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Developing a prognosis 
and chemotherapy 
evaluating model for colon 
adenocarcinoma based on mitotic 
catastrophe‑related genes
Yinglei Liu 1,2,4, Yamin Zhao 1,3,4, Siming Zhang 1,4, Shen Rong 1, Songnian He 2, Liqi Hua 2, 
Xingdan Wang 1* & Hongjian Chen 1*

Mitotic catastrophe (MC) is a novel form of cell death that plays an important role in the treatment 
and drug resistance of colon adenocarcinoma (COAD). However, MC related genes in COAD treatment 
and prognosis evaluation are rarely studied. In this study, the transcriptome data, somatic mutation 
and copy number variation data were obtained from The Cancer Genome Atlas (TCGA) database. The 
mitotic catastrophe related genes (MCRGs) were obtained from GENCARDS website. Differential 
gene analysis was conducted with LIMMA package. Univariate Cox regression analysis was used 
to identify prognostic related genes. Mutation analysis was performed and displayed by maftools 
package. RCircos package was used for localizing the position of genes on chromosomes. “Glmnet” 
R package was applied for constructing a risk model via the LASSO regression method. Consensus 
clustering analyses was implemented for clustering different subtypes. Functional enrichment 
analysis through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
methods, immune infiltration analysis via single sample gene set enrichment analysis (ssGSEA), 
tumor mutation burden and drug sensitivity analysis by pRRophetic R package were also carried 
out for risk model or molecular subtype’s assessment. Additionally, the connections between the 
expression of hub genes and overall survival (OS) were obtained from online Human Protein Atlas 
(HPA) website. Real-Time Quantitative Polymerase Chain Reaction (RT‑qPCR) further validated the 
expression of hub genes. A total of 207 differentially expressed MCRGs were selected in the TCGA 
cohort, 23 of which were significantly associated with OS in COAD patients. Subsequently, we 
constructed risk score prognostic models with 5 hub MCRGs, including SYCE2, SERPINE1, TRIP6, 
LIMK1, and EEPD1. The high-risk patients suffered from poorer prognosis. Furthermore, we developed 
a nomogram that gathered age, sex, staging, and risk score to accurately forecast the clinical survival 
outcomes in 1, 3, and 5 years. The results of functional enrichment suggested a significant correlation 
between MCRGs characteristics and cancer progression, with important implications for the immune 
microenvironment. Moreover, patients who displayed high TMB and high risk score showed worse 
prognosis, and risk characteristics were associated with different chemotherapeutic agents. Finally, 
RT‑qPCR verified the increased expression of the five MCRGs in clinical samples. The five MCRGs in 
the prognostic signature were associated with prognosis, and could be treated as reliable prognostic 
biomarkers and therapeutic targets for COAD patients with distinct clinicopathological characteristics, 
thereby providing a foundation for the precise application of pertinent drugs in COAD patients.

Colon Adenocarcinoma (COAD), the most common histological subtype of Colorectal cancer (CRC), has one of 
the highest incidences and mortalities among malignant tumors1,2. Surgical resection and chemotherapy are the 
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primary treatments3, but the adverse effects of chemotherapy can reduce patients’ quality of life and worsen their 
prognosis4. The occurrence and development of COAD is a complex, heterogeneous process that is influenced 
by genetic variation, cellular and external environmental factors, and no specific carcinogenic mechanism has 
been identified4. Worse still, the majority of COAD patients are metastatic when diagnosed, which results in 
about 14% possibility on 5-year survival rate although under systemic treatment5. At present, the pathogenesis 
of COAD has not been fully elucidated, so it is very important to find valuable molecular targets6–8, which can 
provide new treatments for patients with COAD.

Mitotic catastrophe (MC) is a newly recognized form of cell death that arises from dysregulation of the mitotic 
process and functions as an endogenous tumor suppressor mechanism9. MC is a complex signal cascade that 
drives cells to undergo mitosis and may serve as a new target for cancer therapy10. In recent years, the mechanism 
of MC occurrence and development has garnered much attention, and inducing MC in tumor cells has been 
used to optimize clinical treatment of tumors and reverse multidrug resistance in some tumors11,12. For instance, 
Jung et al.13 observed that induction of MC in oral cancer cells, could be a promising treating approach. Other 
studies also have shown associations between MC and favorable prognosis in colon cancer9, breast cancer14, 
and prostate cancer15. Despite these findings, the functions of MC-related genes (MCRGs) in the prognosis of 
COAD patients have not been reported.

In this study, we explored the expression of MCRGs and their prognostic value in COAD patients. The risk 
model based on selected MCRGs for predicting the prognosis of COAD patients showed better results and 
provided potential biomarkers for the treatment of COAD patients.

Methods
Data acquisition and processing
The transcriptome data of 447 patients with COAD and 41 normal samples and clinical information were down-
loaded from The Cancer Genome Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/​repos​itory) accompa-
nied with relevant somatic mutation and copy number variation (CNV) data. The MCRGs were obtained from 
GENCARDS (https://​www.​genec​ards.​org/) (Table S1) and identified differentially expressed MCRGs between 
tumor samples and normal samples (Table S2) by the the Bioconductor Linear Model for Microarray Analysis 
(LIMMA) package (FDR < 0.05, |log2 FC|≥ 2)16. Then, univariate Cox regression analysis was used applying coxph 
function in survival package17 to identify differentially expressed MCRGs that were significantly associated with 
overall survival (OS) (Table S3, P < 0.05).

Mutation analysis of MCRGs
The mutation frequency and oncoplot waterfall plot of 23 prognosis-related MCRGs in COAD patients were gen-
erated by the “maftools” package. The R package "ggplot2" was also used to show the frequency of gene gain and 
loss. The location of CNV alteration of 23 MCRGs onchromosomes was drawn using the “RCircos” package in R.

Prognostic risk model construction for MCRGs
The five genes with the best prognosis were screened in the TCGA dataset using the LASSO regression in the 
“glmnet” R package. The risk score model was constructed by linear fitting, where the weight of each gene was 
determined by the regression coefficient obtained from the LASSO regression analysis.

The TCGA data set was divided into a 50% training set and a 50% testing set applying the function createDa-
taPartition () in the caret R package, and all patients were divided into a high-risk group and a low-risk group 
according to the median risk score. The predictive accuracy of the risk score model was assessed by using the 
“survROC” R package for the receiver operating characteristic (ROC) curve, and the area under the curve18 was 
calculated at different time points (year 1, year 2 and year 3). Heat maps for both groups were created using the 
“pheatmap” R package.

Based on independent clinical characteristics (age, sex, TNM staging and risk signature) explored by univari-
ate and multivariate Cox regression analyses, we constructed a multifactorial prognostic nomogram using the 
“rms” and “survival” R packages. Verification of the accuracy of the nomogram based on time-dependent ROC 
curves for 1, 3 and 5 years, predicted calibration curves, and the concordance index (c-index).

Table 1.   The primer sequences in this study.

GAPDH-F TGA​CAT​CAA​GAA​GGT​GGT​GAA​GCA​G

GAPDH-R GTG​TCG​CTG​TTG​AAG​TCA​GAG​GAG​

EEPD1-F GTA​TGC​AGG​ATT​CCT​ATG​GGAC​

EEPD1-R GAA​GGT​TAA​CAA​GGG​TCA​GGTC​

LIMK1-F GAT​GTG​AAG​AAT​TCC​ATC​CACG​

LIMK1-R GAA​TCA​GCA​GGT​CAA​TCT​CGTC​

TRIP6-F CTA​TAG​GAG​CCA​GAG​AGA​GCC​

TRIP6-R CTT​CTT​CGT​CAG​CCT​ATC​CAG​

SERPINE1-F AAC​GTG​GTT​TTC​TCA​CCC​TAT​

SERPINE1-R CAA​TCT​TGA​ATC​CCA​TAG​CTGC​

SYCE2-F TCG​GGA​GGG​ATA​GGA​GGG​ACAG​

SYCE2-R TGG​GAG​AGG​CGG​CTT​CAG​ATG​

https://portal.gdc.cancer.gov/repository
https://www.genecards.org/
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Consensus clustering analyses
Consensus clustering analyses were performed using the k-means algorithm in the “Consensus Cluster Plus” R 
package. The optimal number of subtypes was determined by assessing the consistent matrix and cumulative 
distribution function (CDF). Based on the transcription matrix of the five genes in the signature, two robust 
subtypes were identified. We used Kaplan–Meier analysis in the R “survminer” package to determine whether 
COAD subtypes exhibited significant survival differences.

Functional enrichment analysis and immune function status analysis
We used single sample gene set enrichment analysis (ssGSEA) in the Gene Set Variation Analysis (GSVA) 
package19 to calculate 23 types of immune cells infiltration, and detected differences in immune cell infiltrates 
between different subgroups using the Wilcoxon rank sum test. In addition, the two subtypes were analyzed by 
Gene Ontology (GO, http://​www.​geneo​ntolo​gy.​org/)20 and Kyoto Encyclopedia of Genes and Genomes (KEGG, 
https://​www.​kegg.​jp/​kegg/​kegg1.​html)21,22 using the R “clusterprofiler” package23.

Tumor mutation burden correlation
We evaluated the Tumor Mutation Burden (TMB) score of each COAD patient using somatic mutation analysis, 
and divided patients into low TMB and high TMB groups24. The overall survival25 of both groups was compared 
using Kaplan–Meier analysis. Similarly, we divided COAD patients into four groups according to TMB and risk 
score, and compared the OS of these four groups24.

The connections between MCRGs expression and OS in human protein atlas
To verify the expression and prognostic significance of MCRGs, we searched for hub genes on the Human Pro-
tein Atlas (HPA) website (https://​www.​prote​inatl​as.​org/), and obtained immunohistochemical (IHC) staining 
images26. Then, Kaplan–Meier Plotter website (http://​kmplot.​com/) was performed to verify the prognosis of 
hub genes.

Drug sensitivity analysis
We used the “pRRophetic” R software package to calculate the half inhibitory concentration (IC50) values of 
tumor therapeutic drugs and evaluate the difference in efficacy between high and low risk groups. We also ana-
lyzed the correlation between IC50 and risk score using Spearman’s correlation test. The lower IC50 value, the 
higher treatment sensitivity.

Collection of clinical specimens
Here, eight pairs of surgically excised colorectal cancer (CRC) and matched normal tissues were procured, 
immediately cryopreserved in liquid nitrogen, and stored at − 80 °C. None of the colorectal cancer patients had 
undergone any preoperative anti-tumor therapies. All patients provided informed consent, and the study was 

Figure 1.   Genetic and expression variation of mitotic catastrophe-related genes (MCRGs) in colon 
adenocarcinoma (COAD). (A) Volcano plot of differentially expressed MCRGs. (B) Forest plot of univariate 
Cox analysis showing the 23 MCRGs significantly associated with OS in colon cancer patients. (C) Expression of 
23 MCRGs in COAD and normal colon tissues. The upper and lower ends of the boxes indicate the interquartile 
range of values. Lines in the boxes represent medians. *P < 0.05, ***P < 0.001. (D) Copy number variation 
(CNV) frequencies of the 23 MCRGs in the COAD cohort. (E) Location of CNV alterations in 23 MCRGs on 23 
chromosomes in the cohort. (F) Mutation frequencies and classification of 23 MCRGs in COAD.

http://www.geneontology.org/
https://www.kegg.jp/kegg/kegg1.html
https://www.proteinatlas.org/
http://kmplot.com/
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approved by the the Ethics Committee of Nantong Tumor Hospital (no. 2022-061). All methods were performed 
in accordance with the relevant guidelines and regulations.

Real‑time quantitative polymerase chain reaction (RT‑qPCR)
Total RNA was extracted using TRIzol reagent (Invitrogen, Thermo Scientific, Shanghai, China) following the 
manufacturer’s instructions. cDNA was synthesized using the QuantiTect Reverse Transcription Kit (QIA-
GEN, Valencia, CA, USA), and real-time PCR was performed using SYBR-Green (Takara, Otsu, Shiga, Japan). 

Figure 2.   Construction and internal validation of a prognostic model for MCRGs. (A) Heat map of risk score 
distribution, survival status and MCRG expression for high-risk and low-risk patients in the training set. (B) 
Survival curves of high- and low-risk patients in the training set. (C) ROC curves for the prognostic model of 
MCRGs in the training set predicting overall survival at 1, 3 and 5 years. (D) Heat map of risk score distribution, 
survival status and MCRG expression for high-risk and low-risk patients in the test set. (E) Survival curves of 
high- and low-risk patients in the test set. (F) ROC curves for the prognostic model of MCRGs in the test set 
predicting overall survival at 1, 3 and 5 years.

Figure 3.   Construction of predictive nomogram. (A–B) Forest plot of univariate and multivariate Cox 
regression analysis of patient prognosis. (C–D) A designed nomogram predicted overall patient survival at 1, 3, 
and 5 years and calibration curves. (E) The ROC curves show the prediction efficiency of the nomogram in the 
TCGA cohort. (F) C-index for age, sex, stage, T-stage, M-stage, N-stage, and risk score.
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Relative gene expression levels were analyzed using the 2-ΔΔCt method and normalized to GAPDH. The primer 
sequences used for RT-qPCR were shown in Table 1. All samples were tested in triplicate.

Statistical analysis
All statistical analyses were performed using R package (version 4.0.4)23. The Wilcoxon test was used to compare 
statistical differences between the two groups. The Spearman test was used to calculate correlation coefficients. 
The log-rank test was used to determine the significance of Kaplan–Meier analysis of survival differences. P 
values < 0.05 were considered statistically significant.

Ethics statement
The studies involving human participants were reviewed and approved by the Ethics Committee of Nantong 
Tumor Hospital (no. 2022-061). The patients provided their written informed consent to participate in this study, 
complying with the current laws in China.

Results
The genetic and expression landscape of prognostic MCRGs in COAD samples
To identify prognostic MCRGs in COAD, 900 MCRGs were obtained from GENECARDS (Table S1). Combined 
with TCGA COAD databases, a total of 207/894 differentially expressed genes were selected in the Fig. 1A 
(Tables S2 and S3). Among them, SYCE2, SYP, BDNF, ALPP, GRIN3A, EYA2, NGFR, FOXM1, SALL4, SER-
PINE1, TRIP6, MAPK10, LIMK1, EEPD1, FHL1, PBX1, MYT1, PBK, HMGA2, MAD2L1, CDC25C, STMN2, 
and IGF1 were identified as candidate genes significantly associated with the OS of COAD patients (Fig. 1B). We 
examined the expression of these 23 prognostic MCRGs in COAD and normal tissues. Compared with normal 
tissues, the expression of BDNF, FOXM1, SALL4, SERPINE1, TRIP6, LIMK1, EEPD1, MYT1, PBK, HMGA2, 
MAD2L1, and CDC25C was increased, while SYP, GRIN3A, EYA2, NGFR, MAPK10, FHL1, PBX1, STMN2, 
and IGF1 expression was decreased in COAD (Fig. 1C).

We also investigated the frequency of CNV alterations in 23 prognostic MCRGs. The result showed that EYA2, 
SALL4, FOXM1, STMN2, MYT1, PBX1, NGFR, EEPD1, TRIP6, SERPINE1, FHL1, BDNF, and SYP had copy 
number amplification. While ALPP, MAPK10, LIMK1, PBK, CDC25C, MAD2L1, HMGA2, GRIN3A, and IGF1 
had widespread deletion frequencies (Fig. 1D). Moreover, the CNV alterations of these prognostic MCRGs were 
located on chromosomes (Fig. 1E). The landscape showed that 114 patients (25.3%) displayed genetic mutations, 
and the most common variant was missense mutation, mainly C > T mutation (Fig. 1F).

Figure 4.   Analysis of survival differences between high- and low-risk population subgroups in the TCGA 
cohort. OS analysis of risk scores in high-risk and low-risk patients with patient age > 60 years (A), <  = 60 years 
(B), female (C), male (D), M0 stage (E), M1 stage (F), N0 stage (G), N1 + N2 stage (H), T1 + 2 stage (I), T3 + 4 
stage (J), I–II stage (K), and III–IV stage (L).
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Development of an MC‑related prognostic gene model in the TCGA cohort
In the TCGA cohort, we developed a prognostic gene model related to MC by identifying five hub 
genes (SYCE2, SERPINE1, TRIP6, LIMK1, and EEPD1) with prognostic value through LASSO 
analysis (Fig.  S1). We used the formula Risk score = 0.972240964SYCE2 + 0.208393835SER-
PINE1 + 0.244958765TRIP6 + 0.583762591LIMK1 + 0.511535266 * EEPD1 to divide the 446 COAD samples into 
high-risk and low-risk populations. The training and testing sets confirmed that the survival time was decreased 
as the risk scores of these five genes increased (Fig. 2A,D). Additionally, the Kaplan–Meier curve showed that 
high-risk scores had worse overall survival probability than those with low-risk scores (Fig. 2B,E), and ROC 
curves predicted the sensitivity and specificity of the MCRGs signature, which reached 0.660, 0.603, 0.622 (in 
the training set), and 0.688, 0.729, 0.722 (in the test set) in 1-, 3-, and 5-year, respectively (Fig. 2C,F). In the 
entire set, fewer deaths were observed in the low-risk group, and the prognosis of the low-risk group was better 
than that of the high-risk group (Fig. S2A,B). ROC curves reached 0.674, 0.662, and 0.692 for 1-, 3-, and 5-year 
survival, respectively, demonstrating the predictive performance of the risk signature in the entire set (Fig. S2C).

Nomogram construction and validation
We conducted univariate and multivariate Cox regression analyses on the TCGA dataset, which revealed that 
our risk signature and clinical variables such as age, stage, T stage, M stage, and N stage were independent 
prognostic factors that affected COAD patients (Fig. 3A–B). To validate our findings, we designed a nomogram 
that displayed relatively good predictions for the 3-year and 5-year overall survival rates in the entire cohort 
(Fig. 3C–D). We also evaluated the performance of our signature by calculating the AUC values of various 
clinical factors, including age, stage, T stage, M stage, and N stage, and found that our signature had a higher 
C-index advantage (Fig. 3E–F). These results indicated that our MCRGs signature was a superior clinical target 
for predicting the OS of COAD patients. Furthermore, our survival analysis of clinical characteristics based on 
the MCRGs showed that our signature could significantly distinguish patients with different age groups, genders, 
M and N stages, T stages, and stages III + IV (Fig. 4, P < 0.05), suggesting that our model has the potential to 
predict different clinical signs.

Figure 5.   Defining molecular subtypes of COAD patients and their characteristics based on 5 MCRGs (A) 
OS survival curves were analyzed in 2 different subtypes of patients. (B) Differences in infiltration scores of 
23 immune markers in high and low risk groups based on ssGSEA algorithm. (C) GSVA enrichment analysis 
of 2 COAD subtypes. (D) Clinicopathological characteristics of 2 different subtypes and heat map of DEPRGs 
expression. *P < 0.05, **P < 0.01, ***P < 0.001, ns, no significance.
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Characteristic genotype analysis
Based on the selected k value and the cophenetic correlation coefficient, we classified all patients with COAD 
into two subtypes (clusters A and B) (Fig. S3A–C), which were then further analyzed using Principal component 
analysis (PCA) to reveal the subtypes based on MCRGs (Fig. S3D). Results showed that patients in cluster B had 
worse overall survival in COAD than those in cluster A (Fig. 5A), and the differences in immune cell fraction 
between the two clusters were further highlighted by the boxplot (Fig. 5B). GSVA analysis revealed that cluster 
A was enriched in huntingtons disease, alzheimers disease, and oxidative phosphorylation, while cluster B was 
enriched in arrhythmogenic right ventricular cardiomyopathy (ARVC), dilated cardimyopathy, hypertrophic 
cardiomyopathy (HCM), and calcium signaling pathway (Fig. 5C). In addition, based on clinical features (N 
stage, M stage, T stage, stage, gender, age and MC cluster), we constructed a heatmap of the MCRGs that took 
into account the complex cluster and risk score (Fig. 5D).

Immune function, enrichment analysis, and risk signature variability
To comprehensively explore the immune function between different risk groups and immune cell infiltration, 
we generated a heatmap (Fig. 6A). Additionally, we performed Gene Ontology (GO) enrichment analysis to 
explore the underlying molecular mechanisms of the MCRGs-based model, which mainly involved cell dif-
ferentiation and cell polarity (Fig. 6B). Through KEGG analysis, we found that the model was mainly involved 
in ECM-receptor interaction, Wnt signaling pathway, Human papillomavirus infection, PI3K-Akt signaling 
pathway, and Focal adhesion (Fig. 6C).

Through the waterfall plots, we revealed that the mutation profiles of high-risk patients were higher than 
those of the low-risk group, except for TTN (Fig. 6D–E).

Based on the TMB scores, we detected the prognosis and found that high TMB scores were associated with 
worse survival (Fig. 6F). Furthermore, we validated that the MC risk signature was better at predicting OS 
outcomes than TMB scores. Patients with high and low TMB scores in the high-risk groups (H-TMB of high 
risk and L-TMB of high risk) displayed poorer OS than patients with high- and low-TMB scores in the low-risk 
groups (Fig. 6G).

The protein expression of 5 hub MCRGs and prognostic evaluation
Through HPA database for immunohistochemical data of SYCE2, SERPINE1, TRIP6, and LIMK1, and EEPD1. 
We found that these genes were all highly expressed in COAD tissues (Fig. 7A–D) in comparing with normal 
tissues (Fig. 7E–H). Then, we used the Kaplan–Meier Plotter website to verify the prognostic value of the 5 hub 
genes. The expression of these 5 genes were related to inferior OS (Fig. 7I–M).

Figure 6.   Mechanisms related to MCRG risk signature in COAD. (A) Heat map of immune cell inflammation 
in high- and low-risk populations. (B) Gene Ontology (GO). (C) KEGG analysis. (D) Frequency and type 
of gene mutations in high-risk group. € Frequency and type of gene mutations in the low-risk group. (F) OS 
survival curve analysis in low TMB group and high TMB group. (G) OS survival curve analysis between 
different TMB subgroups in high and low risk groups.
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Relationships between MCRGs and chemotherapy drug sensitivity
Figure 8A illustrated the results of the drug sensitivity test. Potential chemotherapy drugs were identified by 
measuring the IC50 between the low-risk and high-risk groups. COAD patients in the high-risk subtype were 
evidently sensitive to chemotherapy drugs such as AP-24534, CGP-082996, Dabrafenib, FK866, Midostaurin, 
NSC-207895, Pazopanib, TAK-715, Veliparib, WZ-1–84, and XMD8-85 (all P < 0.05). While low-risk groups were 
sensitive to FK866, Veliparib, Dabrafenib, TAK-75 and NSC-207895. Moreover, we confirmed the association 
between the risk signature and chemotherapy drugs (Fig. 8B).

MCRGs expression was high in CRC tissues
To validate the expression profile of MCRGs in clinical patients, we examined the expression of oncogenes 
(SYCE2, SERPINE1, TRIP6, LIMK1, and EEPD1) by RT-qPCR in 8 pairs of clinical samples from CRC patients. 
According to the qPCR results, the oncogenes were expressed at high levels in CRC tissues (Fig. 9).

Discussion
As a malignancy with high mortality rate and unfavorable prognosis, the development of colon adenocarcinoma 
(COAD) can be influenced by various factors3. Among them, (MCRGs have been shown to be essential in the 
prevention, treatment, and drug resistance of many cancers, including COAD11,12,27,28. However, the study of 
MCRGs in cancer development has been limited to individual MCRGs, and there is a lack of systematic and 
comprehensive exploration of the combined effects of a large number of MCRGs on cancer14,29,30. In this study, 
we screened 23 prognosis-associated MCRGs in the TCGA-COAD cohort and revealed variations of MCRGs in 
COAD at the transcriptional and genetic levels. Then, we developed a risk prognostic model consisting of five 
MCRGs in combination with the survival status of COAD patients. This model could independently predict the 
survival status of patients with different clinicopathological features and revealed the underlying mechanisms and 
associated factors, such as the immune microenvironment and mutational status. The drug sensitivity analysis 
confirmed the association between risk characteristics and chemotherapeutic agents, potentially providing a 
basis for more precise application of relevant drugs.

Mitotic catastrophe is a regulated anti-proliferative process that occurs during defective or failed mitosis, 
and is an oncosuppressive mechanism that maintains genomic stability10. It remains unknown how MCRGs are 

Figure 7.   The expression of 4 MCRGs from risk signatures in HPA databse. (A–D) Immunohistochemistry of 
4 MCRGs (SYCE2, SERPINE1, TRIP6 and LIMK1) in COAD tissues43. Immunohistochemistry of 4 MCRGs 
(SYCE2, SERPINE1, TRIP6 and LIMK1) in normal colon tissues. (I–M) Survival curve analysis of 5 MCRGs in 
Kaplan–Meier Plotter.
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expressed in COAD and whether they are associated with survival time in patients. Based on the expression of 
MCRGs, screening for biomarkers with prognostic value is expected, which could provide a reliable assessment 
tool for COAD patients with poor prognosis. Using LASSO Cox regression analysis, an independent prognostic 
gene model based on five MCRGs (SYCE2, SERPINE1, TRIP6, LIMK1, and EEPD1) was constructed to predict 
the overall survival25 of COAD patients with different clinicopathological characteristics. Surprisingly, many 
MCRG-based prognostic models have not been developed so far. The 5 prognostic MCRGs identified in our 
study have been mentioned in relevant prognostic studies. For example, Ye et al.31 reported a 9-gene prognostic 
model including SYCE2 in gastric cancer, which was able to accurately predict the overall survival of gastric 
cancer patients. High expression of SERPINE1 is significantly associated with poor prognosis in various cancers, 
including COAD32, gastric cancer33,34, ovarian cancer25, and breast cancer35. Similarly, Wei et al.36 developed a 
6-gene prediction model including SERPINE1 to predict the survival outcome of breast cancer patients at 1, 3, 
and 5 years, and its accuracy and reliability were validated. During tumorigenesis and progression, studies have 
confirmed that LIMK1 is upregulated in various tumors, is associated with patient prognosis, and is closely 
associated with changes in the biological behavior of several human tumors37–39. Recent findings also suggest that 
LIMK1 may be a valuable and promising biomarker for the diagnosis of CRC​39. EEPD1 is also overexpressed in 
various solid tumors, including colon cancer, but related studies have focused more on its role in DNA damage40. 
It was found that DNA damage may lead to mitotic catastrophe and that tumor cells are more susceptible to 
mitotic abnormalities than normal cells41. These examples evince that our findings are consistent with prior stud-
ies. Interestingly, we also divulge novel discoveries that lay the groundwork for future MCRG studies in COAD.

The signature prognostic model stemming from our study significantly correlated with clinical traits, immune 
cells, TMB, cancer-related pathways, and drug sensitivity. To our knowledge, this is the first comprehensive 
analysis of the connection between MC, gene mutations, and the immune microenvironment in COAD. The 
growth of cancer is influenced by multiple factors and various genes. A composite multigene prognostic model 
will furnish an optimized risk score using regression methods. The ROC method demonstrated that risk scores 
have high sensitivity and specificity as prognostic factors. The nomogram also signifies that it is a critical inde-
pendent prognostic risk factor among clinical variables. Our results showed that samples were adequately dis-
tributed into two independent subtypes and significantly linked with survival, with notable variances in the 
immune microenvironment regarding the proportion of some immune cells between the two subtypes, such as 
activated B cell, CD4+ T cell, MDSC, among others. Few studies have delved into the correlation between MCRG 
and immunotherapy. Nevertheless, several prognostic models have been scrutinized concerning the immune 
microenvironment. For instance, SERPINE1 is linked with the reconstruction of the tumor microenvironment 

Figure 8.   Drug sensitivity analysis. (A) Differences in IC50 of AP-24534, CGP-082996, Dabrafenib, FK866, 
Midostaurin, NSC-207895, Pazopanib, TAK-715, Veliparib, WZ-1-84 and XMD8-85 in high and low risk 
groups. (B) Correlation analysis of MCRG risk score and drug IC50.
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and infiltration of immune cells in the progression of colon cancer42. Moreover, LIMK1 is also related to multiple 
tumor-infiltrating immune cells in CRC, notably CD4+ T cells and macrophage39.

Additionally, the cancer-associated genomes between high- and low-risk scoring groups are profoundly 
involved in cellular processes, furnishing insights into MCRG-linked mechanistic alterations in COAD. The GO- 
and KEGG-enriched 5-gene marker pathway was substantially associated with the development and progression 
of colon cancer, proposing that this marker could be utilized as a prognostic marker for clinical diagnosis. Our 
study showed high mutations in the high-risk group and poor prognosis in patients with high tumor mutation 
burden, especially in patients with high risk scores, suggesting crosstalk between mutations and MCRG in COAD. 
Mitotic catastrophes are entangled in the antitumor effects of various chemotherapeutic agents, including micro-
tubule modulators, CHK1 inhibitors, PARPs inhibitors, WEE1 inhibitors, PLKs inhibitors, among others. We 
confirmed the correlation between CMCRG risk profile and chemotherapeutic agents. Mitotic catastrophe is a 
popular target for the development of novel anticancer drugs, particularly considering its avoidance for tumor 
resistance. On the one hand, tumor cells typically have an abnormal genome number, making them particularly 
susceptible to mitotic catastrophe-inducing drugs. On the other hand, some currently available chemotherapy 
regimens that induce apoptosis have been discovered to be effective in triggering mitotic catastrophe at lower 
doses.

Conclusion
In conclusion, our study revealed a 5-gene signature associated with the prognosis of colon cancer patients that 
can serve as a potentially reliable prognostic biomarker and therapeutic target for COAD patients with differ-
ent clinicopathological features, and potentially provide a basis for more precise application of relevant drugs.

Figure 9.   The expression levels of the oncogenes (SYCE2, SERPINE1, TRIP6, LIMK1 and EEPD1) were 
up-regulated in CRC tissues as shown by qRT-PCR results (n = 8). ** P ≤ 0.01, *** P ≤ 0.001. The results were 
presented as mean ± SEM.
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Data availability
Publicly available datasets were analyzed in this study. These data can be found here: all relevant raw data used 
in the study can be accessed from TCGA (https://​portal.​gdc.​cancer.​gov/​repos​itory) and GENCARDS (https://​
www.​genec​ards.​org/).

Received: 28 September 2023; Accepted: 11 January 2024

References
	 1.	 Siegel, R. et al. Cancer statistics, 2022. CA: Cancer J. Clin. 72(1), 7–33. https://​doi.​org/​10.​3322/​caac.​21708 (2022).
	 2.	 Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 

144(8), 1941–1953. https://​doi.​org/​10.​1002/​ijc.​31937 (2019).
	 3.	 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA: Cancer J. Clin. 71(3), 209–249. https://​doi.​org/​10.​3322/​caac.​21660 (2021).
	 4.	 Dekker, E. et al. Colorectal cancer. Lancet (London, England) 394(10207), 1467–1480. https://​doi.​org/​10.​1016/​s0140-​6736(19)​

32319-0 (2019).
	 5.	 Siegel, R. L. et al. Cancer statistics, 2022. CA Cancer J. Clin. 72(1), 7–33. https://​doi.​org/​10.​3322/​caac.​21708 (2022).
	 6.	 Ma, S. et al. RCN3 expression indicates prognosis in colorectal cancers. Oncologie 24(4), 823–833 (2022).
	 7.	 Liu, A. et al. Forkhead Box P4 promotes the proliferation of cells in colorectal adenocarcinoma. Oncologie 25(5), 543–552. https://​

doi.​org/​10.​1515/​oncol​ogie-​2023-​0009 (2023).
	 8.	 Chen, L. et al. Expression of eIF6 and its relationship with cell proliferation in colorectal adenocarcinoma. Oncologie 25(4), 395–402. 

https://​doi.​org/​10.​1515/​oncol​ogie-​2023-​0007 (2023).
	 9.	 Mc Gee, M. M. Targeting the mitotic catastrophe signaling pathway in cancer. Med. Inflamm. 2015, 146282. https://​doi.​org/​10.​

1155/​2015/​146282 (2015).
	10.	 Vitale, I. et al. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12(6), 385–392. https://​

doi.​org/​10.​1038/​nrm31​15 (2011).
	11.	 Denisenko, T. V. et al. Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist. Updat. 24, 1–12. 

https://​doi.​org/​10.​1016/j.​drup.​2015.​11.​002 (2016).
	12.	 Wang, X. et al. An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe 

in paclitaxel-resistant ovarian cancer cells. PLoS One 8(6), e65686. https://​doi.​org/​10.​1371/​journ​al.​pone.​00656​86 (2013).
	13.	 Jung, M. et al. In vitro induction of mitotic catastrophe as a therapeutic approach for oral cancer using the ethanolic extract of 

Juniperus squamata. Oncol. Rep. https://​doi.​org/​10.​3892/​or.​2021.​8054 (2021).
	14.	 Yoon, Y. N. et al. MASTL inhibition promotes mitotic catastrophe through PP2A activation to inhibit cancer growth and radiore-

sistance in breast cancer cells. BMC Cancer 18(1), 716. https://​doi.​org/​10.​1186/​s12885-​018-​4600-6 (2018).
	15.	 Schecher, S. et al. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe 

in prostate cancer. Int. J. Cancer 141(8), 1643–1653. https://​doi.​org/​10.​1002/​ijc.​30864 (2017).
	16.	 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

43(7), e47. https://​doi.​org/​10.​1093/​nar/​gkv007 (2015).
	17.	 Therneau, T. M. & Lumley, T. Package ‘survival’. R Top Doc 128(10), 28–33 (2015).
	18.	 Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177(7), 1888-1902.e21. https://​doi.​org/​10.​1016/j.​cell.​2019.​05.​

031 (2019).
	19.	 Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 

14, 7. https://​doi.​org/​10.​1186/​1471-​2105-​14-7 (2013).
	20.	 Harris, M. A. et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue), D258-61. 

https://​doi.​org/​10.​1093/​nar/​gkh036 (2004).
	21.	 Laboratories, K. KGML (KEGG Markup Language). https://​www.​kegg.​jp/​kegg/​xml
	22.	 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30. https://​doi.​org/​10.​

1093/​nar/​28.1.​27 (2000).
	23.	 Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass.)) 2(3), 

100141. https://​doi.​org/​10.​1016/j.​xinn.​2021.​100141 (2021).
	24.	 Chen, H. et al. Identification of a pyroptosis-related prognostic signature in breast cancer. BMC Cancer 22(1), 429. https://​doi.​org/​

10.​1186/​s12885-​022-​09526-z (2022).
	25.	 Nakatsuka, E. et al. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel 

plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. Oncotarget 8(52), 89887–89902. 
https://​doi.​org/​10.​18632/​oncot​arget.​20834 (2017).

	26.	 Zhou, L. et al. Constructing a new prognostic signature of gastric cancer based on multiple data sets. Bioengineered 12(1), 2820–
2835. https://​doi.​org/​10.​1080/​21655​979.​2021.​19400​30 (2021).

	27.	 Drápela, S. et al. The CHK1 inhibitor MU380 significantly increases the sensitivity of human docetaxel-resistant prostate cancer 
cells to gemcitabine through the induction of mitotic catastrophe. Mol. Oncol. 14(10), 2487–2503. https://​doi.​org/​10.​1002/​1878-​
0261.​12756 (2020).

	28.	 Zhang, L. et al. MCDB: A comprehensive curated mitotic catastrophe database for retrieval, protein sequence alignment, and target 
prediction. Acta Pharm. Sinica. B 11(10), 3092–3104. https://​doi.​org/​10.​1016/j.​apsb.​2021.​05.​032 (2021).

	29.	 Izdebska, M., Gagat, M. & Grzanka, A. Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is 
associated with worse clinical outcomes. Int. J. Oncol. 52(1), 89–102. https://​doi.​org/​10.​3892/​ijo.​2017.​4182 (2018).

	30.	 Bo, T. et al. Mitochondrial fission promotes radiation-induced increase in intracellular Ca level leading to mitotic catastrophe in 
mouse breast cancer EMT6 cells. Biochem. Biophys. Res. Commun. 522(1), 144–150. https://​doi.​org/​10.​1016/j.​bbrc.​2019.​11.​027 
(2020).

	31.	 Ye, Z. et al. Bioinformatics analysis reveals an association between cancer cell stemness, gene mutations, and the immune micro-
environment in stomach adenocarcinoma. Front. Genet. 11, 595477. https://​doi.​org/​10.​3389/​fgene.​2020.​595477 (2020).

	32.	 Zeng, C. & Chen, Y. HTR1D, TIMP1, SERPINE1, MMP3 and CNR2 affect the survival of patients with colon adenocarcinoma. 
Oncol. Lett. 18(3), 2448–2454. https://​doi.​org/​10.​3892/​ol.​2019.​10545 (2019).

	33.	 Li, L. et al. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarci-
noma revealed by microarray and bioinformatics. Sci. Rep. 9(1), 7827. https://​doi.​org/​10.​1038/​s41598-​019-​43924-x (2019).

	34.	 Chen, S. et al. SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J. Oncol. 2022, 
2647825. https://​doi.​org/​10.​1155/​2022/​26478​25 (2022).

	35.	 Jevrić, M. et al. Association of uPA and PAI-1 tumor levels and 4G/5G variants of PAI-1 gene with disease outcome in luminal 
HER2-negative node-negative breast cancer patients treated with adjuvant endocrine therapy. BMC Cancer 19(1), 71. https://​doi.​
org/​10.​1186/​s12885-​018-​5255-z (2019).

https://portal.gdc.cancer.gov/repository
https://www.genecards.org/
https://www.genecards.org/
https://doi.org/10.3322/caac.21708
https://doi.org/10.1002/ijc.31937
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/s0140-6736(19)32319-0
https://doi.org/10.1016/s0140-6736(19)32319-0
https://doi.org/10.3322/caac.21708
https://doi.org/10.1515/oncologie-2023-0009
https://doi.org/10.1515/oncologie-2023-0009
https://doi.org/10.1515/oncologie-2023-0007
https://doi.org/10.1155/2015/146282
https://doi.org/10.1155/2015/146282
https://doi.org/10.1038/nrm3115
https://doi.org/10.1038/nrm3115
https://doi.org/10.1016/j.drup.2015.11.002
https://doi.org/10.1371/journal.pone.0065686
https://doi.org/10.3892/or.2021.8054
https://doi.org/10.1186/s12885-018-4600-6
https://doi.org/10.1002/ijc.30864
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkh036
https://www.kegg.jp/kegg/xml
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1186/s12885-022-09526-z
https://doi.org/10.1186/s12885-022-09526-z
https://doi.org/10.18632/oncotarget.20834
https://doi.org/10.1080/21655979.2021.1940030
https://doi.org/10.1002/1878-0261.12756
https://doi.org/10.1002/1878-0261.12756
https://doi.org/10.1016/j.apsb.2021.05.032
https://doi.org/10.3892/ijo.2017.4182
https://doi.org/10.1016/j.bbrc.2019.11.027
https://doi.org/10.3389/fgene.2020.595477
https://doi.org/10.3892/ol.2019.10545
https://doi.org/10.1038/s41598-019-43924-x
https://doi.org/10.1155/2022/2647825
https://doi.org/10.1186/s12885-018-5255-z
https://doi.org/10.1186/s12885-018-5255-z


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1655  | https://doi.org/10.1038/s41598-024-51918-7

www.nature.com/scientificreports/

	36.	 Xue, W. et al. Establishment and analysis of an individualized EMT-related gene signature for the prognosis of breast cancer in 
female patients. Dis. Mark. 2022, 1289445. https://​doi.​org/​10.​1155/​2022/​12894​45 (2022).

	37.	 Kang, X. et al. LIMK1 promotes peritoneal metastasis of gastric cancer and is a therapeutic target. Oncogene 40(19), 3422–3433. 
https://​doi.​org/​10.​1038/​s41388-​021-​01656-1 (2021).

	38.	 Huang, J. et al. Up-regulation of LIMK1 expression in prostate cancer is correlated with poor pathological features, lymph node 
metastases and biochemical recurrence. J. Cell. Mol. Med. 24(8), 4698–4706. https://​doi.​org/​10.​1111/​jcmm.​15138 (2020).

	39.	 Liu, X. et al. LIMK1: A promising prognostic and immune infiltration indicator in colorectal cancer. Oncol. Lett. 24(1), 234. https://​
doi.​org/​10.​3892/​ol.​2022.​13354 (2022).

	40.	 Nickoloff, J. et al. Metnase and EEPD1: DNA repair functions and potential targets in cancer therapy. Front. Oncol. 12, 808757. 
https://​doi.​org/​10.​3389/​fonc.​2022.​808757 (2022).

	41.	 Sazonova, E. et al. A link between mitotic defects and mitotic catastrophe: Detection and cell fate. Biol. Direct 16(1), 25. https://​
doi.​org/​10.​1186/​s13062-​021-​00313-7 (2021).

	42.	 Wang, S. et al. SERPINE1 associated with remodeling of the tumor microenvironment in colon cancer progression: A novel 
therapeutic target. BMC Cancer 21(1), 767. https://​doi.​org/​10.​1186/​s12885-​021-​08536-7 (2021).

	43.	 Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612. 
https://​doi.​org/​10.​1038/​ncomm​s3612 (2013).

Acknowledgements
Not applicable.

Author contributions
Conceptualization, Y.L. and Y.Z.; Formal analysis, S.H. and L.H.; Investigation, Y.L. and R.S.; Methodology, 
S.Z.; Project administration, H.C.; Software, Y.L. and Y.Z.; Supervision, H.C.; Validation, H.C.; Visualization, 
all authors; Writing—original draft, Y.L.; Writing—review and editing, Y.Z. and H.C.

Funding
The present study was supported by Scientific research project of Jiangsu Provincial Health Commission 
(Z2021078) and the Project of Health Committee of Nantong (MS2023056 and QNZ2023055).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​51918-7.

Correspondence and requests for materials should be addressed to X.W. or H.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024, corrected publication 2024

https://doi.org/10.1155/2022/1289445
https://doi.org/10.1038/s41388-021-01656-1
https://doi.org/10.1111/jcmm.15138
https://doi.org/10.3892/ol.2022.13354
https://doi.org/10.3892/ol.2022.13354
https://doi.org/10.3389/fonc.2022.808757
https://doi.org/10.1186/s13062-021-00313-7
https://doi.org/10.1186/s13062-021-00313-7
https://doi.org/10.1186/s12885-021-08536-7
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41598-024-51918-7
https://doi.org/10.1038/s41598-024-51918-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Developing a prognosis and chemotherapy evaluating model for colon adenocarcinoma based on mitotic catastrophe-related genes
	Methods
	Data acquisition and processing
	Mutation analysis of MCRGs
	Prognostic risk model construction for MCRGs
	Consensus clustering analyses
	Functional enrichment analysis and immune function status analysis
	Tumor mutation burden correlation
	The connections between MCRGs expression and OS in human protein atlas
	Drug sensitivity analysis
	Collection of clinical specimens
	Real-time quantitative polymerase chain reaction (RT-qPCR)
	Statistical analysis
	Ethics statement

	Results
	The genetic and expression landscape of prognostic MCRGs in COAD samples
	Development of an MC-related prognostic gene model in the TCGA cohort
	Nomogram construction and validation
	Characteristic genotype analysis
	Immune function, enrichment analysis, and risk signature variability
	The protein expression of 5 hub MCRGs and prognostic evaluation
	Relationships between MCRGs and chemotherapy drug sensitivity
	MCRGs expression was high in CRC tissues

	Discussion
	Conclusion
	References
	Acknowledgements


