Skip to main content
. 2023 Dec 19;9(1):1497–1515. doi: 10.1021/acsomega.3c07831

Table 3. Comparison of the Electroanalytical Performance of the Proposed Carbaryl Sensors with Several Previous Sensors.

technique electrode linear range (μM) LOD (μM) sample ref
CV, DPV ZnCo2O4/SPCE 0.15–100 0.05 tomatoes, grapes, and cabbages (93)
CV, DPV Bio-Ag/ZnO/SPCE 0.25–100 0.27 cabbages (94)
amperometric PANI/CoAl-LDHc/GCE 0.1–150 0.0068 cucumber, spinach (90)
amperometric MAPDIAa-GCE 0.0035–13.96 0.0011 tap water (96)
CV, DPV rGO/AuNPs/SPCE 0.5–250 0.2 tap and river water (97)
CV, DPV LSX zeolite-CPEb 1–100 0.3 tomato (98)
CV PPy-IC-DS1-AuNP-AChEd 0.05–0.25 0.033 tap water (99)
CV, DPV 3D graphene-AuNPs/GCE 0.004–0.3 0.0012 peach, apple, grape, tomato, cucumber, water (100)
CV, DPV rGO/Cu/CuO-Ag/GCE 0.05–20 0.005 grape, orange, tomato, cabbages (101)
CV, DPV carbon black-SPCE 0.1–100 0.048 durum wheat, organic (102)
CV, DPV poly-p-phenylenediamine-ionic liquid-CPE 0.5–200 0.09 spring water, grapes (103)
CV, DPV AuNRs in three different aspect ratios/SPCE 0.2–100 0.07 cabbage, cucumber, Chinese cabbage this work
a

5-[(4-(Methacryloyloxy)phenyl)diazenyl]isophthalic acid.

b

Low silica X zeolite-carbon paste electrode.

c

Polyaniline-layered double hydroxide.

d

Polypyrrole-indigocarmine-dodecylsulfate-AuNPs-acetylcholinesterase.