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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The outcome of viral infection depends on the diversity of the infecting viral population and

the heterogeneity of the cell population that is infected. Until almost a decade ago, the study

of these dynamic processes during viral infection was challenging and limited to certain tar-

geted measurements. Presently, with the use of single-cell sequencing technology, the

complex interface defined by the interactions of cells with infecting virus can now be studied

across the breadth of the transcriptome in thousands of individual cells simultaneously. In

this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study

the heterogeneity of viral infections, ranging from individual virions to the immune response

between infected individuals. In addition, we highlight certain key experimental limitations

and methodological decisions that are critical to analyzing scRNA-seq data at each scale.

Introduction

Viral disease is fundamentally driven by interactions of populations of viruses, often compris-

ing a diverse set of genotypes, with populations of host cells, themselves comprised of a variety

of cell types and epigenetic states. Infection outcome is dependent upon these complex, hetero-

geneous interactions. Until relatively recently, it was difficult, labor-intensive, and limited in

terms of available experimental measurements to study infection at any level other than bulk

measurements averaging effects across many different infected (and uninfected) cells. With

the advent of single-cell RNA sequencing (scRNA-seq), it has now become much easier to

explore complexities within viral infection.

In this review, we will discuss examples of how scRNA-seq has been used to characterize

heterogeneity and stochasticity in viral infection, ranging from individual virions to even

understanding differences in the immune response between infected individuals (Fig 1).

While a powerful new approach, as with any tool, there are important experimental limitations

and methodological adjustments that are critical to understanding and interpreting scRNA-

seq experiments. As we describe each level at which scRNA-seq has been applied to under-

standing viral infection, we also provide some considerations in terms of known limitations to

the technology.
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Single-cell RNA sequencing methods

scRNA-seq has been a powerful and widely used technique to study biological heterogeneity

since its development in 2009 [1]. Since then, scRNA-seq methods have advanced in sensitiv-

ity, throughput, and cost, leading to increased adoption in research and clinical settings. Exist-

ing scRNA-seq platforms are generally based on the same fundamental steps: (1) cells isolated

as a single-cell suspension; (2) mRNA is captured, either in situ or from lysed cells; (3) cDNA

is generated from captured mRNA and barcoded with cellular identity; (4) cDNA is prepared

for sequencing; and (5) sequencing is performed (Table 1).

scRNA-seq experiments were made possible in part due to key innovations in both cDNA

synthesis and sequencing library preparation: the highly efficient Smart-Seq method, which

uses template switching to amplify full-length cDNA from picogram amounts of RNA, and

tagmentation using Tn5 transposase, which permits the fragmentation of much smaller

amounts of material than classical shearing methods [2–10]. For the former, Smart-Seq uses 2

properties of the reverse-transcriptase derived from Moloney murine leukemia virus, the

untemplated addition of cytosines at the 50 end of mRNA transcripts, and the ability to tem-

plate switch, generating cDNA that is a chimera of 2 different molecules [11]. By adding a tem-

plate switching oligonucleotide, an oligonucleotide containing riboguanosine or a locked-

nucleic acid form of the same at the 30 end, this oligonucleotide can hybridize to the untem-

plated cytosines and be transcribed as part of the cDNA [12]. Broadly, this is a highly efficient

means to add molecular handles for downstream PCR amplification of full-length cDNA.

Virion

Cellular

Tissue

Whole organism

5’ 3’ 3’ AAAAA

partial or complete genetic inference by sequencing 
polyadenylated RNA transcripts (RNA and DNA viruses), 
nonpolyadenylated RNA transcripts with custom primers 
(RNA and DNA viruses), or direct sequencing of the viral 

genome with a custom primer (RNA virus only)

Variation in efficiency and progression in the viral replication program

binary (yes/no) events, including infection, interferon production, and 
latency entry/exit

- +

Viral tropism (at the level of infection, if not productivity), relative 
contribution of different cell populations to a viral response

Differences in organismal response can be assayed by available tissues 
and attributed to individual infected, or bystander, cell populations

cytokines

Fig 1. Broad examples of heterogeneity probed by scRNA-seq in the context of viral infection. Specific instances of each provided in the text of the

appropriate section.

https://doi.org/10.1371/journal.ppat.1011898.g001
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While an incredible advancement, this early effort was limited in terms of cost and throughput,

as each cell was processed in an individual well of a 96- or 384-well plate through library prepa-

ration. However, we should add that, owing to the indexing of each cell performed at the tag-

mentation step, this method has the advantage of capturing all portions of all transcripts

without the use of long-read sequencing.

One of the first efforts to parallelize and reduce the cost of this process was the use of micro-

fluidic chips such as the Fluidigm C1 platform [13,14]. This instrument uses a microfluidic

chip to capture, lyse, and perform library preparation in volumes much smaller than achiev-

able using pipetting. However, this technology has largely been supplanted by methods that

instead use droplet- or well-based platforms that accomplish even higher throughput at lower

cost. A key innovation in both methodologies is the use of beads coupled to barcoded oligonu-

cleotides, which, using a split-pool synthesis strategy, allows for every oligonucleotide on a

bead to contain the same barcode, but oligonucleotides from different beads to possess differ-

ent barcodes [15]. This introduces a cellular index during reverse transcription, allowing for

downstream library preparation steps to be performed with cDNA from all individual cells in

a single pool. By combining processing steps after initial barcoding, higher throughput, lower

cost, and reduced technical noise have all been achieved relative to older technologies. How-

ever, a key limitation is that, without modification to use long-read technology, sequencing is

generally limited to either 50 or 30 end of each transcript.

Well-based scRNA-seq methods such as Seq-Well use arrays of subnanoliter wells and a

gravity-based capture of both beads and individual cells [16]. Once loaded in wells, a semiper-

meable membrane is applied, cells are lysed, and mRNA captured by oligo(dT) beads contain-

ing cell-specific barcodes. Beads are then recovered followed by reverse transcription of the

bead-bound mRNA using the Smart-seq method and sequencing libraries with cell-specific

identifiers are generated. While currently not as broadly used as droplet-based methods, dis-

cussed below, Seq-Well is relatively gentle on cells and may be more advantageous in difficult-

to-handle cell types such as neutrophils [17,18]. In addition, similar to a split-pool method

introduced below, this method does not require equipment beyond an array of subnanoliter

wells and standard molecular biology instruments, making it easier to deploy in virological

studies without the dedication of expensive equipment to a biocontainment facility.

Drop-seq, InDrop, and the commercially available Chromium platform from 10x Geno-

mics, collectively, are droplet-based methods of scRNA-seq (Fig 2) [19–21]. Microfluidic chips

Table 1. Single-cell RNA sequencing methods discussed in this review.

Methods Examples Description References

Inidividual,

sorted cells

Smart-Seq followed by

tagmentation

Individual cells isolated in microliter droplets in a standard 96- or 384-well

plate, sequencing libraries generated from each independent cell. Low

throughput.

Ramsköld et al., 2012 [6]

Well-based Seq-Well Cells captured in individual, subnanoliter wells with barcoded beads. Cellular

barcoding of transcripts occurs during reverse transcription, material pooled for

library preparation. Does not require specialized equipment beyond standard

molecular biology instruments.

Gierahn et al., 2017 [16]

Droplet-based InDrop, Drop-Seq, 10x

Genomics Chromium

Cells co-encapsidated in droplets alongside barcoded beads in a microfluidic

device. In-droplet reverse transcription provides cellular barcodes, after which

droplets are combined and pooled for library preparation. Most used technology

in the studies discussed in this review.

Macosko et al., 2015; Klein et al.,

2015; Zhang et al. 2019AU : Pleasecheckandconfirmthatcitation}Zhengetal:;2017}under}References}inTable1shouldbechangedto}Zhangetal:;2019}tomatchwiththeinformationinreference21:[20,21,116]

Split-Pool SPLiT-Seq Cells fixed, distributed between standard wells in a 96- or 384-well plate, and an

initial barcode added to permeabilized cells via in situ reverse transcription.

Subsequent ligation reactions after repooling and resplitting cells produces a

combinatorial cell barcode, after which standard library preparation follows.

Does not require specialized equipment beyond standard molecular biology

instruments.

Cao et al., 2017; Rosenberg et al.,

2018 [22,23]

https://doi.org/10.1371/journal.ppat.1011898.t001
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are used to generate picoliter droplets containing cells (loaded probabilistically and assumed

to follow a Poisson function of occupancy) and barcoded beads. These droplets contain cell

lysis and reverse transcription reagents. While maintaining droplet integrity, cells are lysed

and reverse transcribed to generate cDNA in a standard thermocycler. As the cDNAs are

already tagged with a cell-specific barcode, emulsions are broken and sequencing libraries are

prepared by standard methods. Cell-specific barcodes added during reverse transcription are

from oligonucleotides coupled to beads, either as an oligo(dT) and marking the 30 end of tran-

scripts, or in the template-switching oligonucleotide, labeling the 50 end of transcripts.

Using a similar split-pool philosophy as barcoded bead generation to identify individual

cells, but using the cell itself as a reaction vessel, is split-pool sequencing, such as SPLiT-seq or

SCI RNA-seq [22–24]. Rather than lysing the cell, cells are first fixed and permeabilized. Then,

cells are distributed between individual wells of a 96-well plate, with multiple cells per well. A

barcode can be added at this point by reverse transcription, with each cell within a well sharing

a barcode, but distinct barcodes between wells. Following within-cell reverse transcription,

cells are pulled from wells, mixed, and redistributed again between wells. An additional well-

specific barcode is added at this point by ligation. By performing multiple additional rounds of

barcoding after “reshuffling” the cells, each cell is tagged with a unique combination of bar-

codes, and, thus, cDNA are reassigned to an individual cell after sequencing. After barcoding,

cells are lysed, and standard library preparation followed. Split-pool sequencing has the poten-

tial to be highly scalable, with theoretical barcode diversity increasing exponentially with the

Fig 2. Single-cell sequencing workflow for droplet-based approaches exemplified by the 10x Genomics Chromium platform. Infected cells from cell

culture, tissues/organoids, or infected individuals are dissociated into a single-cell suspension. The cell suspension is loaded onto a microfluidic chip, and cells

are partitionedAU : Pleaseconfirmthat}partioned}in}:::andcellsarepartionedintonanoliter � scaleGelBeads � in � emulsion:::}shouldbechangedto}portioned:}into nanoliter-scale Gel Beads-in-emulsion (GEMs) droplets containing barcoded gel beads and reagents for reverse transcription (RT).

Following cell lysis, the beads capture the mRNA molecules. Reverse transcription (RT) by template switching using a template switching oligonucleotide (TS)

generates cDNA tagged with a 10x barcode (BC) to identify the cell and a unique molecular identifier (UMI) to label the mRNA transcript. The pooled cDNA is

amplified in bulk, fragmented by enzymatic fragmentation, and sequencing adapters (P5 and P7) including a sample index, are added to the fragments by PCR

to generate sequencing libraries. The sequencing libraries are sequenced, and the data are analyzed by alignment and demultiplexing, following which the data

are interpreted.

https://doi.org/10.1371/journal.ppat.1011898.g002
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addition of each barcoding step. Additionally, the use of fixed cells and, as with well-based

approaches, the lack of specialized equipment, makes this approach potentially more appealing

when working with infectious agents.

While we generally make no distinctions in the remainder of the review on which technol-

ogy was used to generate observations in terms of viral infection and heterogeneity, we do

note that by far the most frequent technology used has been droplet-based sequencing

(described in Fig 2). We therefore largely restrict our discussions of experimental consider-

ations and caveats to that technology.

Virion-level heterogeneity

It has been appreciated for quite some time that viral populations are heterogeneous [25].

Some of the earliest observations in virology were that the number of physical particles in viral

preparations greatly exceeds that of infection-competent particles alone. While some of these

particles are merely empty capsids, not relevant to the technologies we describe here, many

bear mutations or other genetic defects that render them incapable of completing the viral life

cycle. Curiously, despite outnumbering their replication-competent counterparts, the consen-

sus sequence across a viral population is generally fit (safe for populations enriched for defec-

tive viral genomes, discussed briefly below), indicating a myriad of different genetic defects

underlie the failure to replicate rather than a single stereotyped defect that rises to consensus.

These unfit particles have represented a sort of “dark matter” in experiments [26–29]. They

may still enter cells and can influence features such as the induction of an innate immune

response but are difficult to assess using bulk methodologies that largely focus on replication-

competent components, particularly those that rise to consensus, of a viral population. As viral

genomes are highly compact, or themselves can serve as the messages for protein production,

sequencing of mRNA pools in a cell can provide insight into the totality of viral genotypes, rep-

lication competent and otherwise. This assumes the defect itself does not prevent transcription

—or that the genome itself is an RNA molecule—however, this limitation still provides access

to biological features that were generally difficult to access by older methodologies.

The capacity to explore individual virion genetic variation using modern scRNA-seq, repli-

cation-competent or otherwise, has been perhaps most extensively (but not exclusively) real-

ized in the study of influenza A virus [30–36]. As this virus possess a relatively small genome

of approximately 13.5 kb, split across 8 RNA molecules, the longest of which is still relatively

short at 2.3 kb in length, and nearly all of which is transcribed into capped, polyadenylated

mRNA, very few modifications are required to use preexisting single-cell approaches to access

viral genetic heterogeneity in a standard scRNA-seq workflow [37]. Indeed, nonsegmented

RNA viruses would present a considerable challenge for genetic inference as it is difficult to

achieve full-length cDNA synthesis from long, structured RNA molecules, and DNA viruses

would present their own challenge as regions that are not transcribed cannot be measured by

these approaches. While only 2 manuscripts thus far have sequenced the entire 50 to 30 ends of

viral transcript in infected cells, several have used partial genetic information to inform studies

of viral variation, including features such as reassortment [38].

The most commonly used workflow in scRNA-seq is to sequence either the 50 or 30 ends of

transcripts. This provides the ability to recover both the cell-identifying barcode (in either the

template-switching oligonucleotide or the oligo(dT) primer) as well as sufficient sequence

information to assign transcripts. The key limitation requiring fragmentation and end-choice

is due to both the read-length limitation of Illumina sequencing, as well as length requirements

for efficient bridge amplification in an Illumina flow cell [39]. From this partial genetic infor-

mation, several studies nevertheless were able to identify architectural changes to viral
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genomes, for instance, large internal deletions in influenza A virus [31,33,34]. These deletions

form the basis of defective viral genomes (DVGs, also called nonstandard viral genomes or

nsVGs), which are associated with a general loss of viral fitness as well as the induction of an

innate immune response [40,41]. Critically, these studies not only identified these species but

also were able to assay them with respect to a heterogeneous host response, indicating that

while they are associated with induction of an innate immune response, they are neither neces-

sary nor sufficient to induce interferon but instead increase the probability of its expression

nondeterministically.

Experimental considerations for the study of virions; read-length

limitations andAU : Pleasecheckandconfirmthatthecorrectiontosubheading}Experimentalconsiderationsforthestudyofvirions; read � lengthlimitations; andalternateprimingstrategies}isvalid; andamendifnecessary:alternate priming strategies

Several considerations should be taken into account if using single-cell transcriptomics to

assay viral genetic heterogeneity alongside other features of interest. The first is the limitation

of the standard workflow to 50 or 30 end sequencing. In addition to the obvious—that variant

capture will largely be limited to sequences in these regions—the “width” of the coverage win-

dow is largely dependent on sequencing depth. For viral reads, this will, in turn, depend on the

level of viral transcripts in an infected cell. Thus, successful genotyping, including architectural

variation, is impacted by the level of viral transcripts [34]. This can lead to certain incorrect

conclusions; for instance, if the probability that a large deletion in the viral genome is detected

is proportional to the level of coverage, then that deletion will be found to be correlated with

high levels of viral transcription regardless of its actual biological impact.

Solving the issue of partial coverage, during the preparation of sequencing libraries, full-

length, tagged cDNA is generated prior to fragmentation. This material can be sequenced by

long-read technologies, such as PacBio SMRT or nanopore sequencing. This methodology has

been termed “ISOseq” (ScISOr-Seq in single cells) and has been used to annotate isoform dif-

ferences in both bulk and single-cell sequencing [42,43]. A newer method, named HIT-ScI-

SOr-Seq, further uses concatemerization to increase the throughput of long-read sequencing

to more comprehensively measure full-length mRNA across an entire scRNA-seq experiment

[44,45]. Use of a targeted ScISOr-Seq workflow to call viral genotypes has been used in 2 differ-

ent manuscripts for influenza A virus, and similar approaches could be extended to other viral

populations [35,36]. One key artifact, though, that should be considered is that some genotypes

will be erroneously assigned to certain cells owing to template switching during reverse tran-

scription or chimera formation during PCR [46]. One possible solution is to use populations

with known variants that differ at the 50 and 30 end of transcripts, thus allowing for an empiri-

cal measurement of these artifacts [35].

Additionally, not all viruses generate capped, polyadenylated messages. This is particularly

true of RNA viruses outside of the Orthomyxoviruses. As current scRNA-seq protocols almost

exclusively use oligo(dT) priming, these messages would be missed. One potential solution is

to use a splinted oligonucleotide, appending a unique sequence to capture virus-specific tran-

scripts. This was used by Saikia and colleagues to sequence Reovirus genomes, a dsRNA virus

that does not generate polyadenylated transcripts [47]. Regarding cap structures, while a

wealth of literature suggests that the template-switching activity is limited to canonical

7-methylguanosine cap structures, more mechanistic studies have demonstrated that while

this behavior is more efficient on 50 methylated caps, it can still work on alternative 50 ends,

extending full-length cDNA synthesis and amplification out to alternate RNA structures that

may be present in viral transcripts or genomes [48].

Lastly, the standard workflow used for most scRNA-seq approaches uses readmappers that,

while appropriate for mapping spliced host transcripts with little variation between reference
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and reads, are inappropriate for mapping viral diversity. For instance, the most commonly

used readmapper for scRNA-seq data, STAR, attempts to map disjoint (gapped) reads using a

combination of preassigned splice junctions or scoring models that take into account general

features of splice junctions [49]. When applied to architectural variation in viral populations,

such as recombination or large deletions, these read mappers will inappropriately apply these

scoring models. It is therefore critical to use specific, purpose-built pipelines, such as ViReMa

or VODKA2, for mapping viral variation, and potentially regenerating viral consensus

sequences when diversity significantly diverges from the chosen reference sequence [50,51].

Intercellular variation

Some of the first uses of scRNA-seq in virology were to assay heterogeneity between cells in tis-

sue culture infections of either immortalized or patient-derived primary cells [30,32,35,52–54].

Despite the relative uniformity of these cells, there exists considerable variation in even oneAU : Pleasecheckandconfirmthattheeditsto}Despitetherelativeuniformityofthesecells; thereexistsconsiderable:::}didnotaltertheintendedmeaningofthesentence:of

the simplest models of infection. Examples in terms of viral measurements include the amount

of viral transcript made, entry and exit into latency, and progression through complex viral life

cycles. On the host response to viral infection, measurements can be made between bystander

and infected cells, correlations of host response and viral abundance, and, lastly, engagement

of the host innate immune response.

With respect to viral measurements, one of the most stark observations across multiple

viral families is the extreme variation in the fraction of virally derived reads within a cell. Cells

often vary in terms of viral transcript abundance by as much as several orders of magnitude, as

observed in flavivirus, influenza, and coronavirus infections, to name a few [32,52,54]. Similar

heterogeneity has also been observed in viral burst size, from early measurements in bacterio-

phage out to more recent measurements in influenza, although the relationship between tran-

script variance and burst size is nonlinear, in part due to the fact that many infections are

nonproductive despite completing a large portion of the viral replication program [36,55,56].

So, while population-level bulk measurements can establish per cell productivity, as well as the

average fraction of transcripts that are derived from viruses, a “boots-on-the-ground” view

demonstrates these averages miss the high degree of heterogeneity in actual infections. This

has implications in appropriate modeling of viral replication and, if burst size is variable even

within a given genetic variant, has implications for effective viral population size and the evo-

lutionary rates within individual infections.

Using this heterogeneity as a means to understand the host response, the massive breadth

in viral transcription can then be correlated with host gene expression. After all, one would

hardly expect a cell wherein >50% of the transcripts are derived from a viral infection to be

equivalent to one where only one out of every thousand transcripts is viral. The most straight-

forward analysis is to look at genes that vary in expression in a manner correlated with viral

expression. This type of analysis has been broadly useful for at least 2 reasons: that these genes

themselves may be causal with respect to either pro- or antiviral strategies, and, independent

of direct impacts on the virus, that they represent stressors on host cells imposed by viral infec-

tion. An example of the former, high expression of interferon-stimulated antiviral genes corre-

lates with lower viral transcripts for HSV-1 and West Nile virus infections, indicating

successful engagement of host defenses as well as demonstrating that the breadth of viral out-

comes are driven, at least in part, by host restriction mechanisms [53,57,58]. For the latter, the

massive metabolic burden placed on cells by viral infection can leave a distinct signature that is

readily revealed by correlating such pressures with viral burden even within a single experi-

ment. For instance, oxidative and ER stress pathways have been observed to correlate with

viral infection across multiple phylogenetically distinct viral families, perhaps due to the
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relatively high energetic and protein-folding demands placed on a cell by the massive increases

of nucleic acid and protein biosynthesis required for viral replication [32,52,57,58].

Beyond these straightforward correlations, scRNA-seq has also allowed the study of highly

stochastic, bimodal (yes/no) events in viral infection. On the viral side, a fantastic example of

this is the study of latency. The earliest example of which we are aware of this use was in the

study of HCMV infection in primary cells, wherein more precise correlations of latency, host

gene expression, and viral programs were able to be established by the capacity to separate out

subpopulations of cells to ensure that correlated features coexisted within the same infected

cell—critical as while such features may correlate at the population level, that does not neces-

sarily mean that such programs are occurring within the same cell [59].

On the host side, one of the best examples of a bimodal event is the engagement of an anti-

viral response. The production of interferons in response to viral infection has been known to

be highly stochastic for quite some time, but the features that lead to this stochasticity have

been very difficult to study [60–62]. Using scRNA-seq, individual cells producing interferon

can be identified [63,64]. This, in turn, can be correlated with viral infection, levels of viral

transcripts, and, as discussed in the prior section, viral genetic variation to determine what fea-

tures may lead to the induction of a response. Thus far, it has been illuminating that while

there is a considerable contribution of viral variation to the induction of an innate immune

response, even stimulatory variants within a population tend to induce a stochastic, if more

common, production of interferons, indicating a role for chance events or preexisting host cell

heterogeneity [34,65].

Lastly, in addition to profiling standing variation within a single tissue culture infection,

single-cell transcriptomics permits the simultaneous profiling of many CRISPR modulations

within a single experiment, allowing one to deliberately introduce variation and perform a

highly parallel genetic analysis. One method that accomplishes this is Perturb-seq [66]. Per-

turb-seq has been used to identify host factors that influence viral replication and transcrip-

tion, determining how particular perturbations may enhance, or repress, the viral replication

program, as has been performed for Severe Acute Respiratory Syndrome Coronavirus 2AU : Pleasenotethat}SARS � CoV2}hasbeenfullyspelledoutas}SevereAcuteRespiratorySyndromeCoronavirus2}atfirstmentioninthesentence}Perturb � seqhasbeenusedtoidentifyhostfactorsthat:::}Pleasecorrectifnecessary:
(SARS-CoV2) [67]. Moreover, while likely restricted to only DNA viruses, Perturb-seq has

also been used to directly profile CRISPR perturbations to a herpesvirus genome, human cyto-

megalovirus, reducing an otherwise laborious process of individually mutating and assessing

the effect of each individual viral gene to a single one-pot experiment [68].

Experimental considerations for the study of intercellular variation; lysis

and batch effects

A number of modifications to the standard single-cell workflow are even useful in interpreting

these relatively simple models of infection. One problem that particularly plagues an under-

standing of viral infection models by scRNA-seq is the contribution of extracellular/misas-

signed RNA (also referred to as ambient RNA). As indicated in the prior section, there is

considerable interest in bimodal events in viral infection, which can even include the probabil-

ity that a cell itself is detectably infected. Droplet sequencing methodologies have significant

amounts of reads contributed from the “soup,” a mixture of misassigned reads due to template

switching and PCR chimeras, as well as extracellular RNA from cell lysis, membrane vesicles,

and potentially even viral particles themselves. This may particularly pose a problem for cyto-

pathic viruses, which may be overrepresented in the “soup.” This creates a challenge when

identifying whether cellular responses are directly due to viral infection or due to signaling

from infected cells in terms of the “bystander” population, as uninfected cells may nevertheless

be observed to be associated with viral RNA.
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While true negatives can never really be identified in scRNA-seq data, it is critical to set

some kind of threshold for true positives. In other words, where is the limit of detection? This

limit cannot be extrapolated across even individual sequencing runs from the same laboratory,

as the degree of contamination is highly idiosyncratic and sample dependent. There exist some

methods to interpolate these contamination levels in datasets, such as SoupX, although caution

should be used as these methods rely on distinct transcriptional clusters of cells that may not

reliably exist in tissue culture models of infection [69–72]. Another method is to actually mea-

sure the contamination rate, which can be achieved by adding in a cell type that possesses

none of the transcripts of interest and measuring their rate of presence (for instance, by adding

uninfected canine cells to infected human cells immediately prior to processing) [35].

Secondly, batch effects can also play a role when comparing across experimental treatments

[73]. Regression analyses often find that replicate number is a significant source of signal in

single cell analyses [74]. This is a trickier problem to overcome, and there are likely multiple

nonoverlapping reasons for batch-to-batch variation, which may include, but is unlikely to be

limited to, ambient RNA contamination. Inclusion of multiple replicates of different treatment

conditions, and use of a regression analysis to identify genes that tend to vary based on repli-

cate rather than experimental treatment, can partially address these issues with scRNA-seq

[75–78]. Alternatively, as batch effects tend to be limited to a particular scRNA-seq run, cells

under different experimental conditions can be labeled using “hashing” reagents, which are

either an antibody coupled to a short oligonucleotide or a compound coupled to a short oligo-

nucleotide that can embed in cell membranes, permitting multiplexing of experimental condi-

tions in a single experimental run by marking cells from each condition in a way that is

recoverable during sequencing [79].

Tissue-level heterogeneity

While simple, homogenous tissue culture models of infection can be informative, real infec-

tions are significantly more complex. The fact that infections occur in the presence of multiple

divergent cell populations, which themselves communicate extensively with one another is

missing. This type of complexity lends itself well to scRNA-seq, as prior studies of tissue-level

phenomena were either limited by averaging over potentially wildly divergent individual cellu-

lar responses or, when cell-level heterogeneity could be resolved by microscopy or flow cytom-

etry, limited to a relatively small number of targeted observations.

Unlike in homogenous tissue culture experiments, we would anticipate tissue infections to

have significant variability in terms of not only what cells are present but also what cells are

infected. This, for instance, can provide insight into how infections are successfully controlled

by cell intrinsic innate immunity. For instance, when comparing infected and bystander cells

during influenza and Ebola infections in in vivo animal models, bystander cells exhibit signifi-

cantly higher expression of interferon-stimulated genes [33,80,81]. This could represent both

viral suppression in infected cells, as well as an inability of these viruses to spread within tissues

engaged in active interferon signaling. Similarly, changes in cell infectivity can also be assessed

by scRNA-seq during antiviral drug treatment [82].

Comparing infected, and bystander, cells in tissues also can provide insights into viral tro-

pism. While scRNA-seq measurements do not meet the classical definition of tropism, which

is the productive infection of a cell type, they provide identification of cells that support suc-

cessful viral entry and engagement of some portion of the viral transcriptional program. This

can also be seen as an advantage, as both productively, and nonproductively, infected cells can

contribute to overall pathology and disease progression. This method was used to support tro-

pism of SARS-CoV2 in both human and animal tissues, including ex vivo human lung models,
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not only confirming angiotensin converting enzyme 2AU : Pleasenotethat}ACE2}hasbeenfullyspelledoutas}angiotensinconvertingenzyme2}atfirstmentioninthesentence}ThismethodwasusedtosupporttropismofSARS � CoV2:::}Pleasecorrectifnecessary:(ACE2) as the predominant receptor,

and identifying cell-specific expression of this receptor, but also demonstrating ACE2-inde-

pendent entry into certain cell populations [83–85]. Not limited to SARS-CoV2, cells suscepti-

ble to infection have been studied using scRNA-seq for astrovirus, rubella, and influenza,

among others [80,86,87].

Experimental considerations for the study of tissue-level variation;

isolation effects and biases

While generation of single-cell suspensions required for scRNA-seq is often straightforward in

homogenous tissue culture infections, there is a considerable challenge to generating them

from complex animal or human tissues. For instance, neurons are incredibly fragile and pos-

sess a large number of intercellular contacts and are incredibly difficult to isolate without their

destruction. One solution for such tissues is to perform single-nuclei RNA-seq (snRNA-seq),

rather than scRNA-seq [88–91]. Nuclei are morphologically simple, making their isolation for

RNA-seq easier than intact cells. snRNA-seq compares well with scRNA-seq data, although

reads should be mapped to intronic as well as exonic regions owing to the increased presence

of unprocessed mRNA in snRNA-seq [92,93]. A caveat to this approach somewhat unique to

virology is that it would be limited to viruses that replicate in the nucleus, as cytoplasmic RNA

would fail to be captured.

In addition to the challenges of generating a single-cell suspension from a complex tissue,

choice of dissociation protocol can influence experimental results [94,95]. There is no perfect

way to capture all cells, and protocols may fail to solubilize all populations equivalently, or else,

if using harsh detergents to address tough extracellular matrix, may result in the loss of more

sensitive cells. There is no universal solution to this issue, but analysis of scRNA-seq data

should be performed with an awareness that cell distributions may not reflect their true biolog-

ical abundance but only their representation in the processed sample.

With regard to identifying different cell populations, cell type annotation can be accom-

plished using known markers or unsupervised clustering algorithms [96–100]. However, these

processes possess their own biases. Cells with unusually low or high gene content, amplifica-

tion biases, and ambient RNA contamination, all impacting downstream clustering [101]. Pre-

filtering, that is removing cells with unusually low or high gene counts, or unusually large

amounts of mitochondrial transcripts or a high degree of intron retention, can address some

of these issues but may also remove true biological signal unique to viral infections such as

general host transcriptome suppression. Another means of addressing these difficulties is to

use multimodal datasets with included cell surface marker data, using oligonucleotide labeled

antibodies that are resolvable in scRNA-seq in order to combine targeted, hypothesis-driven

measurements with massive scRNA-seq datasets [102]. Rare cell types, which themselves can

have a massive impact on disease progression, are also difficult to identify using standard clus-

tering algorithms. Preenrichment of rare cells using fluorescence activated cell sorting can also

help to address this issue but requires preexisting markers for populations of interest.

Interindividual variation

Disease outcome can vary widely between individuals. While this variation in outcome is

broadly accessible to bulk methods, a key component of this variation is differences in individ-

ual cellular response as well as relative proportions of different immune cells during infection.

scRNA-seq provides sufficient resolution to unravel these differences, providing deeper

knowledge into disease severity and progression.
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A key component of interindividual variation is the immune response to infection. For

instance, in HIV infection, a minority of HIV+ individuals, termed “elite controllers,” largely

control viral growth. scRNA-seq of these individuals was able to identify elite controller–spe-

cific signatures in HIV-specific CD8+ T cells in the lymph node, which indicated a role for

noncytolytic functions in control of this virus [103]. An additional example, ex vivo infection

of peripheral blood mononuclear cellsAU : Pleasenotethat}PBMCs}hasbeenfullyspelledoutas}peripheralbloodmononuclearcells}atfirstmentioninthesentence}Anadditionalexample; exvivoinfectionofperipheralbloodmononuclear:::}Pleasecorrectifnecessary:(PBMCs) of individuals with divergent genetic ancestry

was able to find significant differences between a population of European ancestry and a popu-

lation of African ancestry in terms of the interferon response when challenged with influenza

virus [104]. With an eye towards a potential clinical application, scRNA-seq has also been

applied to biomarker study, with the identification of monocyte and B cell–specific signatures

associated with progression to severe dengue [105].

Similarly, scRNA-seq has also been used to understand progression of Coronavirus Disease

2019AU : Pleasenotethat}COVID � 19}hasbeenfullyspelledoutas}CoronavirusDisease2019}atfirstmentioninthesentence}Similarly; scRNA � seqhasalsobeenusedtounderstandprogression:::}Pleasecorrectifnecessary:(COVID-19) disease. scRNA-seq on PBMCs from COVID-19 patients have demon-

strated lymphopenia, T-cell exhaustion, expanded myeloid compartments, and an association

of expanded classical monocyte population with severe disease [17,106]. In addition, scRNA-

seq analysis of bronchiolar lavage fluid samples from COVID-19 patients found a shift in cell

populations consistent with increased inflammation in those individuals whose course of dis-

ease was more severe [107]. Moving from immune responses, scRNA-seq has also been used

to explore the response to antiviral therapy, such as in HIV+ patients [108].

Experimental considerations for interindividual variation; batch effects

and tissue accessibility

An issue common to both bulk methodologies and scRNA-seq when exploring clinical disease

is tissue accessibility. Many tissues cannot be accessed ethically premortem, limiting our ability

to study disease. Work on peripheral cells, such as PBMCs, can give insight into systemic dis-

ease as well as immune state (and provide biomarker information), but we remain limited in

terms of studying disease at the site of infection for many different viruses. Organoids, or

organ-on-a-chip approaches, are attempting to address this current shortcoming [109].

Batch effects, discussed in a prior section, are also a significant concern when comparing

across individual responses. However, interindividual samples have an additional means of

sample hashing unavailable in tissue-culture experiments. As scRNA-seq captures genetic

information on not only the virus but also the host, this genotype-level variation can be used

to identify which cells derived from which individual. This markerless batching of cells from

multiple individuals into a single RNA-seq dataset can help to aid in variation in processing

and sequencing [110].

Conclusions

There has been an increased adoption of scRNA-seq in virology, as well as broadly in the field

of molecular cell biology and even in clinical science. Continued development of these meth-

ods and decreases in sequencing cost will likely continue, making this yet another tool for use

in molecular virology. Despite the limitations in assessing the heterogeneity at the various lev-

els during viral infection, a number of experimental adjustments and specific pipelines have

been devised to carefully evaluate viral and cellular heterogeneity (Tables 2 and 3). With the

use of carefully considered experimental pipelines, scRNA-seq can serve as both a powerful

hypothesis generation tool, as well as a means of uncoupling whether features correlated at the

population level co-occur in individual infected cells. Use of scRNA-seq on clinical samples

has also provided significant insight into the nature of viral disease, expanding from
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transcriptional and cytokine signals out to how individual populations of circulating immune

cells are reshaped during and after viral infection.

Looking to the future, barriers to performing scRNA-seq are increasingly becoming lower,

with methods being developed that do not even require instrumentation or microfluidics to

perform cell encapsidation [111]. Besides these engineering and chemical advances, there is

increasing development of bioinformatic pipelines and tools that are appropriate for under-

standing viral infection. In addition to scRNA-seq, there is increasing use of spatial transcrip-

tomics, with technologies beginning to approach single-cell resolution, permitting the same

explorations described here but with an additional aspect of understanding where, in complex

tissues, events are occurring [112–115]. We hope that the examples, and considerations, we

have provided here aid the field in proceeding to use both scRNA-seq as well as newer technol-

ogies to continue to explore fundamental questions in the field of virology.

Table 2. Table describing the caveats and experimental modifications that can aid in scRNA-seq to assess heterogeneity at different levels.

Experimental

questions

Limitations Controls

Virion-level

heterogeneity

Partial coverage Generation of full-length transcripts by template switching and

sequencing full-length by scISO-seq and HIT-scISO-seq

Lack of polyadenylated viral transcripts to capture Use of splinted oligos with virus-specific sequences

Using read mappers like STAR is inappropriate for mapping viral

diversity

Use of more purpose-built pipelines like ViReMa and VODKA2 for

mapping viral variation

Cellular-level

heterogeneity

Misassigned reads due to template switching, PCR chimeras, and

extracellular RNA from cell lysis

Using control cell lines that do not have transcripts of interest

Methods like SoupX to remove ambient RNA

Batch variations between experiments (impacts all experiments

but addressed in this section of this review)

Regression analysis of genes varying between replicates

Cell Hashing with barcoded antibodies enabling multiplexing of

experimental conditions

Tissue-level

heterogeneity

Isolation of intact single cells from complex tissues Single-nuclear RNA sequencing for complex tissues

Cell clustering—affected by the quality of isolated cells,

amplification biases, and misassigned reads

Prefiltering the data

Use of oligonucleotide-labelled antibody to generate multimodal dataset

Rare cell groups Preenrichment of rare cell types by using fluorescent-associated cell

sorting

Individual-level

heterogeneity

Accessibility of tissues from infected individuals Humanized organ-on-a-chip models from relevant individual cells

Batch variation between experiments Use genetic variation between individuals to assign cells to the individual

https://doi.org/10.1371/journal.ppat.1011898.t002

Table 3. Example computational tools useful in the analysis scRNA-seq datasets during the study of virus–host interactions.

Software Purpose/Description References

STAR Read mapping software with support to specifically map spliced reads. Dobin et al., 2013 [49]

ViReMa,

VODKA

Used to map nonstandard viral genomes, such as DVGs and recombination within viral species Routh et al., 2014; Achouri et al.,

2023 [50,51]

CellRanger Commercial software from 10x genomics for parsing single-cell sequencing. 10xgenomics.com

SoupX,

CellBender

Software used for elimination of technical artifacts in scRNA-seq such as ambient RNA and chimeric PCR

artifacts.

Young et al., 2020; Fleming et al.,

2023 [71,117]

Viral-Track It relies on the STAR aligner to map the reads of scRNA-seq data to both the host reference genome and an

extensive list of high-quality viral genomes. Further, specific annotation of infected versus bystander cells

enables the identification of DEGs between infected and bystander cells.

Bost et al., 2020 [118]

Seurat,

Monocle

Used to analyze scRNA-seq data, including dimensionality reduction, batch correction, and differential gene

expression. It also uses unsupervised clustering algorithms to assess cell states and is useful in detecting novel

cell states.

Hao et al., 2023; Cao et al., 2019

[119,120]

DEG, differentially expressed gene; DVG, defective viral genome; scRNA-seq, single-cell RNA sequencingAU : AnabbreviationlisthasbeencompiledforthoseusedinTable3:Pleaseverifythatallentriesarecorrectlyabbreviated:.

https://doi.org/10.1371/journal.ppat.1011898.t003
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26. Vignuzzi M, López CB. Defective viral genomes are key drivers of the virus–host interaction. Nat

Microbiol. 2019; 4:1075–1087. https://doi.org/10.1038/s41564-019-0465-y PMID: 31160826

27. Ngunjiri JM, Sekellick MJ, Marcus PI. Clonogenic Assay of Type A Influenza Viruses Reveals Nonin-

fectious Cell-Killing (Apoptosis-Inducing) Particles! †. J Virol. 2008; 82:2673–2680. https://doi.org/

10.1128/jvi.02221-07 PMID: 18184709

28. Brooke CB. Biological activities of “noninfectious” influenza A virus particles. Future Virol. 2014; 9:41–

51. https://doi.org/10.2217/fvl.13.118 PMID: 25067941

29. Huang AS, Baltimore D. Defective Viral Particles and Viral Disease Processes. Nature. 1970;

226:325–327. https://doi.org/10.1038/226325a0 PMID: 5439728

30. Sun J, Vera JC, Drnevich J, Lin YT, Ke R, Brooke CB. Single cell heterogeneity in influenza A virus

gene expression shapes the innate antiviral response to infection. PLoS Pathog. 2020; 16:e1008671.

https://doi.org/10.1371/journal.ppat.1008671 PMID: 32614923

31. Wang C, Forst CV, Chou T-W, Geber A, Wang M, Hamou W, et al. Cell-to-Cell Variation in Defective

Virus Expression and Effects on Host Responses during Influenza Virus Infection. MBio. 2020: 11.

https://doi.org/10.1128/mBio.02880-19 PMID: 31937643

32. Russell AB, Trapnell C, Bloom JD. Extreme heterogeneity of influenza virus infection in single cells.

Elife. 2018: 7. https://doi.org/10.7554/eLife.32303 PMID: 29451492

33. Hamele CE, Russell AB, Heaton NS. In Vivo Profiling of Individual Multiciliated Cells during Acute Influ-

enza A Virus Infection. J Virol. 2022; 96:e00505–e00522. https://doi.org/10.1128/jvi.00505-22 PMID:

35867557

34. Vicary AC, Mendes M, Swaminath S, Lekbua A, Reddan J, Rodriguez ZK, et al. Maximal interferon

induction by influenza lacking NS1 is infrequent owing to requirements for replication and export.

PLoS Pathog. 2023; 19:e1010943. https://doi.org/10.1371/journal.ppat.1010943 PMID: 37068114

35. Russell AB, Elshina E, Kowalsky JR, Velthuis AJWT, Bloom JD. Single-Cell Virus Sequencing of Influ-

enza Infections That Trigger Innate Immunity. J Virol. 2019: 93. https://doi.org/10.1128/jvi.00500-19

PMID: 31068418

36. Bacsik DJ, Dadonaite B, Butler A, Greaney AJ, Heaton NS, Bloom JD. Influenza virus transcription

and progeny production are poorly correlated in single cells. bioRxiv. 2023; 2022.08.30.505828.

https://doi.org/10.7554/eLife.86852 PMID: 37675839

37. Fodor E, Velthuis AJW te. Structure and Function of the Influenza Virus Transcription and Replication

Machinery. Csh Perspect Med. 2019; 10:a038398. https://doi.org/10.1101/cshperspect.a038398

PMID: 31871230

38. Chen K-Y, Karuppusamy J, O’Neill MB, Opuu V, Bahin M, Foulon S, et al. High-throughput droplet-

based analysis of influenza A virus genetic reassortment by single-virus RNA sequencing. Proc

National Acad Sci. 2023; 120:e2211098120. https://doi.org/10.1073/pnas.2211098120 PMID:

36730204

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011898 January 18, 2024 14 / 19

https://doi.org/10.1084/jem.20210582
http://www.ncbi.nlm.nih.gov/pubmed/34128959
https://doi.org/10.1038/nprot.2013.046
https://doi.org/10.1038/nprot.2013.046
http://www.ncbi.nlm.nih.gov/pubmed/23558786
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26000488
https://doi.org/10.1016/j.molcel.2018.10.020
https://doi.org/10.1016/j.molcel.2018.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30472192
https://doi.org/10.1126/science.aam8940
https://doi.org/10.1126/science.aam8940
http://www.ncbi.nlm.nih.gov/pubmed/28818938
https://doi.org/10.1126/science.aam8999
http://www.ncbi.nlm.nih.gov/pubmed/29545511
https://doi.org/10.1101/2022.08.27.505512
https://doi.org/10.1101/2022.08.27.505512
https://doi.org/10.1371/journal.ppat.1001005
http://www.ncbi.nlm.nih.gov/pubmed/20661479
https://doi.org/10.1038/s41564-019-0465-y
http://www.ncbi.nlm.nih.gov/pubmed/31160826
https://doi.org/10.1128/jvi.02221-07
https://doi.org/10.1128/jvi.02221-07
http://www.ncbi.nlm.nih.gov/pubmed/18184709
https://doi.org/10.2217/fvl.13.118
http://www.ncbi.nlm.nih.gov/pubmed/25067941
https://doi.org/10.1038/226325a0
http://www.ncbi.nlm.nih.gov/pubmed/5439728
https://doi.org/10.1371/journal.ppat.1008671
http://www.ncbi.nlm.nih.gov/pubmed/32614923
https://doi.org/10.1128/mBio.02880-19
http://www.ncbi.nlm.nih.gov/pubmed/31937643
https://doi.org/10.7554/eLife.32303
http://www.ncbi.nlm.nih.gov/pubmed/29451492
https://doi.org/10.1128/jvi.00505-22
http://www.ncbi.nlm.nih.gov/pubmed/35867557
https://doi.org/10.1371/journal.ppat.1010943
http://www.ncbi.nlm.nih.gov/pubmed/37068114
https://doi.org/10.1128/jvi.00500-19
http://www.ncbi.nlm.nih.gov/pubmed/31068418
https://doi.org/10.7554/eLife.86852
http://www.ncbi.nlm.nih.gov/pubmed/37675839
https://doi.org/10.1101/cshperspect.a038398
http://www.ncbi.nlm.nih.gov/pubmed/31871230
https://doi.org/10.1073/pnas.2211098120
http://www.ncbi.nlm.nih.gov/pubmed/36730204
https://doi.org/10.1371/journal.ppat.1011898


39. Quail MA, Swerdlow H, Turner DJ. Improved Protocols for the Illumina Genome Analyzer Sequencing

System. Curr Protoc Hum Genet. 2009; 62:18.2.1–18.2.27. https://doi.org/10.1002/0471142905.

hg1802s62 PMID: 19582764

40. Alnaji FG, Brooke CB. Influenza virus DI particles: Defective interfering or delightfully interesting?

PLoS Pathog. 2020; 16:e1008436. https://doi.org/10.1371/journal.ppat.1008436 PMID: 32437428
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