954511
https://doi.org/10.1038/s41588-019-0484-x
https://doi.org/10.1038/s41588-019-0484-x
http://www.ncbi.nlm.nih.gov/pubmed/31477933
https://doi.org/10.1371/journal.pgen.1008384
http://www.ncbi.nlm.nih.gov/pubmed/31518343
https://doi.org/10.1146/annurev-genom-083117-021749
https://doi.org/10.1146/annurev-genom-083117-021749
http://www.ncbi.nlm.nih.gov/pubmed/29709204
https://doi.org/10.1002/evl3.165
http://www.ncbi.nlm.nih.gov/pubmed/32313686
https://doi.org/10.1038/nrg.2017.65
http://www.ncbi.nlm.nih.gov/pubmed/28890534
https://doi.org/10.1038/s41559-022-01914-9
https://doi.org/10.1038/s41559-022-01914-9
http://www.ncbi.nlm.nih.gov/pubmed/36316412
https://doi.org/10.1371/journal.pone.0044926
https://doi.org/10.1371/journal.pone.0044926
http://www.ncbi.nlm.nih.gov/pubmed/23028684
https://doi.org/10.1038/nature16152
http://www.ncbi.nlm.nih.gov/pubmed/26595274
https://doi.org/10.1371/journal.pbio.3002469


27. Fumagalli M, Moltke I, Grarup N, Racimo F, Bjerregaard P, Jorgensen ME, et al. Greenlandic Inuit

show genetic signatures of diet and climate adaptation. Science. 2015; 349(6254):1343–1347. https://

doi.org/10.1126/science.aab2319 PMID: 26383953.

28. Buckley MT, Racimo F, Allentoft ME, Jensen MK, Jonsson A, Huang H, et al. Selection in Europeans

on Fatty Acid Desaturases Associated with Dietary Changes. Mol Biol Evol. 2017; 34(6):1307–1318.

https://doi.org/10.1093/molbev/msx103 PMID: 28333262; PubMed Central PMCID: PMC5435082.

29. Mathieson S, Mathieson I. FADS1 and the Timing of Human Adaptation to Agriculture. Mol Biol Evol.

2018; 35(12):2957–2970. https://doi.org/10.1093/molbev/msy180 PMID: 30272210; PubMed Central

PMCID: PMC6278866.

30. Mathieson I. Limited Evidence for Selection at the FADS Locus in Native American Populations. Mol

Biol Evol. 2020; 37(7):2029–2033. https://doi.org/10.1093/molbev/msaa064 PMID: 32145021;

PubMed Central PMCID: PMC7306688.

31. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J, et al. Population

genomics of Bronze Age Eurasia. Nature. 2015; 522(7555):167–172. https://doi.org/10.1038/

nature14507 PMID: 26062507.

32. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the

steppe was a source for Indo-European languages in Europe. Nature. 2015; 522(7555):207–11. Epub

20150302. https://doi.org/10.1038/nature14317 PMID: 25731166; PubMed Central PMCID:

PMC5048219.

33. Ju D, Mathieson I. The evolution of skin pigmentation-associated variation in West Eurasia. Proc Natl

Acad Sci U S A. 2021; 118(1). https://doi.org/10.1073/pnas.2009227118 PMID: 33443182; PubMed

Central PMCID: PMC7817156.

34. Davy T, Ju D, Mathieson I, Skoglund P. Hunter-gatherer admixture facilitated natural selection in Neo-

lithic European farmers. Curr Biol. 2023; 33(7):1365–71 e3. Epub 20230323. https://doi.org/10.1016/j.

cub.2023.02.049 PMID: 36963383; PubMed Central PMCID: PMC10153476.

35. Le MK, Smith OS, Akbari A, Harpak A, Reich D, Narasimhan VM. 1,000 ancient genomes uncover

10,000 years of natural selection in Europe. bioRxiv. 2022. Epub 20220826. https://doi.org/10.1101/

2022.08.24.505188 PMID: 36052370; PubMed Central PMCID: PMC9435429.

36. Hamid I, Korunes KL, Beleza S, Goldberg A. Rapid adaptation to malaria facilitated by admixture in

the human population of Cabo Verde. Elife. 2021;10. Epub 20210104. https://doi.org/10.7554/eLife.

63177 PMID: 33393457; PubMed Central PMCID: PMC7815310.

37. Norris ET, Rishishwar L, Chande AT, Conley AB, Ye K, Valderrama-Aguirre A, et al. Admixture-

enabled selection for rapid adaptive evolution in the Americas. Genome Biol. 2020; 21(1):29. Epub

20200207. https://doi.org/10.1186/s13059-020-1946-2 PMID: 32028992; PubMed Central PMCID:

PMC7006128.

38. Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG. The origins of lactase persistence in Europe.

PLoS Comput Biol. 2009; 5(8):e1000491. Epub 20090828. https://doi.org/10.1371/journal.pcbi.

1000491 PMID: 19714206; PubMed Central PMCID: PMC2722739.

39. Mathieson I, Terhorst J. Direct detection of natural selection in Bronze Age Britain. Genome Res.

2022; 32(11–12):2057–67. Epub 20221031. https://doi.org/10.1101/gr.276862.122 PMID: 36316157;

PubMed Central PMCID: PMC9808619.

40. Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Unterlander M, et al. Direct evidence for positive

selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc Natl Acad Sci

U S A. 2014; 111(13):4832–7. Epub 20140310. https://doi.org/10.1073/pnas.1316513111 PMID:

24616518; PubMed Central PMCID: PMC3977302.

41. Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, et al. Evolution of immune genes is

associated with the Black Death. Nature. 2022; 611(7935):312–9. Epub 20221019. https://doi.org/10.

1038/s41586-022-05349-x PMID: 36261521; PubMed Central PMCID: PMC9580435.

42. Barton AR, Santander CG, Skoglund P, Moltke I, Reich D, Mathieson I. Insufficient evidence for natu-

ral selection associated with the Black Death. bioRxiv. 2023. Epub 20230315. https://doi.org/10.1101/

2023.03.14.532615 PMID: 36993413; PubMed Central PMCID: PMC10055098.

43. Gopalakrishnan S, Ebenesersdottir SS, Lundstrom IKC, Turner-Walker G, Moore KHS, Luisi P, et al.

The population genomic legacy of the second plague pandemic. Curr Biol. 2022; 32(21):4743–51 e6.

Epub 20221001. https://doi.org/10.1016/j.cub.2022.09.023 PMID: 36182700; PubMed Central

PMCID: PMC9671091.

44. Hui R, Scheib CL, D’Atanasio E, Inskip SA, Cessford C, Biagini SA, et al. Medieval social landscape

through the genetic history of Cambridgeshire before and after the Black Death. bioRxiv. 2023. Epub

March 06, 2023. https://doi.org/10.1101/2023.03.03.531048

45. Mousseau TA, Roff DA. Natural selection and the heritability of fitness components. Heredity (Edinb).

1987; 59(Pt 2):181–197. https://doi.org/10.1038/hdy.1987.113 PMID: 3316130.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 16 / 20

https://doi.org/10.1126/science.aab2319
https://doi.org/10.1126/science.aab2319
http://www.ncbi.nlm.nih.gov/pubmed/26383953
https://doi.org/10.1093/molbev/msx103
http://www.ncbi.nlm.nih.gov/pubmed/28333262
https://doi.org/10.1093/molbev/msy180
http://www.ncbi.nlm.nih.gov/pubmed/30272210
https://doi.org/10.1093/molbev/msaa064
http://www.ncbi.nlm.nih.gov/pubmed/32145021
https://doi.org/10.1038/nature14507
https://doi.org/10.1038/nature14507
http://www.ncbi.nlm.nih.gov/pubmed/26062507
https://doi.org/10.1038/nature14317
http://www.ncbi.nlm.nih.gov/pubmed/25731166
https://doi.org/10.1073/pnas.2009227118
http://www.ncbi.nlm.nih.gov/pubmed/33443182
https://doi.org/10.1016/j.cub.2023.02.049
https://doi.org/10.1016/j.cub.2023.02.049
http://www.ncbi.nlm.nih.gov/pubmed/36963383
https://doi.org/10.1101/2022.08.24.505188
https://doi.org/10.1101/2022.08.24.505188
http://www.ncbi.nlm.nih.gov/pubmed/36052370
https://doi.org/10.7554/eLife.63177
https://doi.org/10.7554/eLife.63177
http://www.ncbi.nlm.nih.gov/pubmed/33393457
https://doi.org/10.1186/s13059-020-1946-2
http://www.ncbi.nlm.nih.gov/pubmed/32028992
https://doi.org/10.1371/journal.pcbi.1000491
https://doi.org/10.1371/journal.pcbi.1000491
http://www.ncbi.nlm.nih.gov/pubmed/19714206
https://doi.org/10.1101/gr.276862.122
http://www.ncbi.nlm.nih.gov/pubmed/36316157
https://doi.org/10.1073/pnas.1316513111
http://www.ncbi.nlm.nih.gov/pubmed/24616518
https://doi.org/10.1038/s41586-022-05349-x
https://doi.org/10.1038/s41586-022-05349-x
http://www.ncbi.nlm.nih.gov/pubmed/36261521
https://doi.org/10.1101/2023.03.14.532615
https://doi.org/10.1101/2023.03.14.532615
http://www.ncbi.nlm.nih.gov/pubmed/36993413
https://doi.org/10.1016/j.cub.2022.09.023
http://www.ncbi.nlm.nih.gov/pubmed/36182700
https://doi.org/10.1101/2023.03.03.531048
https://doi.org/10.1038/hdy.1987.113
http://www.ncbi.nlm.nih.gov/pubmed/3316130
https://doi.org/10.1371/journal.pbio.3002469


46. Day FR, Helgason H, Chasman DI, Rose LM, Loh PR, Scott RA, et al. Physical and neurobehavioral

determinants of reproductive onset and success. Nat Genet. 2016; 48(6):617–23. Epub 20160418.

https://doi.org/10.1038/ng.3551 PMID: 27089180; PubMed Central PMCID: PMC5238953.

47. Barban N, Jansen R, de Vlaming R, Vaez A, Mandemakers JJ, Tropf FC, et al. Genome-wide analysis

identifies 12 loci influencing human reproductive behavior. Nat Genet. 2016; 48(12):1462–72. Epub

20161031. https://doi.org/10.1038/ng.3698 PMID: 27798627; PubMed Central PMCID:

PMC5695684.

48. Mathieson I, Day FR, Barban N, Tropf FC, Brazel DM, eQTLGen Consortium, et al. Genome-wide

analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS

locus. Nat Hum Behav. 2023; 7(5):790–801. Epub 20230302. https://doi.org/10.1038/s41562-023-

01528-6 PMID: 36864135.

49. Ye K, Gao F, Wang D, Bar-Yosef O, Keinan A. Dietary adaptation of FADS genes in Europe varied

across time and geography. Nat Ecol Evol. 2017; 1:167. Epub 20170526. https://doi.org/10.1038/

s41559-017-0167 PMID: 29094686; PubMed Central PMCID: PMC5672832.

50. Siewert KM, Voight BF. Detecting Long-Term Balancing Selection Using Allele Frequency Correlation.

Mol Biol Evol. 2017; 34(11):2996–3005. https://doi.org/10.1093/molbev/msx209 PMID: 28981714;

PubMed Central PMCID: PMC5850717.

51. Bitarello BD, de Filippo C, Teixeira JC, Schmidt JM, Kleinert P, Meyer D, et al. Signatures of Long-

Term Balancing Selection in Human Genomes. Genome Biol Evol. 2018; 10(3):939–955. https://doi.

org/10.1093/gbe/evy054 PMID: 29608730; PubMed Central PMCID: PMC5952967.

52. Wu Y, Furuya S, Wang Z, Nobles JE, Fletcher JM, Lu Q. GWAS on birth year infant mortality rates pro-

vides evidence of recent natural selection. Proc Natl Acad Sci U S A. 2022; 119(12):e2117312119.

Epub 20220314. https://doi.org/10.1073/pnas.2117312119 PMID: 35290122; PubMed Central

PMCID: PMC8944929.

53. Pavard S, Coste CFD. Evolutionary demographic models reveal the strength of purifying selection on

susceptibility alleles to late-onset diseases. Nat Ecol Evol. 2021; 5(3):392–400. Epub 20210104.

https://doi.org/10.1038/s41559-020-01355-2 PMID: 33398109.

54. Blekhman R, Man O, Herrmann L, Boyko AR, Indap A, Kosiol C, et al. Natural selection on genes that

underlie human disease susceptibility. Curr Biol. 2008; 18(12):883–889. https://doi.org/10.1016/j.cub.

2008.04.074 PMID: 18571414; PubMed Central PMCID: PMC2474766.

55. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose

of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science.

1993; 261(5123):921–923. https://doi.org/10.1126/science.8346443 PMID: 8346443.

56. Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: chal-

lenges and insights. Nat Rev Genet. 2006; 7(6):436–448. https://doi.org/10.1038/nrg1871 PMID:

16708071; PubMed Central PMCID: PMC2726954.

57. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with

smoking behavior. Nat Genet. 2010; 42(5):441–7. Epub 20100425. https://doi.org/10.1038/ng.571

PMID: 20418890; PubMed Central PMCID: PMC2914600.

58. Lucotte EA, Laurent R, Heyer E, Segurel L, Toupance B. Detection of Allelic Frequency Differences

between the Sexes in Humans: A Signature of Sexually Antagonistic Selection. Genome Biol Evol.

2016; 8(5):1489–500. Epub 20160602. https://doi.org/10.1093/gbe/evw090 PMID: 27189992;

PubMed Central PMCID: PMC4898804.

59. Kasimatis KR, Abraham A, Ralph PL, Kern AD, Capra JA, Phillips PC. Evaluating human autosomal

loci for sexually antagonistic viability selection in two large biobanks. Genetics. 2021; 217(1):1–10.

https://doi.org/10.1093/genetics/iyaa015 PMID: 33683357; PubMed Central PMCID: PMC8045711.

60. Ruzicka F, Connallon T. An unbiased test reveals no enrichment of sexually antagonistic polymor-

phisms on the human X chromosome. Proc Biol Sci. 2022; 289(1967):20212314. Epub 20220126.

https://doi.org/10.1098/rspb.2021.2314 PMID: 35078366; PubMed Central PMCID: PMC8790371.

61. Kasimatis KR, Ralph PL, Phillips PC. Limits to Genomic Divergence Under Sexually Antagonistic

Selection. G3 (Bethesda). 2019; 9(11):3813–24. Epub 20191105. https://doi.org/10.1534/g3.119.

400711 PMID: 31530636; PubMed Central PMCID: PMC6829153.

62. Cheng C, Kirkpatrick M. Sex-Specific Selection and Sex-Biased Gene Expression in Humans and

Flies. PLoS Genet. 2016; 12(9):e1006170. Epub 20160922. https://doi.org/10.1371/journal.pgen.

1006170 PMID: 27658217; PubMed Central PMCID: PMC5033347.

63. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, et al. Genetic signa-

tures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004; 74(6):1111–20.

Epub 20040426. https://doi.org/10.1086/421051 PMID: 15114531; PubMed Central PMCID:

PMC1182075.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 17 / 20

https://doi.org/10.1038/ng.3551
http://www.ncbi.nlm.nih.gov/pubmed/27089180
https://doi.org/10.1038/ng.3698
http://www.ncbi.nlm.nih.gov/pubmed/27798627
https://doi.org/10.1038/s41562-023-01528-6
https://doi.org/10.1038/s41562-023-01528-6
http://www.ncbi.nlm.nih.gov/pubmed/36864135
https://doi.org/10.1038/s41559-017-0167
https://doi.org/10.1038/s41559-017-0167
http://www.ncbi.nlm.nih.gov/pubmed/29094686
https://doi.org/10.1093/molbev/msx209
http://www.ncbi.nlm.nih.gov/pubmed/28981714
https://doi.org/10.1093/gbe/evy054
https://doi.org/10.1093/gbe/evy054
http://www.ncbi.nlm.nih.gov/pubmed/29608730
https://doi.org/10.1073/pnas.2117312119
http://www.ncbi.nlm.nih.gov/pubmed/35290122
https://doi.org/10.1038/s41559-020-01355-2
http://www.ncbi.nlm.nih.gov/pubmed/33398109
https://doi.org/10.1016/j.cub.2008.04.074
https://doi.org/10.1016/j.cub.2008.04.074
http://www.ncbi.nlm.nih.gov/pubmed/18571414
https://doi.org/10.1126/science.8346443
http://www.ncbi.nlm.nih.gov/pubmed/8346443
https://doi.org/10.1038/nrg1871
http://www.ncbi.nlm.nih.gov/pubmed/16708071
https://doi.org/10.1038/ng.571
http://www.ncbi.nlm.nih.gov/pubmed/20418890
https://doi.org/10.1093/gbe/evw090
http://www.ncbi.nlm.nih.gov/pubmed/27189992
https://doi.org/10.1093/genetics/iyaa015
http://www.ncbi.nlm.nih.gov/pubmed/33683357
https://doi.org/10.1098/rspb.2021.2314
http://www.ncbi.nlm.nih.gov/pubmed/35078366
https://doi.org/10.1534/g3.119.400711
https://doi.org/10.1534/g3.119.400711
http://www.ncbi.nlm.nih.gov/pubmed/31530636
https://doi.org/10.1371/journal.pgen.1006170
https://doi.org/10.1371/journal.pgen.1006170
http://www.ncbi.nlm.nih.gov/pubmed/27658217
https://doi.org/10.1086/421051
http://www.ncbi.nlm.nih.gov/pubmed/15114531
https://doi.org/10.1371/journal.pbio.3002469


64. Mills MC, Mathieson I. The challenge of detecting recent natural selection in human populations. Proc

Natl Acad Sci U S A. 2022; 119(15):e2203237119. Epub 20220330. https://doi.org/10.1073/pnas.

2203237119 PMID: 35353603; PubMed Central PMCID: PMC9169803.

65. Pirastu N, Cordioli M, Nandakumar P, Mignogna G, Abdellaoui A, Hollis B, et al. Genetic analyses

identify widespread sex-differential participation bias. Nat Genet. 2021; 53(5):663–71. Epub

20210422. https://doi.org/10.1038/s41588-021-00846-7 PMID: 33888908; PubMed Central PMCID:

PMC7611642.

66. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of Sociodemo-

graphic and Health-Related Characteristics of UK Biobank Participants With Those of the General

Population. Am J Epidemiol. 2017; 186(9):1026–1034. https://doi.org/10.1093/aje/kwx246 PMID:

28641372; PubMed Central PMCID: PMC5860371.

67. Fisher R. The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc

Edinb. 1918; 53:399–433.

68. Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and

polygenic adaptation. Curr Biol. 2010; 20(4):R208–R215. https://doi.org/10.1016/j.cub.2009.11.055

PMID: 20178769; PubMed Central PMCID: PMC2994553.

69. Lohmueller KE, Mauney MM, Reich D, Braverman JM. Variants associated with common disease are

not unusually differentiated in frequency across populations. Am J Hum Genet. 2006; 78(1):130–6.

Epub 20051116. https://doi.org/10.1086/499287 PMID: 16385456; PubMed Central PMCID:

PMC1380210.

70. Turchin MC, Chiang CWK, Palmer CD, Sankararaman S, Reich D, Hirschhorn JN. Evidence of wide-

spread selection on standing variation in Europe at height-associated SNPs. Nat Genet. 2012; 44

(9):1015–1019. https://doi.org/10.1038/ng.2368 PMID: 22902787

71. Robinson MR, Hemani G, Medina-Gomez C, Mezzavilla M, Esko T, Shakhbazov K, et al. Population

genetic differentiation of height and body mass index across Europe. Nat Genet. 2015; 47(11):1357–

62. Epub 20150914. https://doi.org/10.1038/ng.3401 PMID: 26366552; PubMed Central PMCID:

PMC4984852.

72. Zoledziewska M, Sidore C, Chiang CWK, Sanna S, Mulas A, Steri M, et al. Height-reducing variants

and selection for short stature in Sardinia. Nat Genet. 2015; 47(11):1352–6. Epub 20150914. https://

doi.org/10.1038/ng.3403 PMID: 26366551; PubMed Central PMCID: PMC4627578.

73. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014; 10(8):

e1004412. Epub 20140807. https://doi.org/10.1371/journal.pgen.1004412 PMID: 25102153; PubMed

Central PMCID: PMC4125079.

74. Racimo F, Berg JJ, Pickrell JK. Detecting Polygenic Adaptation in Admixture Graphs. Genetics. 2018;

208(4):1565–84. Epub 20180118. https://doi.org/10.1534/genetics.117.300489 PMID: 29348143;

PubMed Central PMCID: PMC5887149.

75. Edge MD, Coop G. Reconstructing the History of Polygenic Scores Using Coalescent Trees. Genetics.

2019; 211(1):235–62. Epub 20181102. https://doi.org/10.1534/genetics.118.301687 PMID:

30389808; PubMed Central PMCID: PMC6325695.

76. Stern AJ, Speidel L, Zaitlen NA, Nielsen R. Disentangling selection on genetically correlated polygenic

traits via whole-genome genealogies. Am J Hum Genet. 2021; 108(2):219–39. Epub 20210112.

https://doi.org/10.1016/j.ajhg.2020.12.005 PMID: 33440170; PubMed Central PMCID: PMC7895848.

77. Stearns SC, Byars SG, Govindaraju DR, Ewbank D. Measuring selection in contemporary human pop-

ulations. Nat Rev Genet. 2010; 11(9):611–22. Epub 20100803. https://doi.org/10.1038/nrg2831

PMID: 20680024.

78. Beauchamp JP. Genetic evidence for natural selection in humans in the contemporary United States.

Proc Natl Acad Sci U S A. 2016; 113(28):7774–9. Epub 20160711. https://doi.org/10.1073/pnas.

1600398113 PMID: 27402742; PubMed Central PMCID: PMC4948342.

79. Kong A, Frigge ML, Thorleifsson G, Stefansson H, Young AI, Zink F, et al. Selection against variants

in the genome associated with educational attainment. Proc Natl Acad Sci U S A. 2017; 114(5):E727–

E32. Epub 20170117. https://doi.org/10.1073/pnas.1612113114 PMID: 28096410; PubMed Central

PMCID: PMC5293043.

80. Tropf FC, Stulp G, Barban N, Visscher PM, Yang J, Snieder H, et al. Human fertility, molecular genet-

ics, and natural selection in modern societies. PLoS ONE. 2015; 10(6):e0126821. Epub 20150603.

https://doi.org/10.1371/journal.pone.0126821 PMID: 26039877; PubMed Central PMCID:

PMC4454512.

81. Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM. Evidence of directional and stabi-

lizing selection in contemporary humans. Proc Natl Acad Sci U S A. 2018; 115(1):151–6. Epub

20171218. https://doi.org/10.1073/pnas.1707227114 PMID: 29255044; PubMed Central PMCID:

PMC5776788.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 18 / 20

https://doi.org/10.1073/pnas.2203237119
https://doi.org/10.1073/pnas.2203237119
http://www.ncbi.nlm.nih.gov/pubmed/35353603
https://doi.org/10.1038/s41588-021-00846-7
http://www.ncbi.nlm.nih.gov/pubmed/33888908
https://doi.org/10.1093/aje/kwx246
http://www.ncbi.nlm.nih.gov/pubmed/28641372
https://doi.org/10.1016/j.cub.2009.11.055
http://www.ncbi.nlm.nih.gov/pubmed/20178769
https://doi.org/10.1086/499287
http://www.ncbi.nlm.nih.gov/pubmed/16385456
https://doi.org/10.1038/ng.2368
http://www.ncbi.nlm.nih.gov/pubmed/22902787
https://doi.org/10.1038/ng.3401
http://www.ncbi.nlm.nih.gov/pubmed/26366552
https://doi.org/10.1038/ng.3403
https://doi.org/10.1038/ng.3403
http://www.ncbi.nlm.nih.gov/pubmed/26366551
https://doi.org/10.1371/journal.pgen.1004412
http://www.ncbi.nlm.nih.gov/pubmed/25102153
https://doi.org/10.1534/genetics.117.300489
http://www.ncbi.nlm.nih.gov/pubmed/29348143
https://doi.org/10.1534/genetics.118.301687
http://www.ncbi.nlm.nih.gov/pubmed/30389808
https://doi.org/10.1016/j.ajhg.2020.12.005
http://www.ncbi.nlm.nih.gov/pubmed/33440170
https://doi.org/10.1038/nrg2831
http://www.ncbi.nlm.nih.gov/pubmed/20680024
https://doi.org/10.1073/pnas.1600398113
https://doi.org/10.1073/pnas.1600398113
http://www.ncbi.nlm.nih.gov/pubmed/27402742
https://doi.org/10.1073/pnas.1612113114
http://www.ncbi.nlm.nih.gov/pubmed/28096410
https://doi.org/10.1371/journal.pone.0126821
http://www.ncbi.nlm.nih.gov/pubmed/26039877
https://doi.org/10.1073/pnas.1707227114
http://www.ncbi.nlm.nih.gov/pubmed/29255044
https://doi.org/10.1371/journal.pbio.3002469


82. Zhu C, Ming MJ, Cole JM, Edge MD, Kirkpatrick M, Harpak A. Amplification is the primary mode of

gene-by-sex interaction in complex human traits. Cell Genom. 2023; 3(5):100297. Epub 20230406.

https://doi.org/10.1016/j.xgen.2023.100297 PMID: 37228747; PubMed Central PMCID:

PMC10203050.

83. Wang J, Fan X, Yang M, Song M, Wang K, Giovannucci E, et al. Sex-specific associations of circulat-

ing testosterone levels with all-cause and cause-specific mortality. Eur J Endocrinol. 2021; 184

(5):723–732. https://doi.org/10.1530/EJE-20-1253 PMID: 33690154.

84. Novembre J, Barton NH. Tread Lightly Interpreting Polygenic Tests of Selection. Genetics. 2018; 208

(4):1351–1355. https://doi.org/10.1534/genetics.118.300786 PMID: 29618592; PubMed Central

PMCID: PMC5886544.

85. Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H, Field Y, et al. Reduced signal

for polygenic adaptation of height in UK Biobank. Elife. 2019;8. Epub 20190321. https://doi.org/10.

7554/eLife.39725 PMID: 30895923; PubMed Central PMCID: PMC6428572.

86. Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR, Turchin MC, et al. Polygenic adaptation on

height is overestimated due to uncorrected stratification in genome-wide association studies. Elife.

2019;8. Epub 20190321. https://doi.org/10.7554/eLife.39702 PMID: 30895926; PubMed Central

PMCID: PMC6428571.

87. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human Demographic His-

tory Impacts Genetic Risk Prediction across Diverse Populations. Am J Hum Genet. 2017; 100

(4):635–49. Epub 20170330. https://doi.org/10.1016/j.ajhg.2017.03.004 PMID: 28366442; PubMed

Central PMCID: PMC5384097.

88. Mostafavi H, Harpak A, Agarwal I, Conley D, Pritchard JK, Przeworski M. Variable prediction accuracy

of polygenic scores within an ancestry group. Elife. 2020;9. Epub 20200130. https://doi.org/10.7554/

eLife.48376 PMID: 31999256; PubMed Central PMCID: PMC7067566.

89. Zaidi AA, Mathieson I. Demographic history mediates the effect of stratification on polygenic scores.

Elife. 2020;Epub 20201117:9. https://doi.org/10.7554/eLife.61548 PMID: 33200985; PubMed Central

PMCID: PMC7758063.

90. Gazal S, Loh PR, Finucane HK, Ganna A, Schoech A, Sunyaev S, et al. Functional architecture of

low-frequency variants highlights strength of negative selection across coding and non-coding annota-

tions. Nat Genet. 2018; 50(11):1600–7. Epub 20181008. https://doi.org/10.1038/s41588-018-0231-8

PMID: 30297966; PubMed Central PMCID: PMC6236676.

91. Schoech AP, Jordan DM, Loh PR, Gazal S, O’Connor LJ, Balick DJ, et al. Quantification of frequency-

dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nat Com-

mun. 2019; 10(1):790. Epub 20190215. https://doi.org/10.1038/s41467-019-08424-6 PMID:

30770844; PubMed Central PMCID: PMC6377669.

92. Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. Signatures of negative

selection in the genetic architecture of human complex traits. Nat Genet. 2018; 50(5):746–53. Epub

20180416. https://doi.org/10.1038/s41588-018-0101-4 PMID: 29662166.

93. Bulmer MG. The genetic variability of polygenic characters under optimizing selection, mutation and

drift. Genet Res. 1972; 19(1):17–25. https://doi.org/10.1017/s0016672300014221 PMID: 5024710.

94. Harpak A, Przeworski M. The evolution of group differences in changing environments. PLoS Biol.

2021; 19(1):e3001072. Epub 20210125. https://doi.org/10.1371/journal.pbio.3001072 PMID:

33493148; PubMed Central PMCID: PMC7861633.

95. Yair S, Coop G. Population differentiation of polygenic score predictions under stabilizing selection.

Philos Trans R Soc Lond B Biol Sci. 2022; 377(1852):20200416. Epub 20220418. https://doi.org/10.

1098/rstb.2020.0416 PMID: 35430887; PubMed Central PMCID: PMC9014188.

96. Lande R, Arnold SJ. The Measurement of Selection on Correlated Characters. Evolution. 1983; 37

(6):1210–1226. https://doi.org/10.1111/j.1558-5646.1983.tb00236.x PMID: 28556011.

97. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correla-

tions across human diseases and traits. Nat Genet. 2015; 47(11):1236–41. Epub 20150928. https://

doi.org/10.1038/ng.3406 PMID: 26414676; PubMed Central PMCID: PMC4797329.

98. Jordan DM, Verbanck M, Do R. HOPS: a quantitative score reveals pervasive horizontal pleiotropy in

human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol.

2019; 20(1):222. Epub 20191025. https://doi.org/10.1186/s13059-019-1844-7 PMID: 31653226;

PubMed Central PMCID: PMC6815001.

99. Szpak M, Xue Y, Ayub Q, Tyler-Smith C. How well do we understand the basis of classic selective

sweeps in humans? FEBS Lett. 2019; 593(13):1431–48. Epub 20190611. https://doi.org/10.1002/

1873-3468.13447 PMID: 31116407.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 19 / 20

https://doi.org/10.1016/j.xgen.2023.100297
http://www.ncbi.nlm.nih.gov/pubmed/37228747
https://doi.org/10.1530/EJE-20-1253
http://www.ncbi.nlm.nih.gov/pubmed/33690154
https://doi.org/10.1534/genetics.118.300786
http://www.ncbi.nlm.nih.gov/pubmed/29618592
https://doi.org/10.7554/eLife.39725
https://doi.org/10.7554/eLife.39725
http://www.ncbi.nlm.nih.gov/pubmed/30895923
https://doi.org/10.7554/eLife.39702
http://www.ncbi.nlm.nih.gov/pubmed/30895926
https://doi.org/10.1016/j.ajhg.2017.03.004
http://www.ncbi.nlm.nih.gov/pubmed/28366442
https://doi.org/10.7554/eLife.48376
https://doi.org/10.7554/eLife.48376
http://www.ncbi.nlm.nih.gov/pubmed/31999256
https://doi.org/10.7554/eLife.61548
http://www.ncbi.nlm.nih.gov/pubmed/33200985
https://doi.org/10.1038/s41588-018-0231-8
http://www.ncbi.nlm.nih.gov/pubmed/30297966
https://doi.org/10.1038/s41467-019-08424-6
http://www.ncbi.nlm.nih.gov/pubmed/30770844
https://doi.org/10.1038/s41588-018-0101-4
http://www.ncbi.nlm.nih.gov/pubmed/29662166
https://doi.org/10.1017/s0016672300014221
http://www.ncbi.nlm.nih.gov/pubmed/5024710
https://doi.org/10.1371/journal.pbio.3001072
http://www.ncbi.nlm.nih.gov/pubmed/33493148
https://doi.org/10.1098/rstb.2020.0416
https://doi.org/10.1098/rstb.2020.0416
http://www.ncbi.nlm.nih.gov/pubmed/35430887
https://doi.org/10.1111/j.1558-5646.1983.tb00236.x
http://www.ncbi.nlm.nih.gov/pubmed/28556011
https://doi.org/10.1038/ng.3406
https://doi.org/10.1038/ng.3406
http://www.ncbi.nlm.nih.gov/pubmed/26414676
https://doi.org/10.1186/s13059-019-1844-7
http://www.ncbi.nlm.nih.gov/pubmed/31653226
https://doi.org/10.1002/1873-3468.13447
https://doi.org/10.1002/1873-3468.13447
http://www.ncbi.nlm.nih.gov/pubmed/31116407
https://doi.org/10.1371/journal.pbio.3002469


100. Stearns FW. One hundred years of pleiotropy: a retrospective. Genetics. 2010; 186(3):767–773.

https://doi.org/10.1534/genetics.110.122549 PMID: 21062962; PubMed Central PMCID:

PMC2975297.

101. Mathieson I. Human adaptation over the past 40,000 years. Curr Opin Genet Dev. 2020; 62:97–104.

Epub 20200801. https://doi.org/10.1016/j.gde.2020.06.003 PMID: 32745952; PubMed Central

PMCID: PMC7484260.

102. Koch EM, Sunyaev SR. Maintenance of Complex Trait Variation: Classic Theory and Modern Data.

Front Genet. 2021; 12:763363. Epub 20211112. https://doi.org/10.3389/fgene.2021.763363 PMID:

34868244; PubMed Central PMCID: PMC8636146.

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002469 January 18, 2024 20 / 20

https://doi.org/10.1534/genetics.110.122549
http://www.ncbi.nlm.nih.gov/pubmed/21062962
https://doi.org/10.1016/j.gde.2020.06.003
http://www.ncbi.nlm.nih.gov/pubmed/32745952
https://doi.org/10.3389/fgene.2021.763363
http://www.ncbi.nlm.nih.gov/pubmed/34868244
https://doi.org/10.1371/journal.pbio.3002469

