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Enhancer mutations modulate the severity of
chemotherapy-induced myelosuppression
Artemy Zhigulev1 , Zandra Norberg1, Julie Cordier1, Rapolas Spalinskas1 , Hassan Bassereh1 , Niclas Björn2,
Sailendra Pradhananga1 , Henrik Gréen2,3,* , Pelin Sahlén1,*

Non-small cell lung cancer is often diagnosed at advanced stages,
and many patients are still treated with classical chemotherapy.
The unselective nature of chemotherapy often results in severe
myelosuppression. Previous studies showed that protein-coding
mutations could not fully explain the predisposition to myelosup-
pression. Here, we investigate the possible role of enhancer muta-
tions inmyelosuppression susceptibility. We produced transcriptome
and promoter-interaction maps (using HiCap) of three blood stem-
like cell lines treated with carboplatin or gemcitabine. Taking ad-
vantage of publicly available enhancer datasets, we validated HiCap
results in silico and in living cells using epigenetic CRISPR technology.
We also developed a network approach for interactome analysis and
detection of differentially interacting genes. Differential interaction
analysis provided additional information on relevant genes and
pathways for myelosuppression compared with differential gene
expression analysis at the bulk level. Moreover, we showed that
enhancers of differentially interacting genes are highly enriched for
variants associated with differing levels of myelosuppression. Alto-
gether, our work represents a prominent example of integrative
transcriptome and gene regulatory datasets analysis for the func-
tional annotation of noncoding mutations.
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Introduction

Cancer, a leading cause of death, is responsible for nearly one in six
deaths worldwide (Ferlay et al, 2021). Lung cancer is the second
most frequently diagnosed cancer, causing 1.8 million yearly deaths
(Thai et al, 2021). Of those, 84% are diagnosed with non-small cell
lung cancer (NSCLC) (Ganti et al, 2021), often at an advanced stage
because of a lack of clinical symptoms and effective screening
approaches (Gridelli et al, 2015). For many patients with advanced-
stage NSCLC, where targeted therapies and immunomodulators
are not indicated, the main treatment route remains traditional

chemotherapy using the third generation chemotherapy (such as
paclitaxel, docetaxel, gemcitabine, vinorelbine or irinotecan) in combi-
nationwith platinumderivatives (carboplatin, cisplatin) (Baggstromet al,
2007). The classical drug cocktail for NSCLC, gemcitabine in combination
with carboplatin (Sederholm et al, 2005), is also widespread for treating
other solid tumors suchasbladder, ovarian, andbreast cancers (Pittman
et al, 2006). Despite their widespread application, these drugs can lead
to severe adverse drug reactions (ADRs), often resulting in treatment
cessation, treatment failure or even death (Testart-Paillet et al, 2007;
Amjad et al, 2023).

Blood cell progenitors, located in the bone marrow, are fast-
dividing cells that maintain the turnover of blood cells, such
as lymphocytes, erythrocytes, platelets, and neutrophils (Carey, 2003).
Their untargeted death leads to myelosuppression—dose-limiting
toxicity in carboplatin/gemcitabine treatment (Chatelut et al, 2003).
Notably, among platinum derivatives, it is carboplatin which is mainly
associated with a higher risk of neurotoxicity and myelosuppression,
whereas ADRs of cisplatin include a higher rate of nausea, vomiting,
nephrotoxicity, and ototoxicity (Santana-Davila et al, 2014). So far, only
neutropenia can be partially modulated in some cases by G-CSF
(granulocyte colony-stimulating factor) (Pastor et al, 2013). As a result,
around 55% of the patients receiving chemotherapy stopped it be-
cause of severe or life-threatening myelosuppression levels, even if
the drug is effective for treating the tumor (Zatloukal et al, 2003;
Sederholm et al, 2005; Rudd et al, 2005; Grønberg et al, 2009; Imamura
et al, 2011). Therefore, it is imperative to devise tools to stratify patients
with respect to their predisposition to experiencing ADRs, especially
chemotherapy-induced myelosuppression. Genetic factors heavily
modulate drug response phenotype, so patient genotype information
could be used for therapy management and optimization (Trendowski
et al, 2019; Mulford et al, 2021). A recent study by Swen et al (2023)
validated this hypothesis and reported the use of a pharmacogenetics
panel containing 12 genes. The use of the panel significantly reduced
the number of patients with ADRs and was feasible across European
healthcare system organizations (Swen et al, 2023).
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Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
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The potential of using germline genetic markers for toxicity re-
sponse prediction in the context of chemotherapy-induced myelo-
suppression was already reported in a set of our previous studies.
After performing exome-sequencing of 215 NSCLC patients under
carboplatin/gemcitabine treatment (Björn et al, 2020b; Svedberg et al,
2020) and whole-genome sequencing of 96 patients displaying the
most extreme toxicity levels (neutropenia, leukopenia, and throm-
bocytopenia) (Björn et al, 2020a), very few coding variants were found
to be associated with toxicity response. Almost all toxicity-associated
variants were located in noncoding regions, suggesting a possible role
for distal cis-regulatory elements in toxicity response regulation.

Enhancers are best-studied distal cis-regulatory elements con-
taining clusters of binding sites for transcription factors (Banerji et al,
1981; Kleinjan & van Heyningen, 2005). Their disruption was shown to
be a disease-driving or contributing mechanism via modulation of
the expression of target genes, establishing a new disease group
called enhanceropathies (Claringbould & Zaugg, 2021). The chro-
matin immunoprecipitation (ChIP) method can effectively locate
active enhancers using antibodies against the relevant epigenomic
marks such as H3K27Ac and H3K4me1 (Liang et al, 2004; Heintzman
et al, 2009; Rada-Iglesias et al, 2011). However, their location provides
limited insight into the functionality of enhancers (Blackwood &
Kadonaga, 1998). Historically, enhancers were linked to their nearest
gene. Still, various novel experimental assays showed that only one-
third of the enhancers regulate their closest gene (Dostie et al, 2006;
Åkerborg et al, 2019), necessitating methods to locate their target
genes and their location within the same experiment.

Chromosome conformation capture for high-throughput sequenc-
ing (Hi-C) is the chief method to map the spatial conformation of
genomes that mediates the promoter–enhancer contacts through
looping (Lieberman-Aiden et al, 2009). However, its resolution does not
allow for mapping interactions between individual promoter and
enhancer elements because of the genome’s vast number of structural
interactions and stochastic proximities (Forcato et al, 2017). The HiCap
technology solves this problemby introducing a sequence capture step
on the Hi-C material, enriching for interactions that involve specifically
targeted regions (Sahlén et al, 2015). HiCap provides close to single-
enhancer resolution (circa 860 bp), outperforming similarmethods (Ma
et al, 2015; Mifsud et al, 2015; Schoenfelder et al, 2015). This allows fine-
mapping of sequence variants and target gene discovery in the same
experiment (Åkerborg et al, 2019; Pradhananga et al, 2020; Sahlén et al,
2021; Zhigulev et al, 2022a). Because most variants associated with
drug-induced myelosuppression were found within regulatory ele-
ments (Björn et al, 2020a), we reasoned that HiCap targeting all the
promoters and selected mutations could help prioritize variants for
clinical use and provide insights into the mechanisms by which they
contribute to toxicity.

Results

HiCap depicts interactome dynamics of blood stem-like cells
upon drug exposure

We processed 0.8 and 1.1 billion reads mapped on the tran-
scriptome and interactome of 18 samples corresponding to normal

and drug-treated counterparts of the three cell lines: CMK, MOLM-1,
and K-562, in two replicates. These cell lines are a good and
convenient surrogate model readily available in many research
laboratories (Skopek et al, 2023). We first investigated gene ex-
pression changes upon drug exposure. The technical replicates of
the experiments correlated well in all cases (coefficient of corre-
lation >0.93 across all conditions) (Fig S1A–F). However, RNA profiles
of samples were not always able to separate treated cells from their
normal counterparts (Fig S2). Nevertheless, we detected differen-
tially expressed (DE) genes (FDR < 0.1), absolute log-fold change
(abs[logFC] > 1.2) belonging to relevant processes for drug exposure
such as regulation of hemopoiesis (GO:1903706, FDR = 1 × 10−8) and
response to toxic substances (GO:0009636, FDR = 5 × 10−4) (Fig S3A
and B, Table S1), confirming the cells’ response to the treatment.

Next, we analyzed HiCap datasets to find genomic interactions
of targeted promoters and selected variants (see the Materials and
Methods section). We detected 114,365 distal regions (i.e., untargeted
regions that are located distal to the promoters) interacting with
7,254 promoters (supporting pairs >4 and Bonferroni-adjusted P-
value < 0.01) across all cell lines and treatments (Table S2). Promoter-
interacting regions (PIRs) covered around 2.8% (84.4 Mb) of the
genome. We also detected 18,024 interactions between promoters
and 19,204 interactions between targeted variants and distal regions.
Because K-562 is a tier 1 ENCODE cell line, a vast array of public ATAC-
seq and ChIP-seq datasets is available (Table S3). We used these
datasets to assess the enhancer potential of the PIRs. In K-562 cells,
51.2% (22,719/44,366) of the PIRs overlapped with at least one en-
hancer mark (6.52-fold enrichment) (Fig 1A). We found that 41%
(18,190/44,366) of the PIRs overlapped only a TF-binding site, high-
lighting the importance of TF datasets during the evaluation of
promoter–enhancer interactions. All super-enhancers (SEs) anno-
tated in K-562 cells (Jiang et al, 2019) also overlappedwith at least one
PIR.

We further tested the potential of detected PIRs to modulate the
activity of targeted genes using an inducible dual-effector epigenetic
interference system enCRISPRi-LK (Li et al, 2020). We successfully
reduced the gene expression in two out of three cases by repressing
their enhancers (Fig 1B and C). The first gene, TGFBR1 (Transforming
Growth Factor β Receptor 1), is a part of the transforming growth
factor β signaling pathway known for supporting the maintenance of
the self-renewal capacity of hematopoietic stem cells (Blank &
Karlsson, 2015). It is regulated by an enhancer located 272 kb away
in the chr9:101,595,333–101,595,751 region (Fig S4A). The second gene,
ANAPC4 (Anaphase Promoting Complex Subunit 4), is part of a highly
conserved protein complex that controls the amounts of the cyclins
and other cell cycle regulators to ensure proper cell cycle transitions
(Wäsch et al, 2010). Enhancer of ANAPC4 is located 326 kb away from it
in the chr4:25,051,758–25,052,804 region (Fig S4B). None of these
regions interact withNFE2 (Nuclear Factor Erythroid 2) promoter used
as a negative control.

We then investigated different aspects of interaction data by
looking at interaction statistics, functional enrichment of interacting
regions, and expression profiles of interacting promoters. The av-
erage interaction distance across all the samples is 156 kb (Fig 2A).
Our interactome maps showed close to single-enhancer resolution
(average PIR length of 860 bp) and therefore facilitated the individual
discovery of shared, and cell type-specific interactions (Fig 2B).
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Interactome profiles were more effective in separating untreated
cells from their treated counterparts compared with that of the
transcriptome data (Fig S2). Interestingly, 1,302 (43.9%) of targeted
variants showed at least one interaction in one cell type, and
interacting variants had significantly lower minor allele fre-
quencies compared with those targeted variants without an in-
teraction (Fig 2C, minor allele frequencies = 0.16 versus 0.26, FDR =
7.58 × 10−171).

The ChIP-seq profiles of 218 TFs from K-562 cells (Table S3) were
used to investigate the TF distribution across PIRs. The number of
TF-binding sites per PIR followed an inverse power–law distribu-
tion; that is, most PIRs contained few TFs, and few PIRs contained
many TFs (Fig 2D). Using the k-means clustering algorithm, we
observed fourmain TF clusters that co-occur, whereas generally the
binding patterns of most TFs were not correlated (Fig S5) suggesting
a diversity of enhancers based on their TF-binding patterns. One of

Figure 2. Interactome organization across different cell lines and treatments.
(A) Absolute interaction distance distribution of all interactions. (B) The overlap of interactions across cell types. (C) Dependence of targeted SNVs with different MAFs
on their interaction status. (D) The distribution of the number of TFs found in each PIR. (E) The overlap statistics of interacting genes in K-562 cells (K) between treatments:
carboplatin (C), gemcitabine (G), or no drug (N). (F) Dependence of gene expression on the interaction status of genes.

Figure 1. Validation of K-562 PIRs detected by HiCap.
(A) The enhancer element enrichment profile of PIRs at varying Bonferroni-corrected P-value thresholds. The numbers in red denote the fold enrichment for all
enhancer elements using the BEDTools fisher tool. The percentages in white show the ratio of PIRs that only overlaps with TF binding sites. (B, C) enCRISPRi-LK validation
of (B) chr9:101,595,333–101,595,751 region interacting with the TGFBR1 promoter and (C) chr4:25,051,758–25,052,804 region interacting with the ANAPC4 promoter. In both
cases, different sgRNA2s show a significant effect. sGal represents non-targeting sgRNA. Data are presented as mean ± stdev. ***P ≤ 0.05 (t test).
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the clusters contained 49 TFs that are highly enriched for SWI/SNF
superfamily (FDR = 6.3 × 10−16), NuRD complex (FDR = 3.8 × 10−13), and
leukemogenesis (FDR = 5.8 × 10−11). That is in line with previous
studies showing a high mutation rate of chromatin remodeling
complexes in cancer (Bracken et al, 2019). We then separated PIRs
connected to either expressed (top 75% quantile, 16,092 interac-
tions) or not-expressed (bottom 25% quantile, 16,241 interactions)
genes to see if there are any differential TF binding between the two
groups. There were 52 and 24 TFs binding to PIRs connecting to high
or low-expressed genes, respectively, and 23 TF were shared (Table
S4). Transcriptional repressor DEAF1 (Michelson et al, 1999) was only
found in PIRs connected to low-expressed genes. Moreover, 29 TFs
were only found in PIRs connected to expressed genes (Fig S6A and
B). Among them, members of the histone deacetylase family
(HDAC1, HDAC2, EP400, NCOR1, and TBL1XR1) were present, con-
firming the role of histone deacetylation in gene activation (Jepsen
et al, 2000; Bhaskara et al, 2008; LaBonte et al, 2009; Wang et al, 2009;
Seto & Yoshida, 2014). Lastly, we looked at the TF-binding profiles of
PIRs as a function of their overlap with SEs. Members of activator
complexes such as EP300, EP400, TBL1XR1, NR2C2, and SOX6 were
only found in PIRs overlapping with SEs (Fig S6C). However, CTCF
and RAD21 (subunit of the cohesin complex [Hauf et al, 2001]) were
found only in PIRs not overlapping with SEs (Fig S6D), which
supports their role in regulating loop stability (Hansen et al, 2017).

Finally, we focused on the targeted genes across all cell lines and
treatments. There were 8,251, 6,582, and 8,142 interacting genes in
CMK, MOLM-1, and K-562 cells, respectively. We discovered cell type-
specific and treatment-specific interacting genes (Figs 2E and S7A
and B). In all cells, they were more likely to be expressed (Fig 2F).
However, they were not more likely to be differentially expressed,
supporting the different dynamics of the transcriptional regulation
by enhancers and promoters (Larsson et al, 2019).

Network analysis of interactome facilitates the discovery of
differentially interacting genes

To track the dynamics of promoter–enhancer interactions, we
constructed networks using promoters and PIRs as network nodes
and connected them with an edge in case of interaction (see the
Materials and Methods section). We generated a separate network
for each replicate of cell type and state. We then calculated two
parameters, namely, Overlap Coefficient (OCE) and Jaccard Simi-
larity Index (JI), to quantify the connectivity differences for each
node across different states for each cell type. If the OCE/JI is equal
to one, it means that the gene did not change its interactions. In
contrast, if the OCE/JI equals zero, then it means that the gene
either changed all interactions, gained all new interaction(s) or lost
all its interaction(s) upon drug exposure. As an example, EEFG1
(Eukaryotic Translation Elongation Factor 1 Gamma) is a house-
keeping gene involved in the translation mechanisms (Kumabe
et al, 1992), and its interaction profile did not change significantly in
CMK cells upon carboplatin induction (Fig 3A). Meanwhile, EYA3 (EYA
Transcriptional Coactivator And Phosphatase 3) plays a particular
function as a distinguishing mark between apoptotic and repair
responses to genotoxic stress (Cook et al, 2009; Krishnan et al, 2009).
It entirely changed the interaction profile under the same condi-
tions (Fig 3B). We named the promoter nodes that changed their

connectivity as differentially interacting (DI) genes (see the Ma-
terials and Methods section). This approach revealed hundreds of
genes with interaction changes upon treatment despite their rel-
atively even steady-state expression levels (Table S5).

In CMK cells, there were 156/45 DE genes and 728/696 DI genes
upon carboplatin and gemcitabine treatments, respectively. Gen-
erally, in CMK cells, only DI genes showed enrichments for he-
matological cell count traits. Therefore, we assessed the biological
relevance of DI genes by comparing their enrichment for human
phenotype terms with that of non-DI genes, that is, genes that did
not change their interactions upon treatment. Indeed, DI genes in
CMK cells were more enriched for relevant phenotypes (Fig 3C). For
example, ETV6 (ETS Variant Transcription Factor 6) is a transcrip-
tional repressor implicated in dominantly inherited thrombocy-
topenia (Hock & Shimamura, 2017). Despite no significant changes
in steady-state expression levels, it underwent considerable
interactome changes upon both carboplatin and gemcitabine ex-
posure (Fig 3D).

In MOLM-1 cells, we detected 11/252 DE genes and 464/625 DI
genes upon exposure to carboplatin/gemcitabine, respectively.
They were enriched for relevant traits except for DE genes upon
exposure to carboplatin (Fig S8A and B). In particular, MPL (Proto-
Oncogene, Thrombopoietin Receptor) is essential for the prolif-
eration of megakaryocytes and platelet differentiation (Ng et al,
2014). It was not differentially expressed, but it changed its inter-
action landscape significantly upon exposure to both drugs (Fig
S8C).

In K-562 cells, there were 555/44 DE genes and 921/932 DI genes
upon treatment with carboplatin/gemcitabine, respectively. DE
genes, upon carboplatin treatment, were enriched for multiple
processes related to cell cycle regulation and hematological pro-
cesses, whereas DI genes showed limited enrichments (Fig S9A).
Conversely, very few genes were differentially expressed upon
gemcitabine treatment, but DI genes were enriched for multiple
processes related to lymphocyte and myeloid cell processes (Fig
S9B). ERG (ETS Transcription Factor ERG), an essential gene for
hematopoiesis (Knudsen et al, 2015), changed both its steady-state
expression and interaction status in both treatments (Fig S9C).
Concordantly, its haploinsufficiency impairs the self-renewal of
hematopoietic stem cells under myelotoxic stress (Ng et al, 2011).
The summary of DE and DI genes across cell types and treatments is
presented in Table 1.

Genes connected to candidate enhancer variants tend to
differentially interact upon drug exposure

In our previous study, we characterized 8,072,672 single-nucleotide
variants (SNVs) from 96 NSCLC patients with differing chemotherapy-
induced myelosuppression levels. Only a few protein-coding mu-
tations were associated with the toxicity response of the patients
(Björn et al, 2020a). We hypothesized that some SNVsmightmodulate
the activity of enhancers involved in myelosuppression or entirely
disrupt them. We overlapped SNVs with 95,567 PIRs derived from
HiCap experiments on model cell lines used here to test our hy-
pothesis. Half of the PIRs (52% or 49,802 PIRs) contained at least one
variant (50,119 SNVs), and 94.2% of those contained only a single
variant.
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To filter SNVs relevant to higher or lower risk of drug toxicity, we
grouped variants based on their allele count (AC) and allele fre-
quency (AF) differences between the two patient cohorts: high
toxicity (HT) and low toxicity (LT) (Fig S10). Accordingly, there were

6,583 variants whose AC and AF differed at least by 25% (see the
Materials and Methods section). We also required these variants to
have a strong effect size (ES) on TF binding affinity. Using the
motifbreakR package, we calculated the ES of the selected variants

Figure 3. Differentially interacting genes in CMK cells.
(A, B)Overlap coefficient measures the similarity between connections of (A) EEF1G and (B) EYA3 in normal versus carboplatin-treated states. Node size reflects its type:
gene or enhancer. The color represents the overlap status with DNase hypersensitivity sites: positive (red) or negative (yellow). (C) The enriched human phenotype terms
in CMK cells treated with either carboplatin or gemcitabine using DI or non-DI genes. (D) The interaction profile of ETV6 upon treatment; static interactions are shown in
blue, whereas gained interactions upon treatment are shown in red.

Enhancer variants modulate myelosuppression levels Zhigulev et al. https://doi.org/10.26508/lsa.202302244 vol 7 | no 3 | e202302244 5 of 13

https://doi.org/10.26508/lsa.202302244


across a collection of PWMs. Moreover, we filtered only cases where
both the interacting gene and TF were expressed (mean [transcripts
per million (TPM) across the cell line under all treatments] > 0.2).
That prioritized the top 2,720 variants further considered as can-
didate variants.

Afterward, we asked if promoters connected to PIRs carrying
these candidate variants are likelier to change their interaction
profile upon drug treatment than those connected to PIRs carrying
other (rest) variants. Indeed, promoters interacting with PIRs

Table 1. Comparison of DE and DI genes across cell lines and treatments.

DE genes DI genes

carboplatin gemcitabine carboplatin gemcitabine

CMK 156 45 728 696

MOLM-1 11 252 464 625

K-562 555 44 921 932

Color reflects enrichment for relevant GO-terms (green–high,
orange–medium, red–low).

Figure 4. Overlap coefficient differences between genes connected to the candidate and rest enhancer mutations.
(A, B, C, D, E, F) Promoters connected to PIRs containing candidate variants are more likely to change their interaction profile upon carboplatin (A, B, C) and gemcitabine
(D, E, F) induction than promoters connected to rest variants. Each dot represents a promoter connected to the PIR carrying the patient SNV. Candidate variants were
filtered based on several steps described in the main text. The rest corresponds to filtered-out cases. Fisher’s exact test was used to calculate P-values.
Source data are available for this figure.
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carrying candidate variants were more likely to change their in-
teractions upon exposure to carboplatin (Fig 4A–C) and gemcita-
bine (Fig 4D–F). The mean fraction of DI genes carrying variants in
PIRs varied from 5.0–7.2% for candidate variants to 1.6–2.7% for the
rest cases. The highest P-value between the two groups was 1.7 ×
10−5 in MOLM-1 cells in normal versus carboplatin-treated cases (Fig
4B), proving that interactions bearing candidate variants are sig-
nificantly enriched for DI genes. As a result, we report 196 candidate
DI genes connected to the candidate variants, which may be in-
volved in the genetic mechanisms of chemotherapy-induced
myelosuppression (Table S6).

We further investigated the relevance of the candidate gene set for
the myelosuppression. We isolated genes associated (through muta-
tions overlapping genes only) with the counts of lymphocytes, eryth-
rocytes, platelets, and neutrophils from all associations NHGRI-EBI
GWAS Catalogue v.1.0.2 (Sollis et al, 2023). Candidate genes showed a
significant (P-value = 1.4 × 10−3) enrichment for blood cells count traits.

Finally, we investigated which TFs are disrupted by candidate
variants in the enhancers of candidate genes. They showed sig-
nificant enrichment for abnormal blood cell morphology/
development (Bonferroni-adjusted P-value = 6.881 × 10−29) and
other related mouse phenotype terms (Table S6). Moreover, they
broadly overlapped with TFs previously associated with NSCLC and
different stages of chemotherapy-induced response (Vishnoi et al,
2020; Wang et al, 2021; Otálora-Otálora et al, 2023).

Discussion

The establishment of Capture-C enabled the functional annotation
of noncoding GWAS variants (Zhang & Lupski, 2015). With the de-
velopment of different variations of capture Hi-C technology, most
studies are still concentrated on the limited parts of the genome
associated with the phenotypes of interest (Orozco et al, 2022). In
this article, we performed a non-hypothesis-driven study linking
SNVs associated with differing levels of chemotherapy-induced
myelosuppression with their target genes at the whole-genome
level. We take advantage of the HiCap technology (Sahlén et al,
2015) to prioritize candidate SNVs. Based on a 4-cutter DpnII en-
zyme, HiCap results in a close to single-enhancer resolution
(860 bp). This precision is crucial for in vivo validations based on
CRISPR genomic and epigenetic editing technologies, where correct
gRNA targeting plays an important role. During our validations of
detected enhancers in cells, only gRNAs targeting their centers
affected the expression of targeted genes. Moreover, methods such
as HiCap can identify causal variants, including those in linkage
disequilibrium (Åkerborg et al, 2019); therefore, it can identify
variants contributing to cellular phenotypes (Zaugg et al, 2022).

The main novelty of our approach is considering the interactome
dynamics of normal versus, in this case, drug-treated cells. Whereas
bulk RNA-seq profiles could not separate samples because of the
stochastic RNA response upon treatments (Aissa et al, 2021), HiCap
overcame this phenomenon and robustly separated samples. Our
experimental design also facilitates a more comprehensive func-
tional annotation of SNPs related to myelosuppression predispo-
sition, whereas allowing the general description of DI genes.

Importantly, in this study, we overlap SNVs of patients with relevant
enhancers, however, derived from model blood stem-like cells,
limiting the discovery of private enhancers for a patient.

Taking advantage of the experimental setup, we propose a new
network algorithm to analyze promoter capture Hi-C data, priori-
tizing DI genes based on the interactome changes between two
states. We show that DI genes consistently provide more infor-
mation about myelosuppression predisposition genetics than DE
genes. Numerous relevant genes, such as ETV6 and MPL, appeared
to be DI, but not DE at bulk RNA-seq level. Nevertheless, in some
cases, DI genes supported DE genes, for example, in the described
case of ERG. Our results prove that genomic loop-based assays
could rescue enhancer-mediated effects on gene expression, which
can be lost during transcript abundance calculations in bulk RNA-
sequencing experiments because of averaging out the expression
levels over cells.

Finally, we highlight the importance of DI genes by showing
their enrichment for myelosuppression level-associated candidate
SNPs, suggesting enhancer mutations may modulate or entirely
disrupt promoter–enhancer interactions. We present a catalog of
candidate genes, connected to them candidate SNVs, and TFs
disrupted by these mutations, emphasizing the robustness of our
approach to study promoter–enhancer dysregulation at different
levels. We expect these results to make the next step toward
establishing personalized medicine.

Materials and Methods

Carboplatin/gemcitabine treatments and cell lines

Three human cell line models were used, including two with
megakaryocyte-like properties: CMK (ACC-392) (Komatsu et al, 1989;
Sato et al, 1989) and MOLM-1 (ACC-720) (Matsuo et al, 1991; Ogawa
et al, 1996; Drexler et al, 1999) from the Leibniz-Institute DSMZ–
German Collection of Microorganisms and Cell Cultures, and one
with general myelogenous properties: K-562 (CCL-243) (Lozzio &
Lozzio, 1975, 1979; Lozzio et al, 1981), from the American Type Culture
Collection. Cells were cultured and exposed to carboplatin or
gemcitabine, as previously explained (Björn et al, 2020a). In short,
duplicates of 10 million cells in 15 ml RPMI 1640 supplemented with
10% FBS were treated for 24 h with the 72-h IC50 concentration of
carboplatin, gemcitabine (both from Toronto Research Chemicals)
or no drug (as a non-treated control). The drug concentrations used
for K-562, CMK, and MOLM-1 were 14, 25, and 35 ng/ml for gemci-
tabine, and 30, 1.6, and 14 μg/ml for carboplatin, respectively. Only a
minor reduction in cell viability was seen using the MTT assay at
24 h of incubation (Björn et al, 2020a). Subsequent laboratory
procedures for RNAseq and HiCap (using the same cells) were
immediately initiated to be as good of a snapshot of the cellular
processes induced by the treatments as possible.

RNA-sequencing, alignment, and read summarization

RNA-seq data from our previous study (Björn et al, 2020a), gen-
erated from 1 ml of cell suspension from each of the treatments,
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were complemented with another round of sequencing of the
previously prepared libraries using the same sequencing approach:
HiSeq 2500 (Illumina) with HiSeq Rapid SBS Kit v2 chemistry and a
1 × 80 setup at Science for Life Laboratory (SciLifeLab), to increase
the number of reads. Data were then merged. Briefly, TrimGalore!
version 0.6.1 (Krueger, 2021) utilizing cutadapt version 2.3 (Martin,
2011) was used for quality and adapter trimming, STAR version 2.7.2b
(Dobin et al, 2013) was used for alignment to GRCh37, RSEM package
(Li & Dewey, 2011) version 2 was used to summarize the number of
unique mapping reads per gene region (Table S1). The data quality
was monitored using FastQC version 0.11.9 (Andrews, 2010), Qual-
iMap version 2.2.1 (Garcı́a-Alcalde et al, 2012), and MultiQC version
1.9 (Ewels et al, 2016).

Gene expression and enrichment analysis

The summarized read counts were further analyzed in R version
4.0.3 (R Core Team, 2021). Reads per kilobase million, counts per
million, and TPM were calculated. Analysis of differentially
expressed (DE) genes was conducted using edgeR version 3.18.1
(Robinson et al, 2010; McCarthy et al, 2012) and the TMM normal-
ization method (Robinson et al, 2010). DE genes were extracted
when comparing non-treated and carboplatin or gemcitabine-
treated cells for the three cell lines. KEGG pathway and Gene
Ontology (GO) enrichment analyses of various sets of genes were
performed using the ToppGene suite (Chen et al, 2009) and the R
package clusterProfiler version 3.12.0 (Yu et al, 2012), and StringDB
(Szklarczyk et al, 2021), was used for analysis.

SNP selection

In our previous study, we analyzed 215 exomes of NSCLC patients
(Björn et al, 2020b). All of them received at least one cycle of
carboplatin/gemcitabine treatment, which was the standard of
care for NSCLC patients at the time and place of the study. Of these,
96 patients were selected based on extreme toxicity, either low or
high neutropenia, leukopenia, and thrombocytopenia. We classified
patients into two groups (low and high toxicities, LT and HT, re-
spectively) via unsupervised k-means clustering using blood cell
count values of the three above phenotypes as input (Fig S10). The
whole genomes of these 96 individuals were sequenced and an-
alyzed (Björn et al, 2020a).

In this study, we overlapped SNVs detected in the 96 individuals
(a total of 8,072,672 SNVs) with enhancer marks for blood cell lines
collected from ENCODE (The ENCODE Project Consortium, 2012) and
Fantom5 (Lizio et al, 2015) datasets available in 2017. In total, 3.27
million SNVs overlapped with at least one enhancermark (Table S7).

HiCap probe design

HiCapTools (Anil et al, 2018) was used to design probes against
22,171 promoters and 2,965 selected SNVs using default settings
(Table S8). We selected 2,965 SNVs (the maximum number of
variants we could target given the probe set size), with the largest
frequency difference between patient groups and overlap with the
multitude of enhancer marks to be included in the sequence probe
capture set used for HiCap experiments. The probe set included

2,900 regions with no known promoter/enhancer activity. These
regions were then used to generate the background interaction
distribution and assign statistical significance for each observed
proximity.

HiCap library preparation

The remaining 14 ml of cell suspension from each cell sample was
used for HiCap, as previously explained (Åkerborg et al, 2019;
Zhigulev et al, 2022b). This method is developed by us (Sahlén et al,
2015) and others (Mifsud et al, 2015) and provides high-resolution
interaction data over genomic regions by hybridizing Hi-C material
to probes targeting certain regions of interest, enabling the study of
individual promoter–enhancer interactions. Briefly, the method
starts with cross-linking DNA–protein–DNA complexes with form-
aldehyde, followed by roughly cutting DNA across the genome into
~700-bp pieces using restriction endonucleases. Spatially close
fragments are then ligated before capturing promoter–enhancer
sequences using probes located in known genes’ promoters or
probes containing selected SNPs associated with ADRs. Captured
libraries were sequenced using HiSeq 2500 (Illumina) with HiSeq
Rapid SBS Kit v2 chemistry and a 1 × 80 setup at Science for Life
Laboratory (SciLifeLab). Table S9 shows the sequencing statistics
for HiCap libraries. Lastly, sequencing data are analyzed for sig-
nificant interactions.

Chromatin interaction calling

HiCapTools (Anil et al, 2018) was used to call interactions in all
samples (Table S2). We required at least four pairs supporting each
interaction. We then used three Bonferroni-adjusted P-value cut-
offs (0.1, 0.01, 0.001) to filter interactions. We evaluated adjusted P-
value cutoffs using the fold enrichment of distal regions for the
publicly available enhancer datasets (Table S3), calculated by the
BEDTools package version 2.30.0 (Quinlan & Hall, 2010). We used the
adjusted P-value cutoff of 0.01 for all analyses throughout the
article, except the network generation, where the threshold was
0.001. HiCap results were mapped to GRCh37.

CRISPR validation

Several PIRs were validated using the enCRISPRi-LK system (Li et al,
2020). Briefly, gRNAs (Table S10) targeting different parts of PIRs
were cloned into the Lenti_sgRNA(MS2)_MCP-KRAB-IRES-zsGreen1
(#138460) backbone plasmid with BsmBI-v2 (NEB) Golden Gate
assembly, using oligos ordered from Integrated DNA Technologies.
Lentiviral particles containing either tet-inducible dCas9-LSD1
(#92362), inducer TetON3G-BFP (assembled from #128061 and
#120577 plasmids using BamHI-HF and MluI-HF [both from NEB]), or
targeting gRNA-KRAB plasmid were separately obtained by trans-
fection of 293T cells using Lipofectamine 3000 Transfection Reagent
(Thermo Fisher Scientific) and second generation lentiviral plas-
mids psPAX2 (#12260) and pMD2.G (#12259) according to the man-
ufacturer’s instructions. A stable K-562-dCas9-LSD1-TetON3G-BFP
cell line was obtained by transducing K-562 cells with the lentiviral
particles for 6 h before changing the medium. Finally, gRNA-KRAB
constructs were transduced to the previously obtained stable cell
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line. dCas9 expression was induced with 1 μg/ml of doxycycline 72 h
before FACS at the Biomedicum Flow cytometry Core facility (Kar-
olinska Institutet). After sorting for BFP, zsGreen, and mCherry
expressing cells, RNA was extracted with the RNeasy Plus Mini kit.
RNA integrity and yield were assessed by Bioanalyzer 2100 (RNA
6000 Pico Kit; Agilent). Gene expression changes were evaluated by
triplicate RT-qPCR using DreamTaq Hot Start DNA Polymerase
(Thermo Fisher Scientific) and an EvaGreen dye (Biotium).

Interactome network generation and calculation of network
parameters

To generate interactome networks, we considered each interacting
promoter or enhancer as a node in the network. We then connected
two nodes if they had a significant interaction in at least one
replicate. We used the igraph package version 1.4.2 (Csardi &
Nepusz, 2006) distributed under R to generate the networks. We
then created a summary of interactions for each node or gene by
summing its interactions. We generated nine networks in total
(Table S5).

To calculate the Jaccard index (JI) and overlap coefficient (OCE) of
a node between the two networks (A, B), we used the following
formulas:

JIx =
A \ B
A [ B

OCEx =
A \ B

minðA;BÞ

where A and B denote the number of neighbors of node x in
networks A and B, respectively.

The network is generated using non-replicated interactions
(i.e., those that are called interactions in one of the replicates);
therefore, JI and OCE parameters reflect the amount of replicated
novel (gained) or lost interactions. Note that a node with a JI value
less than one can have an OCE value equal to one. This is because
OCE requires that the number of common nodes is more than the
number of nodes in the smaller network. For example, a node with
two connections in the untreated condition could lose one of its
connections upon treatment and not gain any additional con-
nection. The JI would be 0.5, but OCE would be 1 because the size of
the network withminimumnumber of nodes is equal to the number
of common nodes. Therefore, OCE is a stricter measure of con-
nectivity change than JI.

We then defined differentially interacting (DI) genes as those
OCE < 1 and JI <= 0.5. We excluded cases with JI = 0 to eliminate genes
gaining or losing only one interaction. We only took genes with
TPM > 0.2.

Allele count difference calculations

We calculated the allele count (AC) and frequencies (AF) of each
alternative allele for both HT and LT groups of patients. We then took
the absolute difference between LT and HT groups for AC and AF:

AFdiff = absðAF:LT − AF:HTÞ
AF:LT + AF:HT

ACdiff = absðAC:LT − AC:HTÞ
AC:LT + AC:HT

For candidate variants, we required them to be present in at least
two individuals at a 25% AC and AF difference between the two
groups. In short, that is represented by the following formula:

ðAFdiff > ACEthr; ACdiff > ACEthr;abs AC:LT − AC:HTð Þ > 1Þ

where allele counts difference threshold, ACEthr = 0.25.
The variants not fulfilling the following criteria are deemed as

“rest”.

TF affinity predictions

To assess the potential effect of SNVs on the TF-binding affinity, we
used the motifbreakR package (Coetzee et al, 2015). It directly
weights the score by the importance of the position within a
particular motif in a tested collection. We used amotifbreakR_motif
object derived from MotifDb package version 1.40.0 (Shannon &
Richards, 2023)—the collection of 2,817 position frequency matrices
from four sources: ENCODE-motif, FactorBook, HOCOMOCO, and
HOMER.

Data Availability

Whole-genome sequencing datasets analyzed during the current
study are not publicly available because of reasons of sensitivity
but are available from the corresponding author upon reasonable
request. Raw sequence reads of RNA-seq and HiCap are submitted
to NCBI Sequence Read Archive (PRJNA1012445).

Ethics statement

The 96 whole-genome sequences of NSCLC patients were di-
agnosed between 2006 and 2008 at Karolinska University Hos-
pital, Stockholm, Sweden, and included after providing written
informed consent in accordance with the Helsinki Declaration.
The study received ethical approval from the Regional Ethics
Committee in Stockholm (DNR-03-413 with amendment 2016/
258-32/1). These patients are part of the material included in
previously published studies (Björn et al, 2020a, 2020b; Svedberg
et al, 2020).
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